Résumé : Je commencerai par introduire le concept de S-coloriage de graphe :
étant donné un sous-ensemble S(v) de voisins de v pour tout sommet v d'un
graphe G, c'est un coloriage propre des sommets de G tel que, en outre,
les sommets qui appartiennent ensemble à un même S(v) pour un sommet v reçoivent des couleurs différentes.
Ceci généralise à la fois le concept de coloriage du carré de graphe et
le coloriage cyclique des graphes plongés.
Je présenterai un résultat structurel fort pour les graphes plongés
dans une surface fixe, qui permet par exemple de démontrer que la
taille maximum d'une clique dans le carré d'un tel graphe
de degré maximum D est au plus 3D / 2 plus une constante.
En utilisant ce résultat de structure, le S-coloriage d'un graphe plongé
peut se réduire au coloriage d'arêtes d'un multigraphe.
Je donnerai ensuite un aperçu général du travail de Jeff Kahn sur
arête-coloriage d'un multigraphe H, basé sur l'utilisation des
distributions hardcores sur les couplages, définies par des points à
l’intérieur du polytope des couplages de H.
En combinant ces résultats, on peut établir un résultat général sur le
S-coloriage des graphes plongés, impliquant notamment les versions
asymptotiques des conjectures de Wegner et de Borodin sur le coloriage du carré et le coloriage
cyclique des graphes planaires. Mon exposé est basé sur un travail en commun avec
L. Esperet et J. van den Heuvel.
Dernière modification : Monday 27 May 2024 | Contact pour cette page : Cyril.Banderier at lipn.univ-paris13.fr |