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Introduction

A planar map is a connected (multi)graph
embedded in the sphere, considered up to
continuous deformation. It is made of
vertices, edges and faces.
When all faces have degree 4, the map is a
quadrangulation. We similarly define
triangulations, etc.
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Introduction

Motivations to study maps:

combinatorics (enumeration,
four-color theorem)

random matrix models
(topological expansion of matrix
integrals)

two-dimensional quantum
gravity (“develop an art of
handling sums over random
surfaces”)

algebraic geometry and
representation theory

random geometry (random
metric spaces, measures,
conformal properties...)

. . .

. . .
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The two-point function of quadrangulations
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Basic question

Consider a uniformly distributed
random planar quadrangulation with
n faces (and n+ 2 vertices). Pick two
uniformly distributed random vertices
v1 and v2. What is the law of the
graph distance d12 between them ?

Equivalent counting problem

Count the number of planar
quadrangulations with n faces and
two marked vertices at a prescribed
distance d12.
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The two-point function of quadrangulations
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A well-labeled tree is a plane tree with integers
labels on vertices, such that labels on adjacent
vertices differ by at most 1.

Theorem (Cori-Vauquelin ’81, Schaeffer ’98, see
also Chassaing-Schaeffer ’02, loosely stated)

There is a one-to-one correspondence between
planar quadrangulations with n faces and
well-labeled trees with n edges.

Schaeffer pointed out that labels encode graph distances to an origin in
the quadrangulation. Precisely we have the following bijections:

pointed quad.↔ unrooted tree with positive labels and a label 1

rooted quad.↔ rooted tree with positive labels and root label 1

pointed rooted quad.↔ rooted tree with unconstrained labels

considered up to a global shift
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The two-point function of quadrangulations
A well-labeled tree with positive labels and root label ` ≥ 1 corresponds
(essentially) to a quadrangulation with two marked points at distance at
most `.

It is quite simple to write down an equation for the generating
function of such objects:

R` :=
∑
n≥0

gn #{positive w.-l. trees with n edges and root label `}

satisfies R` =

{
1 + gR`(R`+1 + R` + R`−1), ` ≥ 1

0 ` = 0.
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(see also B.-Di Francesco-Guitter ’03 for an alternate derivation)
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The two-point function of quadrangulations
Interestingly, this equation admits the explicit solution

R` = R
(1− x`)(1− x`+3)

(1− x`+1)(1− x`+2)

where the power series R, x are determined via

R = 1 + 3gR2, x +
1

x
+ 1 =

1

gR2
.

(B.-Di Francesco-Guitter ’03)

The equation is discrete integrable in the sense that it admits a conserved
quantity: ψ(Rn,Rn+1) is independant of n with

ψ(x , y) := (1− gx − gy)(1 + gxy).

Here we pick a convergent solution, ψ(Rn,Rn+1) = ψ(R,R), R0 = 0.

(see also B.-Di Francesco-Guitter ’03 for the general solution)
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The two-point function of quadrangulations

We thus have an “explicit” solution to our counting problem! No closed
form expression for the “numbers” (coefficients of R`) but asymptotics are
easy to get via standard techniques.

Local limit: estimate [gn]R` for n→∞, ` fixed:

[gn]R` ∼ C`
12n

n5/2

By normalizing properly we deduce the expected volume of the ball of
radius ` centered at the origin in the Uniform Infinite Planar
Quadrangulation (Chassaing-Durhuus ’03, Krikun ’05...)

EV` =
C` + C`+1

C1
=

3(`+ 2)2(5`4 + 40`3 + 104`2 + 96`+ 35)

140(`+ 1)(`+ 3)
∼ 3`4

28
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The two-point function of quadrangulations

Scaling limit: estimate [gn]R` for n→∞, L := ` · n−1/4 fixed:

EnV`
n + 2

→ Φ(L) :=
2√
π

∫ ∞
−∞

dξ ξ2e−ξ
2

(
1 +

3

sinh2(L
√
−3iξ/2)

)
(Ambjørn-Watabiki ’96, B.-Di Francesco-Guitter ’03)

Φ(L) is the CDF of the distance between two random points in the
Brownian map (Marckert-Mokkadem ’05, Le Gall ’06-’11, Miermont ’07-’11...)
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Φ(L) ∼ 3D4

28
, L→ 0 log(1− Φ(L)) ∼ cst.L4/3, L→∞.
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Generalized two-point function
We may consider the same question in more general classes of maps. A
favorable setting is given by maps with controlled face degrees

P({m}) =
1

Z

∏
k≥1

g
#{faces of degree k in m}
k

(we recover quadrangulations, triangulations, etc, by specialization).

The previous approach may be extended
using a generalization of Schaeffer’s bijection
involving so-called mobiles.

(B.-Di Francesco-Guitter ’04)

Easier case: bipartite maps (gk = 0 for k
odd).

Map-tree dictionary:

vertex at distance ` ↔ vertex labeled `

face of degree 2k ↔ unlabeled vertex of
degree k
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Generalized two-point function
A mobile with positive labels and root label ` ≥ 1 corresponds (essentially)
to a map with two marked points at distance at most `. The generating
function R` of such objects obeys recursive equations.

Example: squares and hexagons (gk = 0 unless k = 4 or 6)

R` = 1 + g4R`(R`+1 + R` + R`−1)+

g6R`
(
R`+2R`+1 + R2

`+1 + 2R`+1R` + R`+1R`−1+

2R`R`−1 + R2
`−1 + 2R`−1R`−2

)
for ` ≥ 1, R` = 0 otherwise. There is still an explicit solution

R` = R
u`u`+3

u`+1u`+2
, u` = 1− λ1x

`
1 − λ2x

`
2 + c12λ1λ2(x1x2)`

where R, x1, x2, . . . are determined by some algebraic equations. Also there
are now several independent conserved quantities. The same phenomenon
occurs if we allow for an arbitrary finite number of face degrees.

(B.-Di Francesco-Guitter ’03, DG ’05, BG ’10)
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occurs if we allow for an arbitrary finite number of face degrees.

(B.-Di Francesco-Guitter ’03, DG ’05, BG ’10)
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Generalized two-point function
More involved case: arbitrary face
degrees.

Mobiles now have “flagged”
edges too.
Introduce g.f. R` and S` of mobiles
rooted respectively on a label ` ≥ 1
or on a flag ` ≥ 0, get recursive
equations, reinterpret in terms of
maps.

0

3

2

2

2

2

1

1

Example: triangulations (gk = 0 unless k = 3)

R` =

{
1 + g3R`(S` + S`−1), ` ≥ 1

0, ` = 0
S` = g3(S2

` +R`+R`+1), ` ≥ 0

Still an explicit solution, conserved quantities...

(here y + y−1 + 2 = 1/(g2
3R

3))

R` = R
(1− y `)(1− y `+2)

(1− y `+1)2
S` = S − g3 R

2y `
(1− y)(1− y2)

(1− y `+1)(1− y `+2)
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Generalized two-point function

Applications:

local limit: computations of expected ball volumes in infinite maps,

scaling limit: check “universality” of the Brownian map.

Unsettled question: how to escape from this universality class?

multicritical points : no probabilistic interpretation (BDG ’03)

models with matter (Ising, loops...) : bijections without control on
distances (Bousquet-Mélou & Schaeffer ’02, BDG ’07 ...)

maps with large faces (Le Gall & Miermont ’09): difficult analysis

Remark: the radius of quadrangulations (Chassaing-Schaeffer ’02) can be
studied by analyzing the same equation with different boundary conditions
(BDG ’03, Drmota ’09)

Bottom line

A combinatorial miracle happens. More? Why?
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Generalized two-point function

Example: the expected volume of the ball of radius ` centered at the origin
in the Uniform Infinite Planar Triangulation (Angel-Schramm ’02) reads

EV` =
2(5`6 + 45`5 + 163`4 + 303`3 + 305`2 + 159`+ 35)

35(`+ 1)(`+ 2)
∼ 2

7
`4
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More in our combinatorial toolbox

From now on we restrict to the case of quadrangulations.

Schaeffer’s bijection only encodes distances to one special vertex.
Miermont (’09) generalized it to the case of an arbitrary finite number of
vertices, with partial information on the distances to them:

Input: quadrangulation with p distinct
marked vertices v1, . . . , vp
& integer delays τ1, . . . , τp such that

∀i 6= j ,

{
|τi − τj | < d(vi , vj)
τi − τj ≡ d(vi , vj) mod 2

Output: a well-labeled map with p
faces F1, . . . ,Fp

Labels: `(v) = minj (d(v , vj) + τj)
Property: `(v) = d(v , vi ) + τi if v is incident to Fi
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More in our combinatorial toolbox

From now on we restrict to the case of quadrangulations.
Schaeffer’s bijection only encodes distances to one special vertex.
Miermont (’09) generalized it to the case of an arbitrary finite number of
vertices, with partial information on the distances to them:

2
F

F

F
3

1

2

4 1

3

2

3

4

3

2 Input: quadrangulation with p distinct
marked vertices v1, . . . , vp
& integer delays τ1, . . . , τp such that

∀i 6= j ,

{
|τi − τj | < d(vi , vj)
τi − τj ≡ d(vi , vj) mod 2

Output: a well-labeled map with p
faces F1, . . . ,Fp

Labels: `(v) = minj (d(v , vj) + τj)
Property: `(v) = d(v , vi ) + τi if v is incident to Fi
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The three-point function of planar quadrangulations
We may apply this bijection to compute the
three-point function of quadrangulations.

(B.-Guitter ’08)

Trick: apply the Miermont bijection with
delays τ1 = −s, τ2 = −t, τ3 = −u where

d12 = s + t

d23 = t + u

d31 = u + s

Get a bijection between planar
quadrangulations with three marked points
at prescribed distances and some
well-labeled maps with three faces...

v

12

32d

d31

v

1

v2
3

d

v

12

d
23d 31

s t

u

1 2

3

v

v

d

Jérémie Bouttier (IPhT/DMA) Distances in maps and discrete integrability 12 November 2013 17 / 36

http://arxiv.org/abs/0805.2355


The three-point function of planar quadrangulations
We may apply this bijection to compute the
three-point function of quadrangulations.

(B.-Guitter ’08)

Trick: apply the Miermont bijection with
delays τ1 = −s, τ2 = −t, τ3 = −u where

d12 = s + t

d23 = t + u

d31 = u + s

Get a bijection between planar
quadrangulations with three marked points
at prescribed distances and some
well-labeled maps with three faces...

v

12

32d

d31

v

1

v2
3

d

v

12

d
23d 31

s t

u

1 2

3

v

v

d

Jérémie Bouttier (IPhT/DMA) Distances in maps and discrete integrability 12 November 2013 17 / 36

http://arxiv.org/abs/0805.2355


The three-point function of planar quadrangulations
We may apply this bijection to compute the
three-point function of quadrangulations.

(B.-Guitter ’08)

Trick: apply the Miermont bijection with
delays τ1 = −s, τ2 = −t, τ3 = −u where

d12 = s + t

d23 = t + u

d31 = u + s

Get a bijection between planar
quadrangulations with three marked points
at prescribed distances and some
well-labeled maps with three faces...

v

12

32d

d31

v

1

v2
3

d

v

12

d
23d 31

s t

u

1 2

3

v

v

d

Jérémie Bouttier (IPhT/DMA) Distances in maps and discrete integrability 12 November 2013 17 / 36

http://arxiv.org/abs/0805.2355


The three-point function of planar quadrangulations

3

F1

2F F

min ℓ(v) = 0

min ℓ(v) = 1− s

min ℓ(v) = 1− t min ℓ(v) = 1− u

min ℓ(v) = 0

min ℓ(v) = 0

Constraints on the corresponding well-labeled maps.

Generating function: Gs,t,u(g) with g weight per edge
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The three-point function of planar quadrangulations

3

F1

2F F

min ℓ(v) = 0

min ℓ(v) = 0

min ℓ(v) = 0

min ℓ(v) ≥ 1− umin ℓ(v) ≥ 1− t

min ℓ(v) ≥ 1− s

Replace some equality constraints by bounds (easier to count).

Generating function: Fs,t,u =
∑

s′≤s
∑

t′≤t
∑

u′≤u Gs′,t′,u′
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The three-point function of planar quadrangulations

3

ℓ
F1

2F F

min ℓ(v) = 0

min ℓ(v) = 0

min ℓ(v) = 0

ℓ
R

+tR

+s

ℓ

The map is made of well-labeled trees attached to a skeleton.

(Recall the previous expression for the well-labeled trees g.f. R`)
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The three-point function of planar quadrangulations

0

0
first 0

0

0

0

3

F1

2F F

Decompose the skeleton at the first and last label 0 along each branch.
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The three-point function of planar quadrangulations

00

0

first 0 0
0

0
0

0

0 0

0

Obtain acyclic components.
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The three-point function of planar quadrangulations

0

first 0 0
0

00

Xs,t Xt,u Xu,s

“Chains” depends on two indices only.
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The three-point function of planar quadrangulations

Xs,t Xt,u Xu,s

Ys,t,u

Ys,t,u

“Stars” depend on all three indices.
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The three-point function of planar quadrangulations

Xs,t Xt,u Xu,s

Ys,t,u

Ys,t,u

“Stars” depend on all three indices.

Fs,t,u = Xs,tXt,uXu,s(Ys,t,u)2
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The three-point function of planar quadrangulations
Consider the generating function Xs,t for well-labeled chains.

ℓ

ℓ
ℓ

ℓ

ℓ

ℓℓ

ℓℓℓ

ℓ

=0
=0

=0

0=

+t+s

0
g  RR

m

0 1 2

0

1

2

m

Xs,t =
∑
m≥0

∑
Motzkin paths of length m
M=(0=`0,`1,...,`m=0)

m−1∏
k=0

g R`k+s R`k+t
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ℓ

ℓ
ℓ

ℓ

ℓ

ℓℓ

ℓℓℓ

ℓ

=0
=0

=0

0=

+t+s

0
g  RR

m

0 1 2

0

1

2

m

Xs,t = 1 + gRsRtXs,t(1 + Rs+1Rt+1Xs+1,t+1)
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The three-point function of planar quadrangulations
Consider the generating function Xs,t for well-labeled chains.

ℓ

ℓ
ℓ

ℓ

ℓ

ℓℓ

ℓℓℓ

ℓ

=0
=0

=0

0=

+t+s

0
g  RR

m

0 1 2

0

1

2

m

Xs,t =
(1− x3)

(1− x)

(1− x s+1)

(1− x s+3)

(1− x t+1)

(1− x t+3)

(1− x s+t+3)

(1− x s+t+1)
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The three-point function of planar quadrangulations

Consider the generating function Ys,t,u for well-labeled stars.

0

0first 0

Ys,t,u = 1 + g3RsRtRuRs+1Rt+1Ru+1Xs+1,t+1Xt+1,u+1Xu+1,s+1Ys+1,t+1,u+1

=
(1− x s+3)(1− x t+3)(1− xu+3)(1− x s+t+u+3)

(1− x3)(1− x s+t+3)(1− x t+u+3)(1− xu+s+3)
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The three-point function of planar quadrangulations
Gathering all expressions we get (B.-Guitter ’08)

Fs,t,u =
[3] ([s + 1][t + 1][u + 1][s + t + u + 3])2

[1]3[s + t + 1][s + t + 3][t + u + 1][t + u + 3][u + s + 1][u + s + 3]

where

[`] :=
(1− x`)

(1− x)
.

v
2 v

3

d 32

31
d1d 2

1v
Gs,t,u = ∆s∆t∆uFs,t,u is the generating
function for quadrangulations with three
marked vertices at distances
d12 = s + t, d23 = t + u, d31 = u + s.

It encodes the joint law of the distances

d
(n)
12 , d

(n)
23 , d

(n)
31 between three uniform

random vertices in a uniform random planar
quadrangulation of size n.
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The three-point function of planar quadrangulations
Scaling limit: for n→∞ we have

n−1/4 · (d (n)
12 , d

(n)
23 , d

(n)
31 )

d→ (D12,D23,D31)

with an explicit analytical expression for the density of the limit
(three-point function of the Brownian map).

Density of two rescaled distances conditionnally on the third.
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(n)
31 )

d→ (D12,D23,D31)

with an explicit analytical expression for the density of the limit
(three-point function of the Brownian map).
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n−1/4 · (d (n)
12 , d
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(n)
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d→ (D12,D23,D31)

with an explicit analytical expression for the density of the limit
(three-point function of the Brownian map).
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Other related results (B.-Guitter ’08)

Le Gall (’08) has shown the phenomenon of confluence of geodesics.

3v
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Other related results (B.-Guitter ’08)

Triangles formed by geodesics have actually six “sides”.
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Other related results (B.-Guitter ’08)
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Other related results (B.-Guitter ’08)
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Other related results (B.-Guitter ’08)

We may also study separating loops.
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Other related results (B.-Guitter ’08)
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Quadrangulations with a boundary (B.-Guitter ’09)

Let us now consider a pointed quadrangulation with a boundary where the
origin-boundary distance is at most d .

It is in one-to-one correspondence with a well-labeled “forest”.
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Quadrangulations with a boundary (B.-Guitter ’09)

ℓ

ℓℓ

ℓ

ℓ

ℓ
ℓ

ℓ

ℓ

ℓ =dd=

=d

=d

min ℓ(v) ≥ 1

+d
0

Rz

min ℓ(v) = 1

1

0

1

2p

0
2

2p2

Bivariate generating function of well-labeled forests (z per outer edge):

Wd =
∑
m≥0

∑
Dyck paths of length 2m
D=(0=`0,`1,...,`2m=0)

∏
down steps `→`−1

z2 R`+d
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Continued fractions
There is again an explicit formula for Wd . But most interesting is the
continued fraction expansion structure.

In particular for d = 0 we get

ω := W0 =
1

1− R1z
2

1− R2z
2

1− · · ·
but ω is also the generating function of quadrangulations of a polygon, a
“well-known” quantity (e.g. resolvent of a one-matrix model):

R` is recover via Hankel determinants:

R` =
H`H`−2

H2
`−1

, H` = det
0≤i ,j≤`

ωi+j

A combinatorial explanation for the form of R` follows by the
Lindström-Gessel-Viennot lemma!
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Continued fractions

R
R

1/2

1/2

1+

i i

g R
2

Rg
1/2

Rg
1/2

2 4 6−4 −2 0i 2j+2−2

ωi+j counts “perturbed” Dyck paths.

Jérémie Bouttier (IPhT/DMA) Distances in maps and discrete integrability 12 November 2013 29 / 36



Continued fractions

g R
2

−

g R
2

+

+2n2

+
1

n
2

2 4 6−4 −2 0

1

n−2

R

n  n(   +1)

The Hankel determinant count configurations of non-intersecting paths, in
bijection with configurations of 1D dimers. By elementary combinatorics,
our explicit expression for R` follows.
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Continued fractions

The same coincidence happens in the setting of maps with controlled face
degrees, by the bijection with mobiles.
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3

3 4

4
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4 4

4
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4
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Continued fractions

Bipartite maps: Stieljes fraction

ω =
1

1− R1z
2

1− R2z
2

1− · · ·
Arbitrary maps: Jacobi fraction

ω =
1

1− S0z −
R1z

2

1− S1z −
R2z

2

1− · · ·
(B.-Guitter ’10)
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Continued fractions

But, again, ω is the g.f. of rooted maps with
a boundary and is well studied. For a fixed
boundary length its coefficient takes the
general form

ωp = R
∑
q≥0

γqP
+(p + q;R, S)

where R, S , γq are algebraic power series in
the face weights g1, g2, . . ..

R

S

(0,0) n

P
+
n(  ;   ,   )SR

(  ,0)

In turn the coefficients in the continued fraction expansion are expressed
via Hankel determinants:

R` =
H`H`−2

H2
`−1

H` := det
0≤i ,j≤`

ωi+j

S` =
H̃`
H`
− H̃`−1

H`−1
H̃` := det

0≤i ,j≤`
ωi+j+δj,` .
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Continued fractions

If we impose a bound on face degrees (gk = 0 for k > M + 2), then we
may identify the discrete two-point functions as symplectic Schur
functions.

The Weyl character formula yields the “final” formula

R` = R

det
1≤m,n≤M

[`+ 1 + n]m det
1≤m,n≤M

[`− 1 + n]m(
det

1≤m,n≤M
[`+ n]m

)2

S` = S −
√
R

 det
1≤m,n≤M

[`+1+ n− δn,1]m

det
1≤m,n≤M

[`+1 +n]m
−

det
1≤m,n≤M

[`+n−δn,1]m

det
1≤m,n≤M

[`+n]m


where the size of the determinants is independent of `. Here

[`]m ≡
y−`m − y `m
y−1
m − ym

with ym roots of Pp
(
y + 1

y

)
= 0, hence algebraic power

series in the face weights g1, g2, . . ..
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Continued fractions

Some remarks:

we also have a combinatorial understanding of the conserved
quantities (the ωp themselves),

bijections with trees may be replaced by a more intuitive “slice”
decomposition of maps,

orthogonal polynomials are lurking behind, but these are different
from the usual ones encountered in random matrix theory (potential
vs spectral density),

a still mysterious connection with the KP integrable hierarchy (our
symplectic Schur functions are related to N-soliton tau-functions),

three-point function in the general setting still not understood.
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Continued fractions

z
nΣ

n

ω
n

Jérémie Bouttier (IPhT/DMA) Distances in maps and discrete integrability 12 November 2013 35 / 36



Continued fractions

1
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−zS1
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1

1 2

0
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General conclusion

Summary

Discrete integrability allows us to study fine properties of the distance in
random maps, before passing (or not) to the scaling limit.

Main open problems:

“escape from pure gravity”: understand metric properties of random
maps whose scaling limit is not the Brownian map
(first attempts: Le Gall & Miermont ’09, Borot-B.-Guitter ’11-’12)

relate this approach to Liouville quantum gravity?
(see e.g. conjecture 7.1 in Duplantier & Sheffield ’09)

Thanks for your attention!
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