Distances in random maps and discrete integrability

Jérémie Bouttier
Based on joint works with Emmanuel Guitter and Philippe Di Francesco
Institut de Physique Théorique, CEA Saclay
Département de mathématiques et applications, ENS Paris

Séminaire CALIN
LIPN, Villetaneuse
12 November 2013

Introduction

A planar map is a connected (multi)graph embedded in the sphere, considered up to continuous deformation. It is made of vertices, edges and faces.
When all faces have degree 4, the map is a quadrangulation. We similarly define triangulations, etc.

Introduction

Motivations to study maps:

- combinatorics (enumeration, four-color theorem)

Introduction

Motivations to study maps:

- combinatorics (enumeration, four-color theorem)
- random matrix models (topological expansion of matrix integrals)

Introduction

Motivations to study maps:

- combinatorics (enumeration, four-color theorem)
- random matrix models (topological expansion of matrix integrals)
- two-dimensional quantum gravity ("develop an art of handling sums over random surfaces")

Introduction

Motivations to study maps:

- combinatorics (enumeration, four-color theorem)
- random matrix models (topological expansion of matrix integrals)
- two-dimensional quantum gravity ("develop an art of handling sums over random surfaces")
- algebraic geometry and representation theory

Introduction

Motivations to study maps:

- combinatorics (enumeration, four-color theorem)
- random matrix models (topological expansion of matrix integrals)
- two-dimensional quantum gravity ("develop an art of handling sums over random surfaces")
- algebraic geometry and representation theory
- random geometry (random metric spaces, measures, conformal properties...)

The two-point function of quadrangulations

Basic question

Consider a uniformly distributed random planar quadrangulation with n faces (and $n+2$ vertices). Pick two uniformly distributed random vertices v_{1} and v_{2}. What is the law of the graph distance d_{12} between them ?

Equivalent counting problem

Count the number of planar quadrangulations with n faces and two marked vertices at a prescribed distance d_{12}.

The two-point function of quadrangulations

A well-labeled tree is a plane tree with integers
 labels on vertices, such that labels on adjacent vertices differ by at most 1 .

Theorem (Cori-Vauquelin '81, Schaeffer '98, see also Chassaing-Schaeffer '02, loosely stated)
There is a one-to-one correspondence between planar quadrangulations with n faces and well-labeled trees with n edges.

The two-point function of quadrangulations

A well-labeled tree is a plane tree with integers
 labels on vertices, such that labels on adjacent vertices differ by at most 1 .

Theorem (Cori-Vauquelin '81, Schaeffer '98, see also Chassaing-Schaeffer '02, loosely stated)
There is a one-to-one correspondence between planar quadrangulations with n faces and well-labeled trees with n edges.

Schaeffer pointed out that labels encode graph distances to an origin in the quadrangulation.

The two-point function of quadrangulations

A well-labeled tree is a plane tree with integers labels on vertices, such that labels on adjacent vertices differ by at most 1 .

Theorem (Cori-Vauquelin '81, Schaeffer '98, see also Chassaing-Schaeffer '02, loosely stated)

There is a one-to-one correspondence between planar quadrangulations with n faces and well-labeled trees with n edges.

Schaeffer pointed out that labels encode graph distances to an origin in the quadrangulation.

The two-point function of quadrangulations

A well-labeled tree is a plane tree with integers labels on vertices, such that labels on adjacent vertices differ by at most 1 .

Theorem (Cori-Vauquelin '81, Schaeffer '98, see also Chassaing-Schaeffer '02, loosely stated)

There is a one-to-one correspondence between planar quadrangulations with n faces and well-labeled trees with n edges.

Schaeffer pointed out that labels encode graph distances to an origin in the quadrangulation. Precisely we have the following bijections:
pointed quad. \leftrightarrow unrooted tree with positive labels and a label 1 rooted quad. \leftrightarrow rooted tree with positive labels and root label 1 pointed rooted quad. \leftrightarrow rooted tree with unconstrained labels considered up to a global shift

The two-point function of quadrangulations

A well-labeled tree with positive labels and root label $\ell \geq 1$ corresponds (essentially) to a quadrangulation with two marked points at distance at most ℓ.

The two-point function of quadrangulations

A well-labeled tree with positive labels and root label $\ell \geq 1$ corresponds (essentially) to a quadrangulation with two marked points at distance at most ℓ. It is quite simple to write down an equation for the generating function of such objects:

$$
R_{\ell}:=\sum_{n \geq 0} g^{n} \#\{\text { positive w.-l. trees with } n \text { edges and root label } \ell\}
$$

$$
\text { satisfies } R_{\ell}= \begin{cases}1+g R_{\ell}\left(R_{\ell+1}+R_{\ell}+R_{\ell-1}\right), & \ell \geq 1 \\ 0 & \ell=0\end{cases}
$$

(see also B.-Di Francesco-Guitter '03 for an alternate derivation)

The two-point function of quadrangulations

Interestingly, this equation admits the explicit solution

$$
R_{\ell}=R \frac{\left(1-x^{\ell}\right)\left(1-x^{\ell+3}\right)}{\left(1-x^{\ell+1}\right)\left(1-x^{\ell+2}\right)}
$$

where the power series R, x are determined via

$$
R=1+3 g R^{2}, \quad x+\frac{1}{x}+1=\frac{1}{g R^{2}} .
$$

(B.-Di Francesco-Guitter '03)

The two-point function of quadrangulations

 Interestingly, this equation admits the explicit solution$$
R_{\ell}=R \frac{\left(1-x^{\ell}\right)\left(1-x^{\ell+3}\right)}{\left(1-x^{\ell+1}\right)\left(1-x^{\ell+2}\right)}
$$

where the power series R, x are determined via

$$
R=1+3 g R^{2}, \quad x+\frac{1}{x}+1=\frac{1}{g R^{2}} .
$$

(B.-Di Francesco-Guitter '03)

The equation is discrete integrable in the sense that it admits a conserved quantity: $\psi\left(R_{n}, R_{n+1}\right)$ is independant of n with

$$
\psi(x, y):=(1-g x-g y)(1+g x y)
$$

Here we pick a convergent solution, $\psi\left(R_{n}, R_{n+1}\right)=\psi(R, R), R_{0}=0$.
(see also B.-Di Francesco-Guitter '03 for the general solution)

The two-point function of quadrangulations

We thus have an "explicit" solution to our counting problem! No closed form expression for the "numbers" (coefficients of R_{ℓ}) but asymptotics are easy to get via standard techniques.

The two-point function of quadrangulations

We thus have an "explicit" solution to our counting problem! No closed form expression for the "numbers" (coefficients of R_{ℓ}) but asymptotics are easy to get via standard techniques.

- Local limit: estimate $\left[g^{n}\right] R_{\ell}$ for $n \rightarrow \infty, \ell$ fixed:

$$
\left[g^{n}\right] R_{\ell} \sim C_{\ell} \frac{12^{n}}{n^{5 / 2}}
$$

The two-point function of quadrangulations

We thus have an "explicit" solution to our counting problem! No closed form expression for the "numbers" (coefficients of R_{ℓ}) but asymptotics are easy to get via standard techniques.

- Local limit: estimate $\left[g^{n}\right] R_{\ell}$ for $n \rightarrow \infty, \ell$ fixed:

$$
\left[g^{n}\right] R_{\ell} \sim C_{\ell} \frac{12^{n}}{n^{5 / 2}}
$$

By normalizing properly we deduce the expected volume of the ball of radius ℓ centered at the origin in the Uniform Infinite Planar
Quadrangulation (Chassaing-Durhuus '03, Krikun '05...)

$$
\mathbb{E} V_{\ell}=\frac{C_{\ell}+C_{\ell+1}}{C_{1}}=\frac{3(\ell+2)^{2}\left(5 \ell^{4}+40 \ell^{3}+104 \ell^{2}+96 \ell+35\right)}{140(\ell+1)(\ell+3)} \sim \frac{3 \ell^{4}}{28}
$$

The two-point function of quadrangulations

- Scaling limit: estimate $\left[g^{n}\right] R_{\ell}$ for $n \rightarrow \infty, L:=\ell \cdot n^{-1 / 4}$ fixed:

$$
\frac{\mathbb{E}_{n} V_{\ell}}{n+2} \rightarrow \Phi(L):=\frac{2}{\sqrt{\pi}} \int_{-\infty}^{\infty} d \xi \xi^{2} e^{-\xi^{2}}\left(1+\frac{3}{\sinh ^{2}(L \sqrt{-3 i \xi / 2})}\right)
$$

(Ambjørn-Watabiki '96, B.-Di Francesco-Guitter '03)

The two-point function of quadrangulations

- Scaling limit: estimate $\left[g^{n}\right] R_{\ell}$ for $n \rightarrow \infty, L:=\ell \cdot n^{-1 / 4}$ fixed:

$$
\frac{\mathbb{E}_{n} V_{\ell}}{n+2} \rightarrow \Phi(L):=\frac{2}{\sqrt{\pi}} \int_{-\infty}^{\infty} d \xi \xi^{2} e^{-\xi^{2}}\left(1+\frac{3}{\sinh ^{2}(L \sqrt{-3 i \xi / 2})}\right)
$$

(Ambjørn-Watabiki '96, B.-Di Francesco-Guitter '03)
$\Phi(L)$ is the CDF of the distance between two random points in the Brownian map (Marckert-Mokkadem '05, Le Gall '06-'11, Miermont '07-'11...)

The two-point function of quadrangulations

- Scaling limit: estimate $\left[g^{n}\right] R_{\ell}$ for $n \rightarrow \infty, L:=\ell \cdot n^{-1 / 4}$ fixed:

$$
\frac{\mathbb{E}_{n} V_{\ell}}{n+2} \rightarrow \Phi(L):=\frac{2}{\sqrt{\pi}} \int_{-\infty}^{\infty} d \xi \xi^{2} e^{-\xi^{2}}\left(1+\frac{3}{\sinh ^{2}(L \sqrt{-3 i \xi / 2})}\right)
$$

(Ambjørn-Watabiki '96, B.-Di Francesco-Guitter '03)
$\Phi(L)$ is the CDF of the distance between two random points in the Brownian map (Marckert-Mokkadem '05, Le Gall '06-'11, Miermont '07-'11...)
$\Phi(u)$

$\rho(u)$

$$
\Phi(L) \sim \frac{3 D^{4}}{28}, L \rightarrow 0 \quad \log (1-\Phi(L)) \sim \operatorname{cst} \cdot L^{4 / 3}, L \rightarrow \infty
$$

Generalized two-point function

We may consider the same question in more general classes of maps. A favorable setting is given by maps with controlled face degrees

$$
\mathbb{P}(\{\mathfrak{m}\})=\frac{1}{Z} \prod_{k \geq 1} g_{k}^{\#\{\text { faces of degree } k \text { in } \mathfrak{m}\}}
$$

(we recover quadrangulations, triangulations, etc, by specialization).

Generalized two-point function

We may consider the same question in more general classes of maps. A favorable setting is given by maps with controlled face degrees

$$
\mathbb{P}(\{\mathfrak{m}\})=\frac{1}{Z} \prod_{k \geq 1} g_{k}^{\#\{\text { faces of degree } k \text { in } \mathfrak{m}\}}
$$

(we recover quadrangulations, triangulations, etc, by specialization).
The previous approach may be extended using a generalization of Schaeffer's bijection involving so-called mobiles.
(B.-Di Francesco-Guitter '04)

Generalized two-point function

We may consider the same question in more general classes of maps. A favorable setting is given by maps with controlled face degrees

$$
\mathbb{P}(\{\mathfrak{m}\})=\frac{1}{Z} \prod_{k \geq 1} g_{k}^{\#\{\text { faces of degree } k \text { in } \mathfrak{m}\}}
$$

(we recover quadrangulations, triangulations, etc, by specialization).
The previous approach may be extended using a generalization of Schaeffer's bijection involving so-called mobiles.
(B.-Di Francesco-Guitter '04)

Easier case: bipartite maps ($g_{k}=0$ for k odd).

Generalized two-point function

We may consider the same question in more general classes of maps. A favorable setting is given by maps with controlled face degrees

$$
\mathbb{P}(\{\mathfrak{m}\})=\frac{1}{Z} \prod_{k \geq 1} g_{k}^{\#\{\text { faces of degree } k \text { in } \mathfrak{m}\}}
$$

(we recover quadrangulations, triangulations, etc, by specialization).
The previous approach may be extended using a generalization of Schaeffer's bijection involving so-called mobiles.
(B.-Di Francesco-Guitter '04)

Easier case: bipartite maps ($g_{k}=0$ for k odd).

Generalized two-point function

We may consider the same question in more general classes of maps. A favorable setting is given by maps with controlled face degrees

$$
\mathbb{P}(\{\mathfrak{m}\})=\frac{1}{Z} \prod_{k \geq 1} g_{k}^{\#\{\text { faces of degree } k \text { in } \mathfrak{m}\}}
$$

(we recover quadrangulations, triangulations, etc, by specialization).
The previous approach may be extended using a generalization of Schaeffer's bijection involving so-called mobiles.
(B.-Di Francesco-Guitter '04)

Easier case: bipartite maps ($g_{k}=0$ for k odd).

Generalized two-point function

We may consider the same question in more general classes of maps. A favorable setting is given by maps with controlled face degrees

$$
\mathbb{P}(\{\mathfrak{m}\})=\frac{1}{Z} \prod_{k \geq 1} g_{k}^{\#\{\text { faces of degree } k \text { in } \mathfrak{m}\}}
$$

(we recover quadrangulations, triangulations, etc, by specialization).
The previous approach may be extended using a generalization of Schaeffer's bijection involving so-called mobiles.
(B.-Di Francesco-Guitter '04)

Easier case: bipartite maps ($g_{k}=0$ for k odd).

Generalized two-point function

We may consider the same question in more general classes of maps. A favorable setting is given by maps with controlled face degrees

$$
\mathbb{P}(\{\mathfrak{m}\})=\frac{1}{Z} \prod_{k \geq 1} g_{k}^{\#\{\text { faces of degree } k \text { in } \mathfrak{m}\}}
$$

(we recover quadrangulations, triangulations, etc, by specialization).
The previous approach may be extended using a generalization of Schaeffer's bijection involving so-called mobiles.
(B.-Di Francesco-Guitter '04)

Easier case: bipartite maps ($g_{k}=0$ for k odd).

Generalized two-point function

We may consider the same question in more general classes of maps. A favorable setting is given by maps with controlled face degrees

$$
\mathbb{P}(\{\mathfrak{m}\})=\frac{1}{Z} \prod_{k \geq 1} g_{k}^{\#\{\text { faces of degree } k \text { in } \mathfrak{m}\}}
$$

(we recover quadrangulations, triangulations, etc, by specialization).
The previous approach may be extended using a generalization of Schaeffer's bijection involving so-called mobiles.
(B.-Di Francesco-Guitter '04)

Easier case: bipartite maps ($g_{k}=0$ for k odd). Map-tree dictionary:

- vertex at distance $\ell \leftrightarrow$ vertex labeled ℓ
- face of degree $2 k \leftrightarrow$ unlabeled vertex of degree k

Generalized two-point function

A mobile with positive labels and root label $\ell \geq 1$ corresponds (essentially) to a map with two marked points at distance at most ℓ. The generating function R_{ℓ} of such objects obeys recursive equations.

Generalized two-point function

A mobile with positive labels and root label $\ell \geq 1$ corresponds (essentially) to a map with two marked points at distance at most ℓ. The generating function R_{ℓ} of such objects obeys recursive equations.
Example: squares and hexagons ($g_{k}=0$ unless $k=4$ or 6)

$$
\begin{aligned}
R_{\ell}=1+ & g_{4} R_{\ell}\left(R_{\ell+1}+R_{\ell}+R_{\ell-1}\right)+ \\
g_{6} R_{\ell}\left(R_{\ell+2} R_{\ell+1}+R_{\ell+1}^{2}+\right. & 2 R_{\ell+1} R_{\ell}+R_{\ell+1} R_{\ell-1}+ \\
& \left.2 R_{\ell} R_{\ell-1}+R_{\ell-1}^{2}+2 R_{\ell-1} R_{\ell-2}\right)
\end{aligned}
$$

for $\ell \geq 1, R_{\ell}=0$ otherwise.

Generalized two-point function

A mobile with positive labels and root label $\ell \geq 1$ corresponds (essentially) to a map with two marked points at distance at most ℓ. The generating function R_{ℓ} of such objects obeys recursive equations.
Example: squares and hexagons ($g_{k}=0$ unless $k=4$ or 6)

$$
\begin{aligned}
R_{\ell}=1+ & g_{4} R_{\ell}\left(R_{\ell+1}+R_{\ell}+R_{\ell-1}\right)+ \\
\quad g_{6} R_{\ell}\left(R_{\ell+2} R_{\ell+1}+R_{\ell+1}^{2}+\right. & 2 R_{\ell+1} R_{\ell}+R_{\ell+1} R_{\ell-1}+ \\
& \left.2 R_{\ell} R_{\ell-1}+R_{\ell-1}^{2}+2 R_{\ell-1} R_{\ell-2}\right)
\end{aligned}
$$

for $\ell \geq 1, R_{\ell}=0$ otherwise. There is still an explicit solution

$$
R_{\ell}=R \frac{u_{\ell} u_{\ell+3}}{u_{\ell+1} u_{\ell+2}}, \quad u_{\ell}=1-\lambda_{1} x_{1}^{\ell}-\lambda_{2} x_{2}^{\ell}+c_{12} \lambda_{1} \lambda_{2}\left(x_{1} x_{2}\right)^{\ell}
$$

where R, x_{1}, x_{2}, \ldots are determined by some algebraic equations. Also there are now several independent conserved quantities.

Generalized two-point function

A mobile with positive labels and root label $\ell \geq 1$ corresponds (essentially) to a map with two marked points at distance at most ℓ. The generating function R_{ℓ} of such objects obeys recursive equations.
Example: squares and hexagons ($g_{k}=0$ unless $k=4$ or 6)

$$
\begin{aligned}
R_{\ell}=1+ & g_{4} R_{\ell}\left(R_{\ell+1}+R_{\ell}+R_{\ell-1}\right)+ \\
\quad g_{6} R_{\ell}\left(R_{\ell+2} R_{\ell+1}+R_{\ell+1}^{2}+\right. & 2 R_{\ell+1} R_{\ell}+R_{\ell+1} R_{\ell-1}+ \\
& \left.2 R_{\ell} R_{\ell-1}+R_{\ell-1}^{2}+2 R_{\ell-1} R_{\ell-2}\right)
\end{aligned}
$$

for $\ell \geq 1, R_{\ell}=0$ otherwise. There is still an explicit solution

$$
R_{\ell}=R \frac{u_{\ell} u_{\ell+3}}{u_{\ell+1} u_{\ell+2}}, \quad u_{\ell}=1-\lambda_{1} x_{1}^{\ell}-\lambda_{2} x_{2}^{\ell}+c_{12} \lambda_{1} \lambda_{2}\left(x_{1} x_{2}\right)^{\ell}
$$

where R, x_{1}, x_{2}, \ldots are determined by some algebraic equations. Also there are now several independent conserved quantities. The same phenomenon occurs if we allow for an arbitrary finite number of face degrees.
(B.-Di Francesco-Guitter '03, DG '05, BG '10)

Generalized two-point function

More involved case: arbitrary face degrees.

Generalized two-point function
More involved case: arbitrary face degrees.

Generalized two-point function

More involved case: arbitrary face degrees.

Generalized two-point function

More involved case: arbitrary face degrees. Mobiles now have "flagged" edges too.

Generalized two-point function

More involved case: arbitrary face degrees. Mobiles now have "flagged" edges too.
Introduce g.f. R_{ℓ} and S_{ℓ} of mobiles rooted respectively on a label $\ell \geq 1$ or on a flag $\ell \geq 0$, get recursive equations, reinterpret in terms of maps.

Generalized two-point function

More involved case: arbitrary face degrees. Mobiles now have "flagged" edges too.
Introduce g.f. R_{ℓ} and S_{ℓ} of mobiles rooted respectively on a label $\ell \geq 1$ or on a flag $\ell \geq 0$, get recursive equations, reinterpret in terms of maps.

Example: triangulations ($g_{k}=0$ unless $k=3$)

$$
R_{\ell}=\left\{\begin{array}{ll}
1+g_{3} R_{\ell}\left(S_{\ell}+S_{\ell-1}\right), & \ell \geq 1 \\
0, & \ell=0
\end{array} \quad S_{\ell}=g_{3}\left(S_{\ell}^{2}+R_{\ell}+R_{\ell+1}\right), \quad \ell \geq 0\right.
$$

Generalized two-point function

More involved case: arbitrary face degrees. Mobiles now have "flagged" edges too.
Introduce g.f. R_{ℓ} and S_{ℓ} of mobiles rooted respectively on a label $\ell \geq 1$ or on a flag $\ell \geq 0$, get recursive equations, reinterpret in terms of maps.

Example: triangulations ($g_{k}=0$ unless $k=3$)

$$
R_{\ell}=\left\{\begin{array}{ll}
1+g_{3} R_{\ell}\left(S_{\ell}+S_{\ell-1}\right), & \ell \geq 1 \\
0, & \ell=0
\end{array} \quad S_{\ell}=g_{3}\left(S_{\ell}^{2}+R_{\ell}+R_{\ell+1}\right), \quad \ell \geq 0\right.
$$

Still an explicit solution, conserved quantities...

$$
R_{\ell}=R \frac{\left(1-y^{\ell}\right)\left(1-y^{\ell+2}\right)}{\left(1-y^{\ell+1}\right)^{2}} \quad S_{\ell}=S-g_{3} R^{2} y^{\ell} \frac{(1-y)\left(1-y^{2}\right)}{\left(1-y^{\ell+1}\right)\left(1-y^{\ell+2}\right)}
$$

Generalized two-point function

More involved case: arbitrary face degrees. Mobiles now have "flagged" edges too.
Introduce g.f. R_{ℓ} and S_{ℓ} of mobiles rooted respectively on a label $\ell \geq 1$ or on a flag $\ell \geq 0$, get recursive equations, reinterpret in terms of maps.

Example: triangulations ($g_{k}=0$ unless $k=3$)

$$
R_{\ell}=\left\{\begin{array}{ll}
1+g_{3} R_{\ell}\left(S_{\ell}+S_{\ell-1}\right), & \ell \geq 1 \\
0, & \ell=0
\end{array} \quad S_{\ell}=g_{3}\left(S_{\ell}^{2}+R_{\ell}+R_{\ell+1}\right), \quad \ell \geq 0\right.
$$

Still an explicit solution, conserved quantities... (here $y+y^{-1}+2=1 /\left(g_{3}^{2} R^{3}\right)$)

$$
R_{\ell}=R \frac{\left(1-y^{\ell}\right)\left(1-y^{\ell+2}\right)}{\left(1-y^{\ell+1}\right)^{2}} \quad S_{\ell}=S-g_{3} R^{2} y^{\ell} \frac{(1-y)\left(1-y^{2}\right)}{\left(1-y^{\ell+1}\right)\left(1-y^{\ell+2}\right)}
$$

Generalized two-point function

Applications:

- local limit: computations of expected ball volumes in infinite maps,

Generalized two-point function

Example: the expected volume of the ball of radius ℓ centered at the origin in the Uniform Infinite Planar Triangulation (Angel-Schramm '02) reads

$$
\mathbb{E} V_{\ell}=\frac{2\left(5 \ell^{6}+45 \ell^{5}+163 \ell^{4}+303 \ell^{3}+305 \ell^{2}+159 \ell+35\right)}{35(\ell+1)(\ell+2)} \sim \frac{2}{7} \ell^{4}
$$

Generalized two-point function

Applications:

- local limit: computations of expected ball volumes in infinite maps,
- scaling limit: check "universality" of the Brownian map.

Generalized two-point function

Applications:

- local limit: computations of expected ball volumes in infinite maps,
- scaling limit: check "universality" of the Brownian map.

Unsettled question: how to escape from this universality class?

Generalized two-point function

Applications:

- local limit: computations of expected ball volumes in infinite maps,
- scaling limit: check "universality" of the Brownian map.

Unsettled question: how to escape from this universality class?

- multicritical points : no probabilistic interpretation (BDG '03)
- models with matter (Ising, loops...) : bijections without control on distances (Bousquet-Mélou \& Schaeffer '02, BDG '07 ...)
- maps with large faces (Le Gall \& Miermont '09): difficult analysis

Generalized two-point function

Applications:

- local limit: computations of expected ball volumes in infinite maps,
- scaling limit: check "universality" of the Brownian map.

Unsettled question: how to escape from this universality class?

- multicritical points : no probabilistic interpretation (BDG '03)
- models with matter (Ising, loops...) : bijections without control on distances (Bousquet-Mélou \& Schaeffer '02, BDG '07 ...)
- maps with large faces (Le Gall \& Miermont '09): difficult analysis Remark: the radius of quadrangulations (Chassaing-Schaeffer '02) can be studied by analyzing the same equation with different boundary conditions (BDG '03, Drmota '09)

Generalized two-point function

Applications:

- local limit: computations of expected ball volumes in infinite maps,
- scaling limit: check "universality" of the Brownian map.

Unsettled question: how to escape from this universality class?

- multicritical points : no probabilistic interpretation (BDG '03)
- models with matter (Ising, loops...) : bijections without control on distances (Bousquet-Mélou \& Schaeffer '02, BDG '07 ...)
- maps with large faces (Le Gall \& Miermont '09): difficult analysis Remark: the radius of quadrangulations (Chassaing-Schaeffer '02) can be studied by analyzing the same equation with different boundary conditions (BDG '03, Drmota '09)

Bottom line

A combinatorial miracle happens.

Generalized two-point function

Applications:

- local limit: computations of expected ball volumes in infinite maps,
- scaling limit: check "universality" of the Brownian map.

Unsettled question: how to escape from this universality class?

- multicritical points : no probabilistic interpretation (BDG '03)
- models with matter (Ising, loops...) : bijections without control on distances (Bousquet-Mélou \& Schaeffer '02, BDG '07 ...)
- maps with large faces (Le Gall \& Miermont '09): difficult analysis Remark: the radius of quadrangulations (Chassaing-Schaeffer '02) can be studied by analyzing the same equation with different boundary conditions (BDG '03, Drmota '09)

Bottom line

A combinatorial miracle happens. More? Why?

More in our combinatorial toolbox

From now on we restrict to the case of quadrangulations.

More in our combinatorial toolbox

From now on we restrict to the case of quadrangulations. Schaeffer's bijection only encodes distances to one special vertex. Miermont ('09) generalized it to the case of an arbitrary finite number of vertices, with partial information on the distances to them:

More in our combinatorial toolbox

From now on we restrict to the case of quadrangulations. Schaeffer's bijection only encodes distances to one special vertex. Miermont ('09) generalized it to the case of an arbitrary finite number of vertices, with partial information on the distances to them:

- Input: quadrangulation with p distinct marked vertices v_{1}, \ldots, v_{p}

More in our combinatorial toolbox

From now on we restrict to the case of quadrangulations. Schaeffer's bijection only encodes distances to one special vertex. Miermont ('09) generalized it to the case of an arbitrary finite number of vertices, with partial information on the distances to them:

- Input: quadrangulation with p distinct marked vertices v_{1}, \ldots, v_{p}
\& integer delays $\tau_{1}, \ldots, \tau_{p}$ such that

$$
\forall i \neq j,\left\{\begin{array}{l}
\left|\tau_{i}-\tau_{j}\right|<d\left(v_{i}, v_{j}\right) \\
\tau_{i}-\tau_{j} \equiv d\left(v_{i}, v_{j}\right) \quad \bmod 2
\end{array}\right.
$$

More in our combinatorial toolbox

From now on we restrict to the case of quadrangulations. Schaeffer's bijection only encodes distances to one special vertex. Miermont ('09) generalized it to the case of an arbitrary finite number of vertices, with partial information on the distances to them:

- Input: quadrangulation with p distinct marked vertices v_{1}, \ldots, v_{p}
\& integer delays $\tau_{1}, \ldots, \tau_{p}$ such that

$$
\forall i \neq j,\left\{\begin{array}{l}
\left|\tau_{i}-\tau_{j}\right|<d\left(v_{i}, v_{j}\right) \\
\tau_{i}-\tau_{j} \equiv d\left(v_{i}, v_{j}\right) \quad \bmod 2
\end{array}\right.
$$

Labels: $\ell(v)=\min _{j}\left(d\left(v, v_{j}\right)+\tau_{j}\right)$

More in our combinatorial toolbox

From now on we restrict to the case of quadrangulations. Schaeffer's bijection only encodes distances to one special vertex. Miermont ('09) generalized it to the case of an arbitrary finite number of vertices, with partial information on the distances to them:

- Input: quadrangulation with p distinct marked vertices v_{1}, \ldots, v_{p}
\& integer delays $\tau_{1}, \ldots, \tau_{p}$ such that

$$
\forall i \neq j,\left\{\begin{array}{l}
\left|\tau_{i}-\tau_{j}\right|<d\left(v_{i}, v_{j}\right) \\
\tau_{i}-\tau_{j} \equiv d\left(v_{i}, v_{j}\right) \quad \bmod 2
\end{array}\right.
$$

Labels: $\ell(v)=\min _{j}\left(d\left(v, v_{j}\right)+\tau_{j}\right)$

More in our combinatorial toolbox

From now on we restrict to the case of quadrangulations. Schaeffer's bijection only encodes distances to one special vertex. Miermont ('09) generalized it to the case of an arbitrary finite number of vertices, with partial information on the distances to them:

- Input: quadrangulation with p distinct marked vertices v_{1}, \ldots, v_{p}
\& integer delays $\tau_{1}, \ldots, \tau_{p}$ such that

$$
\forall i \neq j,\left\{\begin{array}{l}
\left|\tau_{i}-\tau_{j}\right|<d\left(v_{i}, v_{j}\right) \\
\tau_{i}-\tau_{j} \equiv d\left(v_{i}, v_{j}\right) \quad \bmod 2
\end{array}\right.
$$

Labels: $\ell(v)=\min _{j}\left(d\left(v, v_{j}\right)+\tau_{j}\right)$

More in our combinatorial toolbox

From now on we restrict to the case of quadrangulations. Schaeffer's bijection only encodes distances to one special vertex. Miermont ('09) generalized it to the case of an arbitrary finite number of vertices, with partial information on the distances to them:

- Input: quadrangulation with p distinct marked vertices v_{1}, \ldots, v_{p}
\& integer delays $\tau_{1}, \ldots, \tau_{p}$ such that

$$
\forall i \neq j,\left\{\begin{array}{l}
\left|\tau_{i}-\tau_{j}\right|<d\left(v_{i}, v_{j}\right) \\
\tau_{i}-\tau_{j} \equiv d\left(v_{i}, v_{j}\right) \quad \bmod 2
\end{array}\right.
$$

- Output: a well-labeled map with p faces F_{1}, \ldots, F_{p}
Labels: $\ell(v)=\min _{j}\left(d\left(v, v_{j}\right)+\tau_{j}\right)$

More in our combinatorial toolbox

From now on we restrict to the case of quadrangulations. Schaeffer's bijection only encodes distances to one special vertex. Miermont ('09) generalized it to the case of an arbitrary finite number of vertices, with partial information on the distances to them:

- Input: quadrangulation with p distinct marked vertices v_{1}, \ldots, v_{p}
\& integer delays $\tau_{1}, \ldots, \tau_{p}$ such that

$$
\forall i \neq j,\left\{\begin{array}{l}
\left|\tau_{i}-\tau_{j}\right|<d\left(v_{i}, v_{j}\right) \\
\tau_{i}-\tau_{j} \equiv d\left(v_{i}, v_{j}\right) \quad \bmod 2
\end{array}\right.
$$

- Output: a well-labeled map with p faces F_{1}, \ldots, F_{p}
Labels: $\ell(v)=\min _{j}\left(d\left(v, v_{j}\right)+\tau_{j}\right)$
Property: $\ell(v)=d\left(v, v_{i}\right)+\tau_{i}$ if v is incident to F_{i}

The three-point function of planar quadrangulations
We may apply this bijection to compute the three-point function of quadrangulations.
(B.-Guitter '08)

The three-point function of planar quadrangulations

We may apply this bijection to compute the three-point function of quadrangulations.
(B.-Guitter '08)

Trick: apply the Miermont bijection with delays $\tau_{1}=-s, \tau_{2}=-t, \tau_{3}=-u$ where

$$
\begin{aligned}
& d_{12}=s+t \\
& d_{23}=t+u \\
& d_{31}=u+s
\end{aligned}
$$

The three-point function of planar quadrangulations

We may apply this bijection to compute the three-point function of quadrangulations.
(B.-Guitter '08)

Trick: apply the Miermont bijection with delays $\tau_{1}=-s, \tau_{2}=-t, \tau_{3}=-u$ where

$$
\begin{aligned}
& d_{12}=s+t \\
& d_{23}=t+u \\
& d_{31}=u+s
\end{aligned}
$$

Get a bijection between planar quadrangulations with three marked points at prescribed distances and some well-labeled maps with three faces...

The three-point function of planar quadrangulations

Constraints on the corresponding well-labeled maps.
Generating function: $G_{s, t, u}(g)$ with g weight per edge

The three-point function of planar quadrangulations

Replace some equality constraints by bounds (easier to count).
Generating function: $F_{s, t, u}=\sum_{s^{\prime} \leq s} \sum_{t^{\prime} \leq t} \sum_{u^{\prime} \leq u} G_{s^{\prime}, t^{\prime}, u^{\prime}}$

The three-point function of planar quadrangulations

The map is made of well-labeled trees attached to a skeleton.
(Recall the previous expression for the well-labeled trees g.f. R_{ℓ})

The three-point function of planar quadrangulations

Decompose the skeleton at the first and last label 0 along each branch.

The three-point function of planar quadrangulations

Obtain acyclic components.

The three-point function of planar quadrangulations
first 0

$X_{s, t} \quad X_{t, u} \quad X_{u, s}$

"Chains" depends on two indices only.

The three-point function of planar quadrangulations

$$
Y_{s, t, u}
$$

$X_{S, t}$

$Y_{s, t, u}$

"Stars" depend on all three indices.

The three-point function of planar quadrangulations

$$
Y_{s, t, u}
$$

$X_{s, t}$

$Y_{s, t, u}$

"Stars" depend on all three indices.

$$
F_{s, t, u}=X_{s, t} X_{t, u} X_{u, s}\left(Y_{s, t, u}\right)^{2}
$$

The three-point function of planar quadrangulations Consider the generating function $X_{s, t}$ for well-labeled chains.

$$
X_{s, t}=\sum_{m \geq 0} \sum_{\substack{\text { Motzkin }{ }^{\text {paths of length } m} \\ \mathcal{M}=\left(0=\ell_{0}, \ell_{1}, \ldots, \ell_{m}=0\right)}} \prod_{k=0}^{m-1} g R_{\ell_{k}+s} R_{\ell_{k}+t}
$$

The three-point function of planar quadrangulations Consider the generating function $X_{s, t}$ for well-labeled chains.

The three-point function of planar quadrangulations Consider the generating function $X_{s, t}$ for well-labeled chains.

The three-point function of planar quadrangulations

Consider the generating function $Y_{s, t, u}$ for well-labeled stars.

$Y_{s, t, u}=1+g^{3} R_{s} R_{t} R_{u} R_{s+1} R_{t+1} R_{u+1} X_{s+1, t+1} X_{t+1, u+1} X_{u+1, s+1} Y_{s+1, t+1, u+1}$

The three-point function of planar quadrangulations

Consider the generating function $Y_{s, t, u}$ for well-labeled stars.

first 0

$$
\begin{aligned}
Y_{s, t, u} & =1+g^{3} R_{s} R_{t} R_{u} R_{s+1} R_{t+1} R_{u+1} X_{s+1, t+1} X_{t+1, u+1} X_{u+1, s+1} Y_{s+1, t+1, u+1} \\
& =\frac{\left(1-x^{s+3}\right)\left(1-x^{t+3}\right)\left(1-x^{u+3}\right)\left(1-x^{s+t+u+3}\right)}{\left(1-x^{3}\right)\left(1-x^{s+t+3}\right)\left(1-x^{t+u+3}\right)\left(1-x^{u+s+3}\right)}
\end{aligned}
$$

The three-point function of planar quadrangulations
Gathering all expressions we get (B.-Guitter '08)
$F_{s, t, u}=\frac{[3]([s+1][t+1][u+1][s+t+u+3])^{2}}{[1]^{3}[s+t+1][s+t+3][t+u+1][t+u+3][u+s+1][u+s+3]}$
where

$$
[\ell]:=\frac{\left(1-x^{\ell}\right)}{(1-x)} .
$$

The three-point function of planar quadrangulations

Gathering all expressions we get (B.-Guitter '08)
$F_{s, t, u}=\frac{[3]([s+1][t+1][u+1][s+t+u+3])^{2}}{[1]^{3}[s+t+1][s+t+3][t+u+1][t+u+3][u+s+1][u+s+3]}$
where

$$
[\ell]:=\frac{\left(1-x^{\ell}\right)}{(1-x)}
$$

$G_{s, t, u}=\Delta_{s} \Delta_{t} \Delta_{u} F_{s, t, u}$ is the generating function for quadrangulations with three marked vertices at distances $d_{12}=s+t, d_{23}=t+u, d_{31}=u+s$.

It encodes the joint law of the distances $d_{12}^{(n)}, d_{23}^{(n)}, d_{31}^{(n)}$ between three uniform random vertices in a uniform random planar quadrangulation of size n.

The three-point function of planar quadrangulations

 Scaling limit: for $n \rightarrow \infty$ we have$$
n^{-1 / 4} \cdot\left(d_{12}^{(n)}, d_{23}^{(n)}, d_{31}^{(n)}\right) \xrightarrow{d}\left(D_{12}, D_{23}, D_{31}\right)
$$

with an explicit analytical expression for the density of the limit (three-point function of the Brownian map).

The three-point function of planar quadrangulations Scaling limit: for $n \rightarrow \infty$ we have

$$
n^{-1 / 4} \cdot\left(d_{12}^{(n)}, d_{23}^{(n)}, d_{31}^{(n)}\right) \xrightarrow{d}\left(D_{12}, D_{23}, D_{31}\right)
$$

with an explicit analytical expression for the density of the limit (three-point function of the Brownian map).

$$
D_{12}=0.8
$$

Density of two rescaled distances conditionnally on the third.

The three-point function of planar quadrangulations Scaling limit: for $n \rightarrow \infty$ we have

$$
n^{-1 / 4} \cdot\left(d_{12}^{(n)}, d_{23}^{(n)}, d_{31}^{(n)}\right) \xrightarrow{d}\left(D_{12}, D_{23}, D_{31}\right)
$$

with an explicit analytical expression for the density of the limit (three-point function of the Brownian map).

$$
D_{12}=1.5
$$

Density of two rescaled distances conditionnally on the third.

The three-point function of planar quadrangulations Scaling limit: for $n \rightarrow \infty$ we have

$$
n^{-1 / 4} \cdot\left(d_{12}^{(n)}, d_{23}^{(n)}, d_{31}^{(n)}\right) \xrightarrow{d}\left(D_{12}, D_{23}, D_{31}\right)
$$

with an explicit analytical expression for the density of the limit (three-point function of the Brownian map).

$$
D_{12}=3.0
$$

Density of two rescaled distances conditionnally on the third.

Other related results (B.-Guitter '08)

Le Gall ('08) has shown the phenomenon of confluence of geodesics.

Other related results (B.-Guitter '08)

Le Gall ('08) has shown the phenomenon of confluence of geodesics.

Other related results (B.-Guitter '08)

Triangles formed by geodesics have actually six "sides".

Other related results (B.-Guitter '08)

Triangles formed by geodesics have actually six "sides".

Other related results (B.-Guitter '08)

Triangles formed by geodesics have actually six "sides".

Other related results (B.-Guitter '08)

Triangles formed by geodesics have actually six "sides".

Other related results (B.-Guitter '08)

Triangles formed by geodesics have actually six "sides".

Other related results (B.-Guitter '08)

Triangles formed by geodesics have actually six "sides".

$$
D_{12}=2
$$

Other related results (B.-Guitter '08)

Triangles formed by geodesics have actually six "sides".

Other related results (B.-Guitter '08)

We may also study separating loops.

Other related results (B.-Guitter '08)

We may also study separating loops.

Other related results (B.-Guitter '08)

We may also study separating loops.

$\rho(L)$

Other related results (B.-Guitter '08)

We may also study separating loops.

Other related results (B.-Guitter '08)

We may also study separating loops.

Other related results (B.-Guitter '08)

We may also study separating loops.

Other related results (B.-Guitter '08)

We may also study separating loops.

Quadrangulations with a boundary (B.-Guitter '09)

Let us now consider a pointed quadrangulation with a boundary where the origin-boundary distance is at most d.

It is in one-to-one correspondence with a well-labeled "forest".

Quadrangulations with a boundary (B.-Guitter '09)

Let us now consider a pointed quadrangulation with a boundary where the origin-boundary distance is at most d.

It is in one-to-one correspondence with a well-labeled "forest".

Quadrangulations with a boundary (B.-Guitter '09)

Let us now consider a pointed quadrangulation with a boundary where the origin-boundary distance is at most d.

It is in one-to-one correspondence with a well-labeled "forest".

Quadrangulations with a boundary (B.-Guitter '09)

Bivariate generating function of well-labeled forests (z per outer edge):

$$
W_{d}=\sum_{m \geq 0} \sum_{\substack{\text { Dyck path of length } 2 m \\ \mathcal{D = (0 = \ell _ { 0 } , \ell _ { 1 } , \ldots , \ell _ { 2 m } = 0)}}} \prod_{\substack{\text { down steps } \ell \rightarrow \ell-1}} z^{2} R_{\ell+d}
$$

Quadrangulations with a boundary (B.-Guitter '09)

Bivariate generating function of well-labeled forests (z per outer edge):

$$
W_{d}=\frac{1}{1-z^{2} R_{d+1} W_{d+1}}
$$

Quadrangulations with a boundary (B.-Guitter '09)

Bivariate generating function of well-labeled forests (z per outer edge):

$$
W_{d}=\frac{1}{1-\frac{z^{2} R_{d+1}}{1-\frac{z^{2} R_{d+2}}{\ddots}}}
$$

Continued fractions

There is again an explicit formula for W_{d}. But most interesting is the continued fraction expansion structure.

Continued fractions

There is again an explicit formula for W_{d}. But most interesting is the continued fraction expansion structure. In particular for $d=0$ we get

$$
\omega:=W_{0}=\frac{1}{1-\frac{R_{1} z^{2}}{1-\frac{R_{2} z^{2}}{1-\cdots}}}
$$

Continued fractions

There is again an explicit formula for W_{d}. But most interesting is the continued fraction expansion structure. In particular for $d=0$ we get

$$
\omega:=W_{0}=\frac{1}{1-\frac{R_{1} z^{2}}{1-\frac{R_{2} z^{2}}{1-\cdots}}}
$$

but ω is also the generating function of quadrangulations of a polygon, a "well-known" quantity (e.g. resolvent of a one-matrix model):

$$
\left[g^{n} z^{2 p}\right] \omega=\frac{3^{n}(2 p)!}{p!(p-1)!} \frac{(2 n+p-1)!}{n!(n+p+1)!}
$$

Continued fractions

There is again an explicit formula for W_{d}. But most interesting is the continued fraction expansion structure. In particular for $d=0$ we get

$$
\omega:=W_{0}=\frac{1}{1-\frac{R_{1} z^{2}}{1-\frac{R_{2} z^{2}}{1-\cdots}}}
$$

but ω is also the generating function of quadrangulations of a polygon, a "well-known" quantity (e.g. resolvent of a one-matrix model):

$$
\omega_{p}:=\left[z^{2 p}\right] \omega=\operatorname{Cat}_{p} R^{p}\left(1+g R^{2}\right)-\operatorname{Cat}_{p+1} R^{p+1}(g R)
$$

Continued fractions

There is again an explicit formula for W_{d}. But most interesting is the continued fraction expansion structure. In particular for $d=0$ we get

$$
\omega:=W_{0}=\frac{1}{1-\frac{R_{1} z^{2}}{1-\frac{R_{2} z^{2}}{1-\cdots}}}
$$

but ω is also the generating function of quadrangulations of a polygon, a "well-known" quantity (e.g. resolvent of a one-matrix model):

$$
\omega_{p}:=\left[z^{2 p}\right] \omega=\operatorname{Cat}_{p} R^{p}\left(1+g R^{2}\right)-\operatorname{Cat}_{p+1} R^{p+1}(g R)
$$

R_{ℓ} is recover via Hankel determinants:

$$
R_{\ell}=\frac{H_{\ell} H_{\ell-2}}{H_{\ell-1}^{2}}, \quad H_{\ell}=\operatorname{det}_{0 \leq i, j \leq \ell} \omega_{i+j}
$$

Continued fractions

There is again an explicit formula for W_{d}. But most interesting is the continued fraction expansion structure. In particular for $d=0$ we get

$$
\omega:=W_{0}=\frac{1}{1-\frac{R_{1} z^{2}}{1-\frac{R_{2} z^{2}}{1-\cdots}}}
$$

but ω is also the generating function of quadrangulations of a polygon, a "well-known" quantity (e.g. resolvent of a one-matrix model):

$$
\omega_{p}:=\left[z^{2 p}\right] \omega=\operatorname{Cat}_{p} R^{p}\left(1+g R^{2}\right)-\operatorname{Cat}_{p+1} R^{p+1}(g R)
$$

R_{ℓ} is recover via Hankel determinants:

$$
R_{\ell}=\frac{H_{\ell} H_{\ell-2}}{H_{\ell-1}^{2}}, \quad H_{\ell}=\operatorname{det}_{0 \leq i, j \leq \ell} \omega_{i+j}
$$

A combinatorial explanation for the form of R_{ℓ} follows by the Lindström-Gessel-Viennot lemma!

Continued fractions

ω_{i+j} counts "perturbed" Dyck paths.

Continued fractions

The Hankel determinant count configurations of non-intersecting paths, in bijection with configurations of 1D dimers. By elementary combinatorics, our explicit expression for R_{ℓ} follows.

Continued fractions

The same coincidence happens in the setting of maps with controlled face degrees, by the bijection with mobiles.

Continued fractions

- Bipartite maps: Stieljes fraction

$$
\omega=\frac{1}{1-\frac{R_{1} z^{2}}{1-\frac{R_{2} z^{2}}{1-\cdots}}}
$$

- Arbitrary maps: Jacobi fraction

$$
\begin{equation*}
\omega=\frac{1}{1-S_{0} z-\frac{R_{1} z^{2}}{1-S_{1} z-\frac{R_{2} z^{2}}{1-\cdots}}} \tag{B.-Guitter'10}
\end{equation*}
$$

Continued fractions

But, again, ω is the g.f. of rooted maps with a boundary and is well studied. For a fixed boundary length its coefficient takes the general form

$$
\omega_{p}=R \sum_{q \geq 0} \gamma_{q} P^{+}(p+q ; R, S)
$$

$P^{+}(n ; R, S)$
where R, S, γ_{q} are algebraic power series in the face weights g_{1}, g_{2}, \ldots.

Continued fractions

But, again, ω is the g.f. of rooted maps with a boundary and is well studied. For a fixed boundary length its coefficient takes the general form

$$
\omega_{p}=R \sum_{q \geq 0} \gamma_{q} P^{+}(p+q ; R, S)
$$

$P^{+}(n ; R, S)$
where R, S, γ_{q} are algebraic power series in the face weights g_{1}, g_{2}, \ldots..
In turn the coefficients in the continued fraction expansion are expressed via Hankel determinants:

$$
\begin{gathered}
R_{\ell}=\frac{H_{\ell} H_{\ell-2}}{H_{\ell-1}^{2}} \quad H_{\ell}:=\operatorname{det}_{0 \leq i, j \leq \ell} \omega_{i+j} \\
S_{\ell}=\frac{\tilde{H}_{\ell}}{H_{\ell}}-\frac{\tilde{H}_{\ell-1}}{H_{\ell-1}} \quad \tilde{H}_{\ell}:=\operatorname{det}_{0 \leq i, j \leq \ell} \omega_{i+j+\delta_{j, \ell}} .
\end{gathered}
$$

Continued fractions

If we impose a bound on face degrees ($g_{k}=0$ for $k>M+2$), then we may identify the discrete two-point functions as symplectic Schur functions.

Continued fractions

If we impose a bound on face degrees ($g_{k}=0$ for $k>M+2$), then we may identify the discrete two-point functions as symplectic Schur functions. The Weyl character formula yields the "final" formula

$$
\left.\begin{array}{c}
R_{\ell}=R \frac{\operatorname{det}_{1 \leq m, n \leq M}[\ell+1+n]_{m} \operatorname{det}_{1 \leq m, n \leq M}[\ell-1+n]_{m}}{\left(\operatorname{det}_{1 \leq m, n \leq M}[\ell+n]_{m}\right)^{2}} \\
S_{\ell}=S-\sqrt{R}\left(\frac { \operatorname { d e t } _ { 1 \leq m , n \leq M } [\ell + 1 + n - \delta _ { n , 1 }] _ { m } } { \operatorname { d e t } } \left[\frac{\operatorname{det}_{1 \leq m, n \leq M}\left[\ell+n-\delta_{n, 1}\right]_{m}}{\operatorname{det}}[\ell+n]_{m}\right.\right.
\end{array}\right)
$$

where the size of the determinants is independent of ℓ. Here $[\ell]_{m} \equiv \frac{y_{m}^{-\ell}-y_{m}^{\ell}}{y_{m}^{-1}-y_{m}}$ with y_{m} roots of $\mathcal{P}_{p}\left(y+\frac{1}{y}\right)=0$, hence algebraic power series in the face weights g_{1}, g_{2}, \ldots

Continued fractions

Some remarks:

- we also have a combinatorial understanding of the conserved quantities (the ω_{p} themselves),
- bijections with trees may be replaced by a more intuitive "slice" decomposition of maps,
- orthogonal polynomials are lurking behind, but these are different from the usual ones encountered in random matrix theory (potential vs spectral density),
- a still mysterious connection with the KP integrable hierarchy (our symplectic Schur functions are related to N -soliton tau-functions),
- three-point function in the general setting still not understood.

Continued fractions

Continued fractions

General conclusion

Summary

Discrete integrability allows us to study fine properties of the distance in random maps, before passing (or not) to the scaling limit.

General conclusion

Summary

Discrete integrability allows us to study fine properties of the distance in random maps, before passing (or not) to the scaling limit.

Main open problems:

- "escape from pure gravity": understand metric properties of random maps whose scaling limit is not the Brownian map (first attempts: Le Gall \& Miermont '09, Borot-B.-Guitter '11-'12)
- relate this approach to Liouville quantum gravity? (see e.g. conjecture 7.1 in Duplantier \& Sheffield '09)

General conclusion

Summary

Discrete integrability allows us to study fine properties of the distance in random maps, before passing (or not) to the scaling limit.

Main open problems:

- "escape from pure gravity": understand metric properties of random maps whose scaling limit is not the Brownian map (first attempts: Le Gall \& Miermont '09, Borot-B.-Guitter '11-'12)
- relate this approach to Liouville quantum gravity? (see e.g. conjecture 7.1 in Duplantier \& Sheffield '09)

Thanks for your attention!

