Journée-séminaire de combinatoire

(équipe CALIN du LIPN, université Paris-Nord, Villetaneuse)

Le 25 février 2014 à 10h30 en B107, Gleb Koshevoy nous parlera de : Cluster fans

Résumé : One of the main motivation of S.Fomin and A.Zelevinsky for introducing cluster algebras was the desire to provide a combinatorial framework to understand the structure of ''dual canonical bases'' in coordinate rings of various algebraic varieties related to semisimple groups. For a finite cluster algebra, they show that the cluster complex can be implemented as a simplical fan in the vector space span by the simple roots of the corresponding Lie algebra. We show that the cluster complex for cluster algebra of the base affine space for GL(n) can be implemented as a simplicial fan in the space span by interval one-column semistandard Young tableaux filled in the alphabet {1,...,n}. For n>6, such a fan contains infinitely many cones and its support covers semistandard Young tableaux corresponding to real elements of the dual canonical basis. For types ADE, cluster complexes of the corresponding finite cluster algebras are subfans of our cluster complex with appropriate n's.

Dernière modification : Wednesday 12 October 2022 Valid HTML 4.01! Valid CSS! Contact pour cette page : Cyril.Banderier at