Résumé : Nous construisons une sous-algèbre de Hopf de l'algèbre de Hopf des fonctions quasi-symétriques libres dont les bases sont indexées par les objets de la famille combinatoire de Baxter (i.e. permutations de Baxter, couples d'arbres binaires jumeaux, etc.). Cette construction repose sur la définition du monoïde de Baxter, analogue du monoïde plaxique et du monoïde sylvestre, et d'un algorithme d'insertion analogue à l'algorithme de Robinson-Schensted. Les propriétés algébriques de cette algèbre de Hopf sont étudiées..
Dernière modification : Monday 27 May 2024 | Contact pour cette page : Cyril.Banderier at lipn.univ-paris13.fr |