Résumé : En ces temps difficiles, nous avons tous besoin de nous réconforter autour de jolies bijections pleines de couleurs. Cet exposé parle d'un travail coréalisé avec Andrew Elvey-Price (Tours) et Irène Marcovici (Nancy). Nous avons répondu ensemble à une question ouverte de Mortimer et Prellberg, sollicitant une bijection entre une famille de marches dans un domaine triangulaire borné (pensez à un grand triangle équilatéral subdivisé en plusieurs petits triangles équilatéraux) et les fameux chemins de Motzkin, mais avec une hauteur bornée. Les techniques que nous utilisons pour les preuves sont élémentaires et semblent robustes. En plus de résoudre la conjecture de Mortimer et Prellberg, notre approche nous a permis de trouver une nouvelle bijection inattendue entre des marches tridimensionnelles contraintes dans une pyramide et certaines marches bidimensionnelles sur une grille carrée.
Dernière modification : Monday 27 May 2024 | Contact pour cette page : Cyril.Banderier at lipn.univ-paris13.fr |