Résumé : L'étude des marches dans le quart de plan a fait ces dernières années l'objet de nombreuses avancées, aussi bien par des méthodes de combinatoire, de théorie des probabilités, de théorie du potentiel, de calcul formel... Il reste de nombreux problèmes ouverts, comme notamment mieux comprendre pourquoi certaines marches sont dénombrées par des séries génératrices algébriques, d'autres par des séries D-finies (holonomes), tandis que d'autres (a priori très "proches") aboutissent à des séries non différentiellement algébriques. Nous montrerons comment la théorie de Galois (et notamment ses variantes pour des équations aux différences), ainsi que des éléments d'analyse complexe (paramétrisation de courbes par fonctions elliptiques) nous a permis d'avancer sur ces questions. [travail joint avec Michael Singer, Julien Roques, Charlotte Hardouin]
[arXiv]
Dernière modification : Monday 27 May 2024 | Contact pour cette page : Cyril.Banderier at lipn.univ-paris13.fr |