Journée-séminaire de combinatoire

(équipe CALIN du LIPN, université Paris-Nord, Villetaneuse)

Le 17 octobre 2023 à 13h30 en B107 & visioconférence, Pierre-Louis Giscard nous parlera de : Dénombrement des polygones auto-évitants: la route déterministe

Résumé : Depuis plus de 70 ans maintenant, le problème du dénombrement des polygones auto-évitants sur les réseaux réguliers du plan résiste aux efforts des mathématiciens. Pour poser ce problème, considérons un graphe planaire infini dont tous les nœuds sont identiques, comme le réseau carré. On fixe un noeud sur ce graphe et on considère toutes les trajectoires sur le graphe partant de ce nœud et revenant à celui-ci en dernière étape et ne repassant jamais deux fois par le même nœud: on obtient un polygone auto-évitant (SAP en anglais), la question étant de compter asymptotiquement les SAP de grande longueur. Les SAP apparaissent naturellement dans de nombreux processus aléatoires que nous présenterons brièvement. De fait, dénombrer les SAP a été quasiment exclusivement tenté à l'aide d'argument probabilistes, culminants dans la loi de Schramm-Loewner (SLE_k) pour laquelle on conjecture que SLE_8/3 reproduit la loi uniforme sur les SAP. Parallèlement à ces développements, une route purement déterministe dans l'études des SAP a lentement émergé, ceux-ci satisfaisant une extension semi-commutative de la théorie des nombres sur les monoids de Cartier-Foata. Dans cette extension, dénombrer les SAP revient à étendre le théorème des nombres premiers. Nous présenterons cette voie déterministe et en particulier comment des cribles de la théorie des nombres permettent de s'approcher du but, offrant au passage la première méthode générique pour évaluer les valeurs concrètement prises par la loi de probabilité SLE_2 sur les SAP et de nouvelles indications sur les chemins presque totalement auto-évitants.

 [Slides.pdf] [arXiv] [vidéo]


Dernière modification : Friday 10 January 2025 Valid HTML 4.01! Valid CSS! Contact pour cette page : Cyril.Banderier at lipn.univ-paris13.fr