Journée-séminaire de combinatoire

(équipe CALIN du LIPN, université Paris-Nord, Villetaneuse)

Le 05 décembre 2017 à 12h45 en B107, Quentin de Mourgues nous parlera de : Une approche combinatoire pour les dynamiques de type Rauzy (soutenance de thèse)

Résumé : La soutenance aura lieu le mardi 5 décembre à 12h45, en salle B017 du LIPN (Paris 13) devant le jury composé de:
Mme Fréderique Bassino,Professeur, Univ. Paris 13, directrice
M. Andrea Sportiello,Chargé de Recherche CNRS, Univ. Paris 13 co-directeur
M. Erwan Lanneau, Professeur, Univ. Grenoble AlpesRapporteur
M. Giovanni Forni, Professeur, Univ. Maryland, College Park MD, U.S.A. Rapporteur
M. Vincent Delecroix, Chargé de Recherche CNRS, Univ. de Bordeaux
M. Pascal Hubert, Professeur, Univ. d'Aix-Marseille
M. Carlos Matheus, Chargé de Recherche CNRS, Univ. Paris 13
M. Anton Zorich, Professeur, Univ. Paris Diderot

Une approche combinatoire pour les dynamiques de type Rauzy

Les dynamiques de type Rauzy sont des actions de groupes (ou de monoïde) sur une collections d'objets combinatoires. L'exemple le plus connu concerne une action sur les permutations, associée au transformations d'échanges d'intervalles (IET) pour l'application de poincaré sur les surfaces de translations orientables. Les classes d'équivalences sur les objets induites par l'action de groupe sont reliées aux composantes connexes de l'espace de module des differentiels abéliennes avec un ensemble de singularités donné, et ont été classifiées par Kontsevich et Zorich, et par Boissy, en utilisant des éléments de théorie de géométrie algébrique, de topologie, de systèmes dynamiques et de combinatoires.
Dans la première partie de cette thèse, nous donnons une preuve purement combinatoire de ces deux théorèmes de classification. Notre preuve peut être interprétée géométriquement et sa structure générale est proche de celle Kontsevich-Zorich, même si les techniques de preuves sont differentes. Néanmoins, toutes les dynamiques de type Rauzy n'ont pas forcément une correspondance géométrique, et certaines parties de la preuve ne se généralise pas bien. Dans la seconde partie, nous developpons une nouvelle méthode, que nous appelons la méthode d'étiquetage. Cette seconde méthode n'est pas complètement indépendente de la précédente mais elle introduit un nouvel ingrédient crucial: le fait de considérer une sorte de 'monodromie' pour la dynamique.
Cette seconde approche s'étend à plusieurs dynamiques de type Rauzy. Nous obtenons d'abord en appliquant la méthode d'étiquetage une preuve simple et éclairante du théorème de classification d'une dynamique de type Rauzy que nous appelons la dynamique d'involution (et dont la complexité est équivalente au problème d'isomorphisme de graphe). Ensuite nous réappliquons la méthode d'étiquetage pour déduire une seconde preuve de la classification pour la dynamiques de Rauzy. Enfin nous présentons un certain nombre de dynamiques pour lesquelles la méthode d'étiquetage peut être utilisée.


Dernière modification : Friday 10 January 2025 Valid HTML 4.01! Valid CSS! Contact pour cette page : Cyril.Banderier at lipn.univ-paris13.fr