d-Orthogonal Packing Problem avec Ordres

D.Mohia - Cermics - 14 juin 2011

Input : Ensemble $V := \{v_1, ..., v_n\}$ de boîtes parallélépipèdes, une fonction de tailles $w : V \to \mathbb{R}_+^{*d}$. Un conteneur C de taille $W \in \mathbb{R}_+^{*d}$.

Question : Existe-t-il un chargement de V dans C?

Conditions du chargement :

Orthogonalité: La face de chacune des boîtes est parallèle à une face du conteneur.

Contiguïté: Aucune boîte ne dépasse les bornes du conteneur.

Disjonction : Les boîtes ne se chevauchent pas.

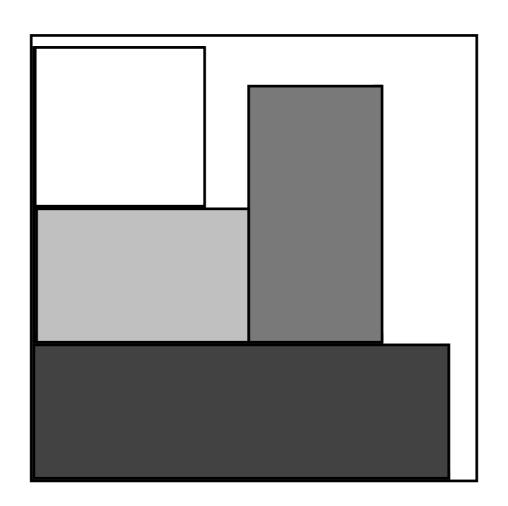
Orientation fixe: La rotation des boîtes n'est pas admise.

Idée de base:

Utiliser l'information combinatoire induite par les positions relatives des boîtes dans le conteneur.

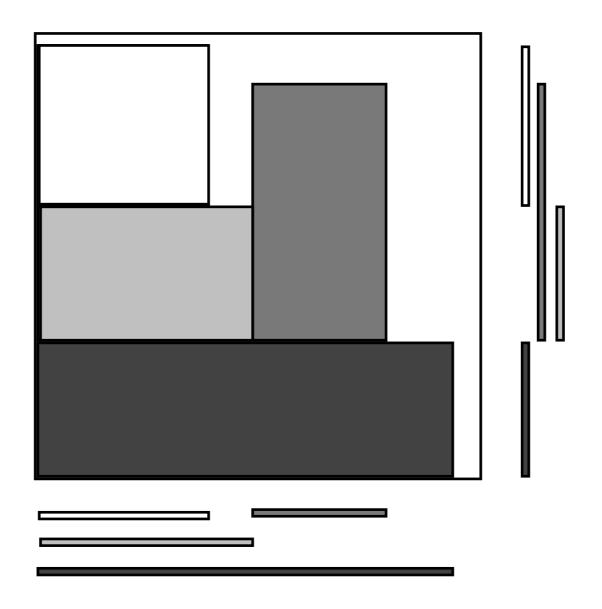
→ Packing Classes [S.Fekete, J.Schepers (2004)]

Packing Classes

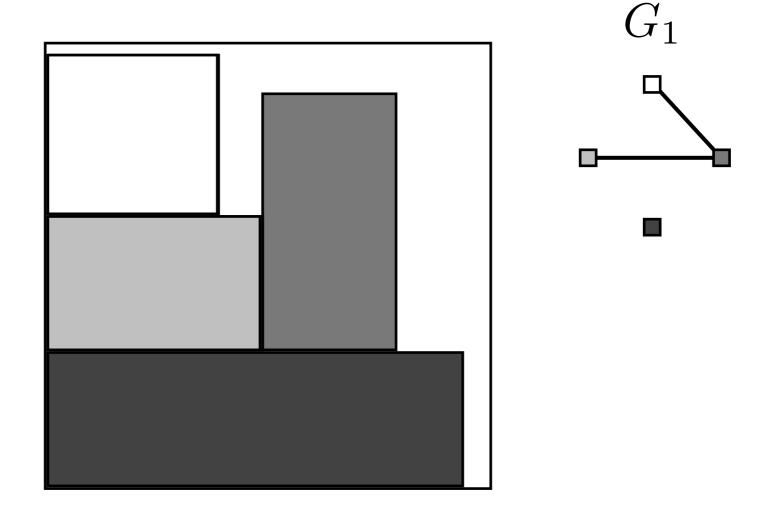


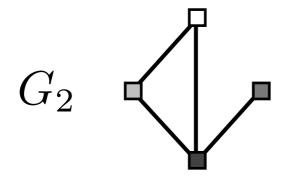
Packing Classes

Considérons la projection des boîtes sur les axes du conteneur

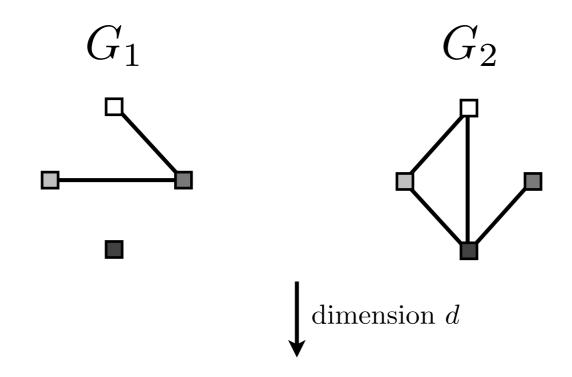


Packing Classes





Packing Classes – Condition nécessaire



d graphes avec les propriétés :

 $\mathbf{P1}$: Les d graphes sont des graphes d'intervalles.

P2: Tout stable S_i de G_i est *i*-réalisable.

P3:
$$\bigcap_{i \in \{1,...,d\}} E_i = \emptyset$$
.

Packing Classes - Condition suffisante

Soient d graphes avec les propriétés :

 $\mathbf{P1}$: Les d graphes sont des graphes d'intervalles.

P2: Tout stable S_i de G_i est *i*-réalisable.

P3:
$$\bigcap_{i \in \{1,...,d\}} E_i = \emptyset$$
.

Alors il existe un chargement (V, w, W).

Packing Class

Packing Classes

Théorème 1 : [Fekete, Schepers (2004)] Un ensemble de boîtes de dimension d peut être chargé dans un conteneur C ssi il existe un Packing Class pour (V, w).

Formellement:

Etant donnés V un ensemble de boîtes, une fonction de tailles w et un conteneur de taille W,

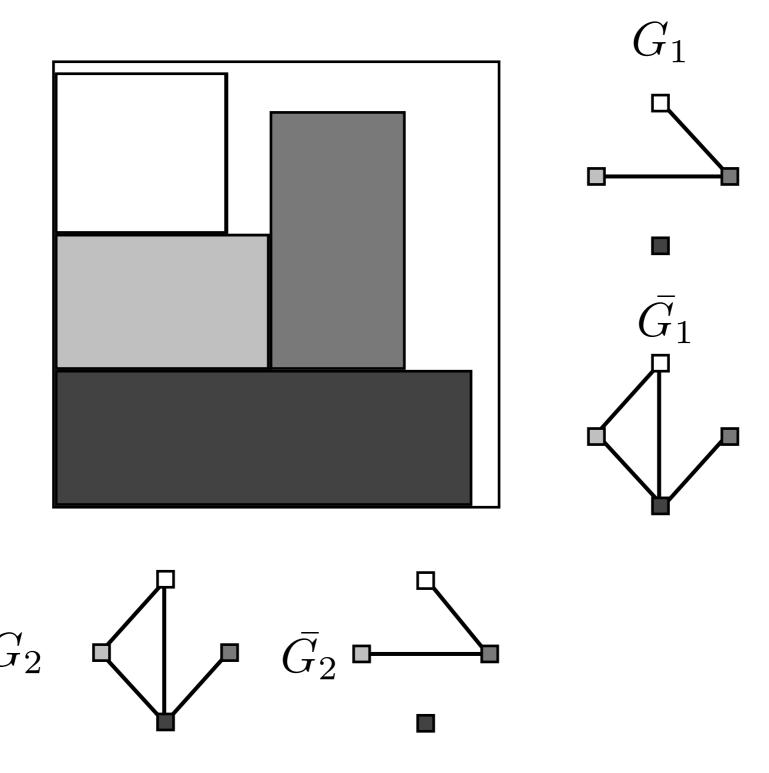
Une fonction $p: V \to \mathbb{R}_+^{*d}$ est un *chargement* de (V, w, W), ssi

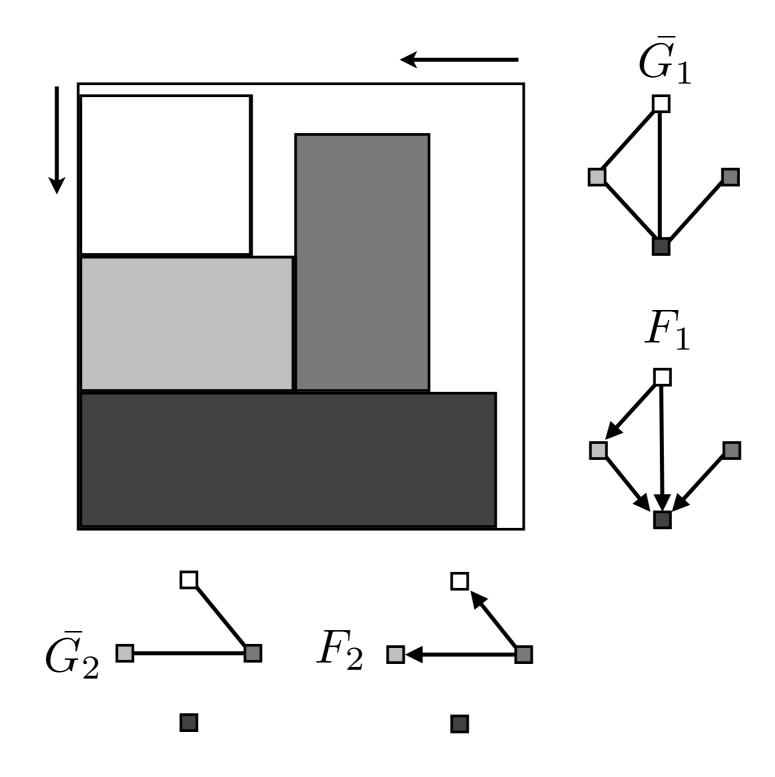
$$\forall v \in V : p(v) + w(v) \le W \tag{1}$$

$$\forall u, \ v \in V, \ u \neq v, \ \exists i \in \{1, ..., d\} : I_i^p(u) \cap I_i^p(v) = \emptyset$$
 (2)

avec
$$I_i^p(u) = [p_i(u), p_i(u) + w_i(u)]$$

Graphes de Comparabilité





Eléments de preuve :

(1)

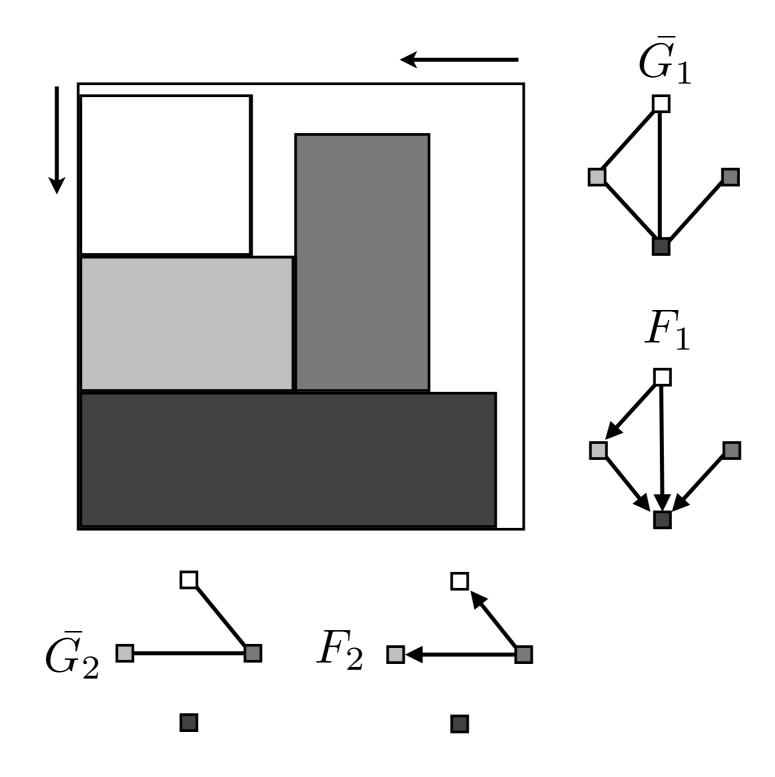
- Une fonction de placement $p_i^F(u) := max\{p_i^F(v) + w_i(v) \ / \ \overrightarrow{uv} \in F_i\}.$
- \bullet Un chemin dans le graphe de comparabilité est une clique et donc un stable dans le graphe d'intervalle. P2.

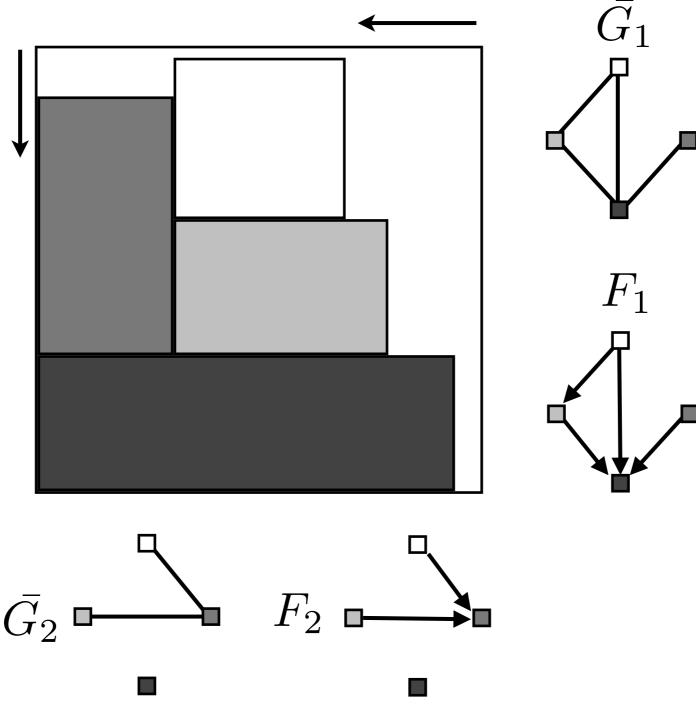
(2)

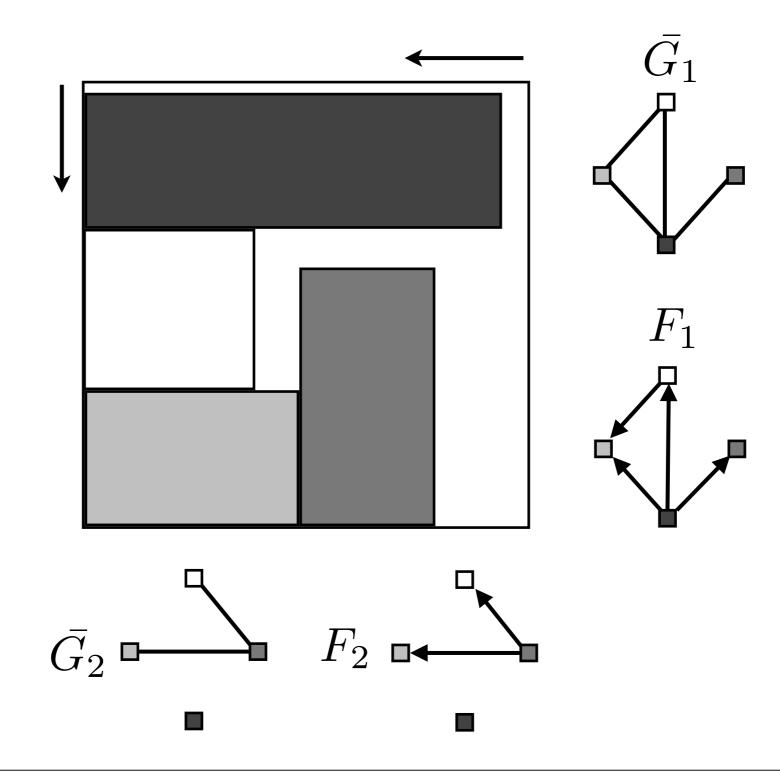
• Pour $u, v \in V$, par P3, il existe $i \in \{1, ..., d\}$ tel que soit $\overrightarrow{uv} \in F_i$ ou $\overrightarrow{vu} \in F_i$ et donc que $p_i^F(u) \ge p_i^F(v) + w_i(v)$ ou l'inverse.

Orientation Transitive

Un chargement existe dès lors qu'il existe une orientation transitive sur les graphes complémentaires.



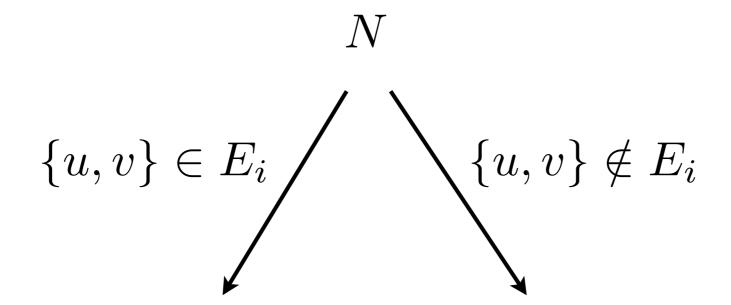


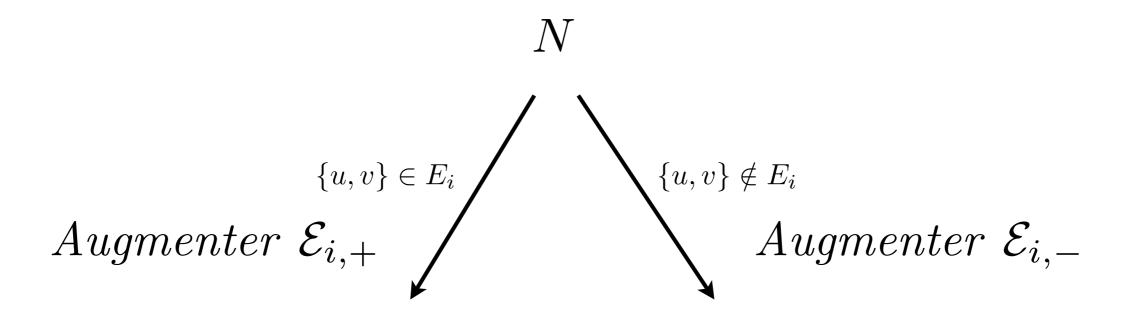


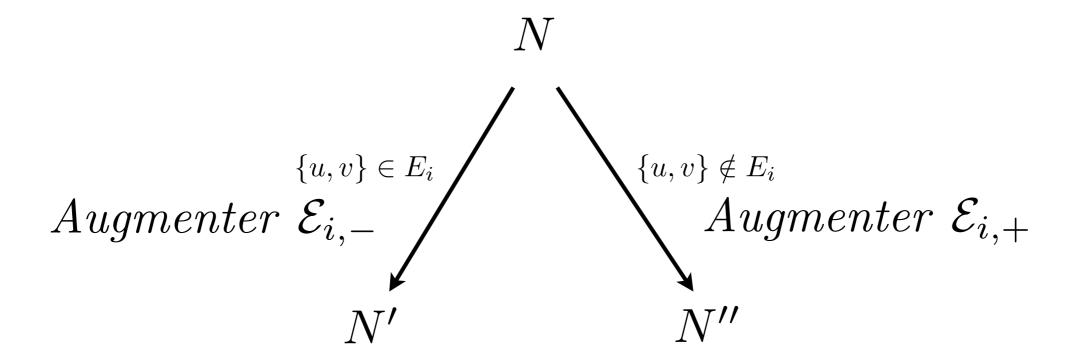
Branch and Bound

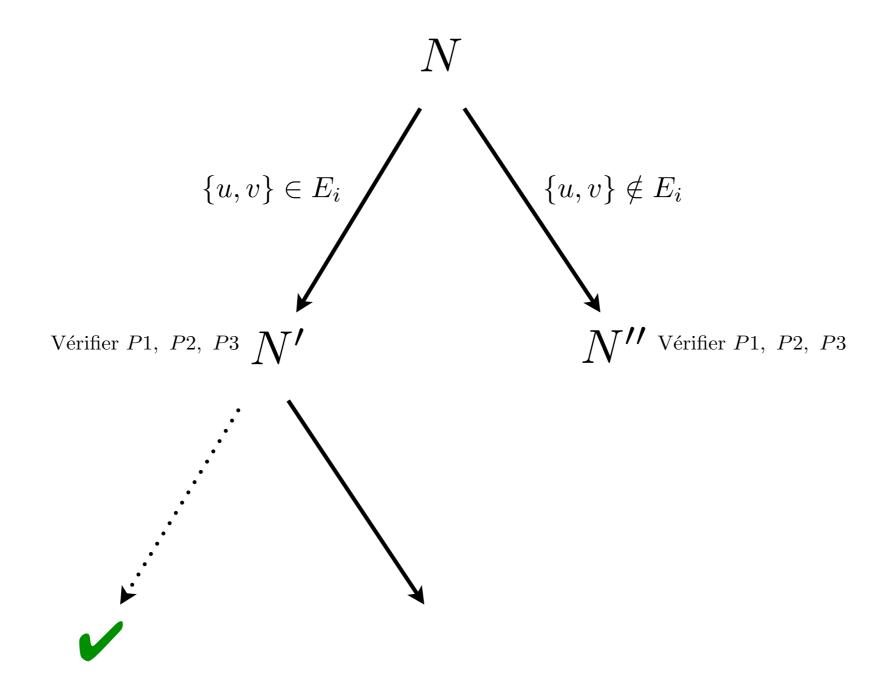
Objectif: Construire un Packing Class.

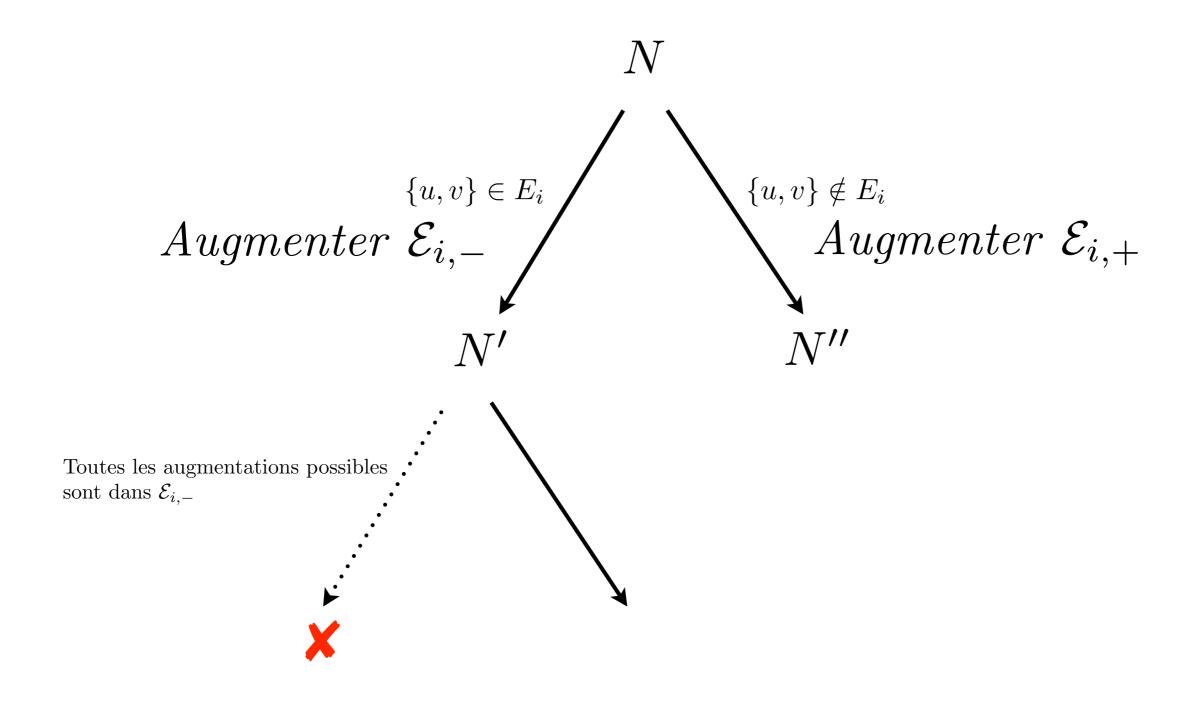
 $E_1, ..., E_d$ pour un ensemble V de boîtes.



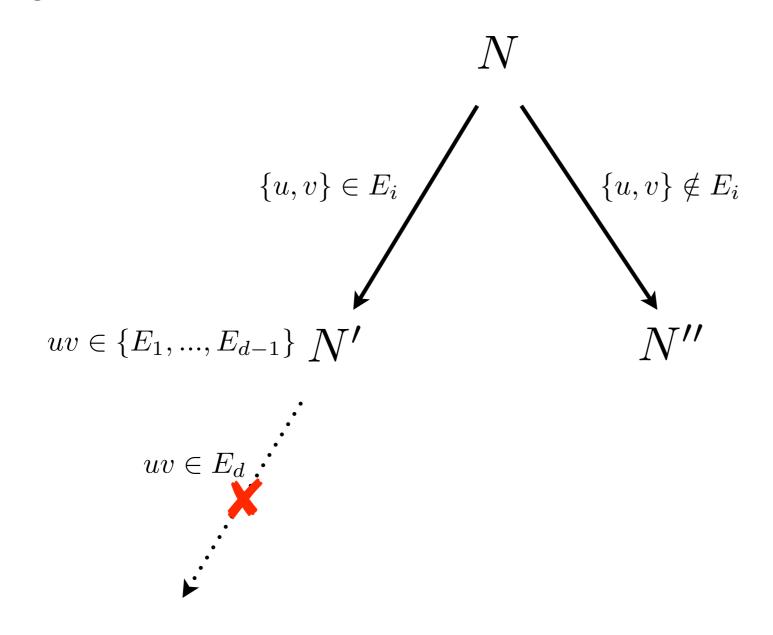




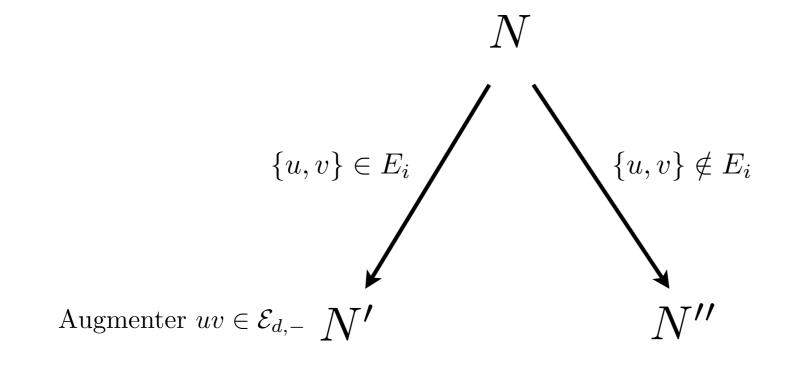


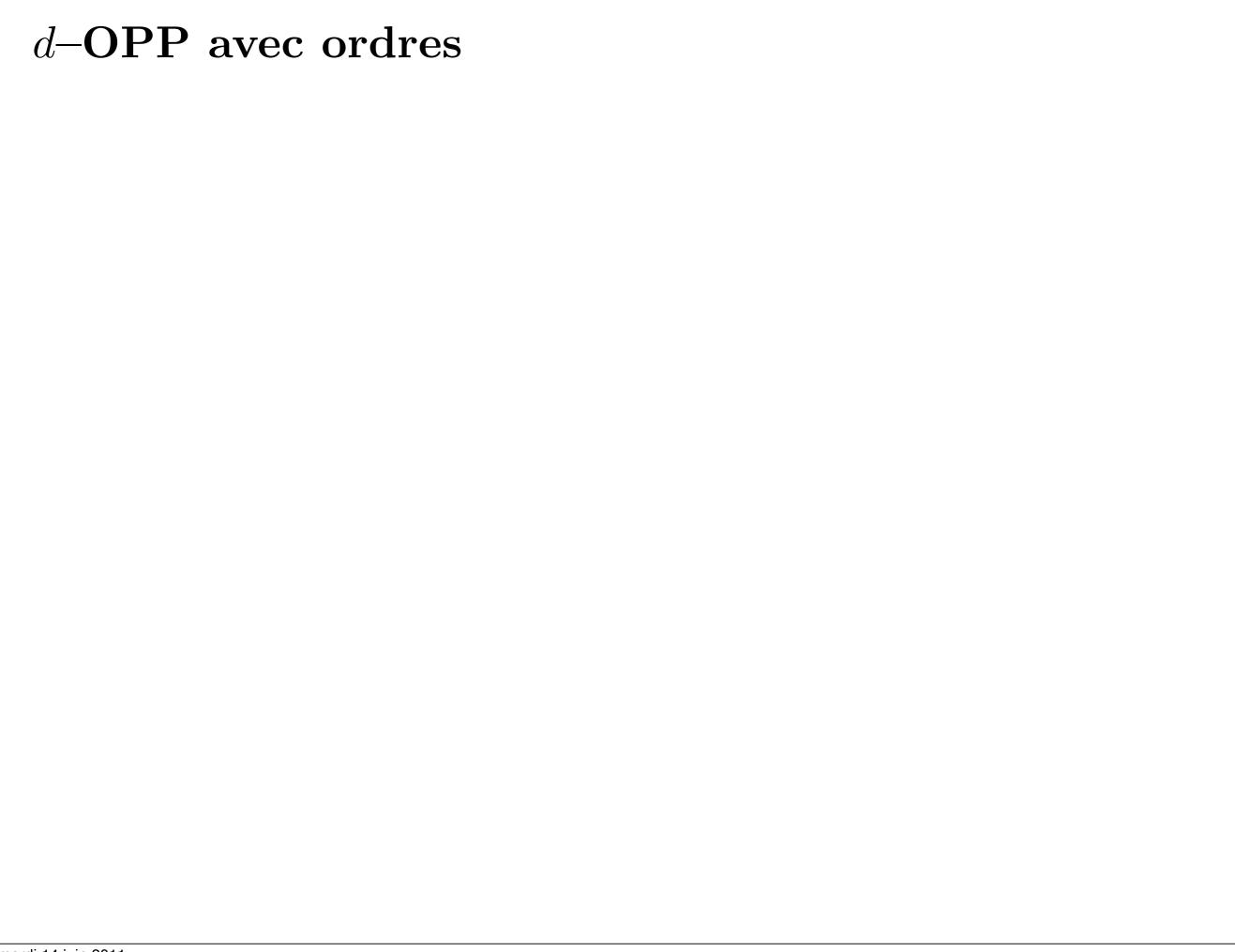


 $\begin{array}{c} \text{Branch and Bound} \\ Augmentations \end{array}$



 $\begin{array}{c} \text{Branch and Bound} \\ Augmentations \end{array}$





Input: Ensemble $V := \{v_1, ..., v_n\}$ de boîtes parallélépipèdes, une fonction de tailles $w : V \to \mathbb{R}_+^{*d}$. Un conteneur C de taille $W \in \mathbb{R}_+^{*d}$.

A chaque boîte u est associé un intervalle $\tau_u := [\tau_u^{pu}, \tau_u^{dy}] \in \mathbb{R}$. L'ensemble des intervalle forme une séquence S de chargements et déchargements.

Question : Existe-t-il un chargement de V dans C respectant S?

Respectant S:

- Les boîtes bougent selon un axe unique : Axe de chargement.
- Une boîte ne bouge que lors de son chargement ou de son déchargement.

Propriétés d'un chargement avec ordres :

P1: Idem

P2: Idem

P3 Modifiée : Pour tout couple $(u, v) \in V^2$, $u \neq v$, avec $\tau_u \cap \tau_v \neq \emptyset$, il existe une dimension $i \in \{1, ..., d\}$ tel que $uv \notin E_i$.

P4: Pour tout couple $(u, v) \in V^2$, $u \neq v$, avec $\tau_u \cap \tau_v \neq \emptyset$, si $uv \in E_1$ et $\overrightarrow{uv} \in F_2$ alors $\tau_u \subseteq \tau_v$.

Théorème 2 : Un ensemble de boîtes de dimension d peut être chargé dans un conteneur C en respectant une séquence S, ssi il existe un Packing Class pour (V, w) respectant les propriétés P1, P2, P3 modifiée et P4.

Formellement:

Etant donnés V un ensemble de boîtes, une fonction de tailles w et un conteneur de taille W,

Une fonction $p: V \to \mathbb{R}_+^{*d}$ est un *chargement* de (V, w, W), ssi

$$\forall v \in V : p(v) + w(v) \le W \tag{1}$$

$$\forall u, \ v \in V, \ u \neq v, \ \exists i \in \{1, ..., d\} : I_i^p(u) \cap I_i^p(v) = \emptyset$$
 (2)

avec
$$I_i^p(u) = [p_i(u), p_i(u) + w_i(u)]$$

Formellement:

Pour deux boîtes
$$u, v \in V$$
, avec $\tau_u \cap \tau_v \neq \emptyset$, si $\tau_u \not\subset \tau_v$ alors $I_1^p(u) \cap I_1^p(v) = \emptyset$ ou $p_i(u) \geq p_i(v) + w_i(v)$. (3)

Eléments de preuve :

(3)

• Par P4, si $uv \in E_1$ alors $vu \in F_2$ et par conséquent $p_2^F(u) > p_2^F(v) + w_2(v)$.

Configurations des intervalles

τ_u	$\tau_u \cap \tau_v = \emptyset$	P3 Originale ne s'applique pas
	$ au_u = au_v$	$OPP\ classique$
├	$ au_u \subset au_v$	$Si \ uv \in E_1$ $alors \ \overrightarrow{uv} \in F_2$
	Crossing	$uv \notin E_1$

Configurations des intervalles

Claim 1: Pour tout couple $(u, v) \in V^2$, $u \neq v$, avec $\tau_u \cap \tau_v \neq \emptyset$, si u et v sont en crossing i.e $\tau_u \not\subset \tau_v$ et $\tau_v \not\subset \tau_u$ alors $uv \notin E_1$.

Configurations des intervalles

Preuve: De P4 nous avons: Pour tout couple $(u,v) \in V^2$, $u \neq v$, avec $\tau_u \cap \tau_v \neq \emptyset$,

 $si \ \tau_u \not\subset \tau_v \ alors \ uv \notin E_1 \ ou \ \overrightarrow{uv} \notin F_2.$

$$\tau_u \not\subset \tau_v \land \tau_v \not\subset \tau_u \iff (uv \notin E_1 \lor \overrightarrow{uv} \notin F_2) \land (uv \notin E_1 \lor \overrightarrow{vu} \notin F_2)$$

$$uv \in E_1 \Rightarrow \overrightarrow{uv} \notin F_2 \land \overrightarrow{vu} \notin F_2 \iff uv \in E_2$$

qui contredit la condition P3.

Pré-traitements

Claim 2: Soit une instance d'OPP P := (V, w, W) avec une séquence S et soit $(u, v) \in V^2$, $u \neq v$ avec $\tau_u \cap \tau_v \neq \emptyset$ et $\tau_u \not\subset \tau_v$ et $\tau_v \not\subset \tau_u$.

 $Si\ w_1(u) + w_1(v) > W_1\ alors\ P\ n'est\ pas\ réalisable.$

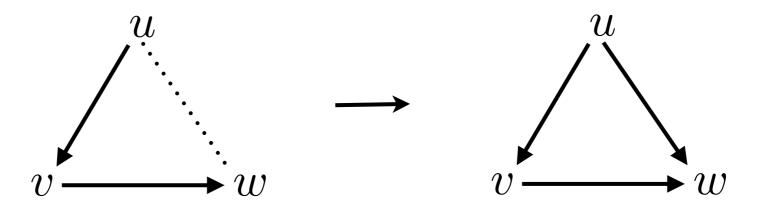
Claim 2 Général : Soit une instance d'OPP P := (V, w, W) avec une séquence S.

S'il existe un ensemble C de boîtes deux à deux en crossing, et $\sum_{u \in C} w_1(u) > W_1$ alors P n'est pas réalisable.

Augmentations

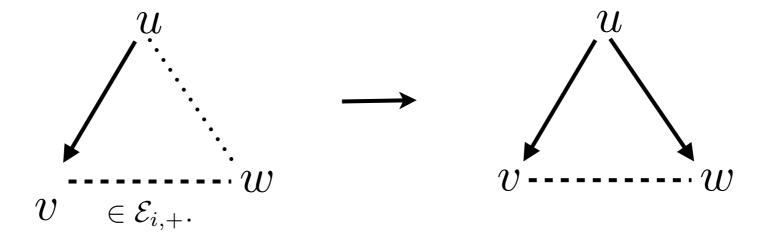
• Pour tout couple $(u, v) \in V^2$ en crossing, augmenter $uv \in \mathcal{E}_{-,1}$.

• Pour tout $(u, v, w) \in V^3$, si $\overrightarrow{uv} \in F_i$ et $\overrightarrow{vw} \in F_i$ alors $uw \in F_i$, $i \in \{1, ..., d\}$.

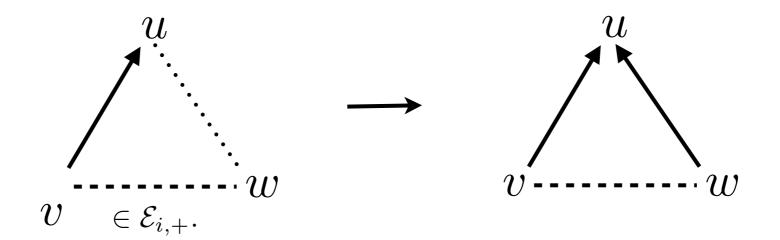


Augmentations

• Pour tout $(u, v, w) \in V^3$, si $\overrightarrow{uv} \in F_i$ et $vw \in E_i$, alors $\overrightarrow{uw} \in F_i$.



• Pour tout $(u, v, w) \in V^3$, si $\overrightarrow{vu} \in F_i$ et $vw \in E_i$, alors $\overrightarrow{wu} \in F_i$.



Conclusion

• d-OPP Classique impélmenté.

• d-OPP avec ordres en chantier.

Références

Fekete, S. P. and J. Schepers (1997b). On higher-dimensional packing I: Modeling. Technical report, Univ. of Cologne, Center for Parallel Computing.

Fekete, S. P. and J. Schepers (1997c). On higher-dimensional packing II: Bounds. Technical report, Univ. of Cologne, Center for Parallel Computing.