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Introduction

Introduction I

We present an exact solution framework for solving some variants of
the Vehicle Routing Problem (VRP) and the Traveling Salesman
Problem (TSP).

We analyze pros and cons of the formulations we use and describe the
problems we tackled while solving the basic variant of the VRP class,
the Capacitated VRP (CVRP).

We describe some variants of the VRP and TSP where the exact
method was successfully applied:

I VRP with Time Windows (VRPTW);
I TSP with Time Windows (TSPTW).

We show the computational results and comparison with the
state-of-the-art exact methods.

We briefly review other VRP variants for which we proposed other
exact methods inspired by the framework described.
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Introduction

Introduction II

The content of this talk is mainly taken from the following papers:

R. Baldacci, N. Christofides, and A. Mingozzi. An Exact Algorithm for the
Vehicle Routing Problem based on the Set Partitioning Formulation with
Additional Cuts. Mathematical Programming, 2008.

R. Baldacci, E. Bartolini, A. Mingozzi, and R. Roberti. An Exact Solution
Framework for a Broad Class of Vehicle Routing Problems. Computational
Management Science, 2010.

R. Baldacci, A. Mingozzi, and R. Roberti. New Route Relaxation and
Pricing Strategies for the Vehicle Routing Problem. Operations Research,
forthcoming, 2011.

R. Baldacci, A. Mingozzi, and R. Roberti. New State-Space Relaxations for
Solving the Traveling Salesman Problem with Time Windows. INFORMS
Journal on Computing, 2011.
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Capacitated Vehicle Routing Problem Problem Description

Capacitated Vehicle Routing Problem (CVRP)

An undirected graph G = (V ′,E ) is given.

V ′ is a set of n + 1 vertices V ′ = {0, 1, . . . , n}, s.t. V ′ = V ∪ {0},
where V = {1, . . . , n} represents n customers and 0 a depot.

A cost dij is associated with each edge {i , j} ∈ E (matrix [dij ]
satisfies the triangular inequality).

m identical vehicles of capacity Q are based at 0.

Customer i ∈ V requires qi units of product (0 < qi ≤ Q) from 0.

A route is an elementary cycle of G that visits 0 and s.t. the total
request of the visited customers does not exceed Q.

The cost of a route is the sum of the costs of the traversed edges.

X Find m routes of minimum total cost to serve all customers.
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Capacitated Vehicle Routing Problem Literature Review

Literature Review on the CVRP

Recent exact algorithms on the CVRP:

Branch-and-Cut on the two-commodity flow formulation
[Baldacci et al. 2004].

Branch-and-Cut on the 2-index formulation [Lysgaard et al. 2004].

Combined Branch-and-Cut and Branch-and-Cut-and-Price
[Fukasawa et al. 2006].

Column generation on the set partitioning formulation
[Baldacci et al. 2008, Baldacci et al. 2011c].
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Capacitated Vehicle Routing Problem 2-Index Formulation

2-Index Formulation (2I) I

S = {S : S ⊆ V , |S | ≥ 2}.
q(S) =

∑
i∈S qi .

k(S) = dq(S)
Q e.

δ(S) = {{i , j} ∈ E : i ∈ S , j /∈ S or i /∈ S , j ∈ S}.
Integer variables xij s.t. xij ∈ {0, 1}, ∀{i , j} ∈ E \ δ({0}), and
xij ∈ {0, 1, 2}, ∀{i , j} ∈ δ({0}).
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Capacitated Vehicle Routing Problem 2-Index Formulation

2-Index Formulation (2I) II

z(2I ) = min
∑

{i, j}∈E

dijxij (1)

s.t.
∑

{i, j}∈δ({h})

xij = 2, ∀h ∈ V , (2)

∑
{i, j}∈δ({0})

x0j = 2m, (3)

∑
{i, j}∈δ(S)

xij ≥ 2k(S), ∀S ∈ S, (4)

xij ∈ {0, 1}, ∀{i , j} ∈ E \ δ({0}), (5)

xij ∈ {0, 1, 2}, ∀{i , j} ∈ δ({0}). (6)

Constraints (2) are degree constraints, whereas constraints (4) are
rounded capacity constraints (RCC).
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Capacitated Vehicle Routing Problem 2-Index Formulation

Pros and Cons

Pros
I No need for column generation (CG).
I A lot of families of cuts usually inspired by the TSP (generalized

capacity, rounded capacity, framed capacity, hypotour, extended
hypotour, comb, strengthened comb, multistar, partial multistar,
path-bin, Gomory mixed integer inequalities, ...).

I Effective on instances with loose capacity constraints and tens of
customers per route.

Cons
I Generally weak linear relaxation.
I Cut separation procedures usually heuristic.
I Not effective on instances with tight capacity constraints.
I Cannot be trivially adapted for solving variants of the CVRP.
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Capacitated Vehicle Routing Problem Set Partitioning Formulation

Set Partitioning Formulation (SP)

R index set of all feasible routes of G .

cr cost of route r ∈ R.

air number of visits of route r ∈ R to customer i ∈ V .

yr binary variable for route r ∈ R.

z(SP) = min
∑
r∈R

cryr (7)

s.t.
∑
r∈R

airyr = 1, ∀i ∈ V , (8)∑
r∈R

yr = m, (9)

yr ∈ {0, 1}, ∀r ∈ R. (10)
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Capacitated Vehicle Routing Problem Set Partitioning Formulation

Pros and Cons

Pros
I Linear relaxation stronger than 2I linear relaxation.
I Just n + 1 constraints in the master.
I Cuts from 2I are valid and easy to handle in solving the pricing.
I Cuts from the set packing/partitioning problem are usually effective.
I Effective on instances with tight capacity constraints.
I Can be easily adapted for handling some variants of the basic CVRP,

such as time windows, pickup and delivery, ...

Cons
I Huge number of columns ⇒ column generation needed.
I Pricing problem consists of an Elementary Shortest Path Problem with

Resource Constraints (ESPPRC), which is NP-hard.
I Highly degenerate master problem.
I Hard to handle cuts from the set packing/partitioning problem in

solving the pricing.
I Not effective on instances with loose capacity constraints and tens of

customers per route.
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Capacitated Vehicle Routing Problem Solving the Pricing Problem

Solving the Pricing Problem

The pricing problem consists of an Elementary Shortest Path Problem
with Resource Constraints (ESPPRC).

Let u = (u0, u1, . . . , un) be the dual variables of (SP), where u0 is
associated with (9) and ui , i = 1, . . . , n, with (8).

Given the reduced cost matrix [d̄ij ], where d̄ij = dij − 1
2 (ui + uj), the

ESPPRC calls for finding the cost of a least-cost route.

11 / 45



Capacitated Vehicle Routing Problem Solving the Pricing Problem

Solving the Pricing Problem
Exact Dynamic Programming Recursion

Let P be the set of paths of G s.t. each path P ∈ P starts from 0,
visits a set of vertices VP ⊆ V , delivers qP units of product, and ends
at vertex σP ∈ VP .
The ESPPRC can be solved with Dynamic Programming (DP)
recursions:

I state-space graph X = {(X , i) : X ⊆ V , i ∈ V ′};
I functions f (X , i), ∀(X , i) ∈ X , where f (X , i) is the cost of a least-cost

path P that visits the set of customers X , ends at customer i ∈ X , and
such that

∑
j∈X qj ≤ Q.
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Capacitated Vehicle Routing Problem Solving the Pricing Problem

Solving the Pricing Problem
q-route Relaxation

[Christofides et al. 1981] proposed the State-Space Relaxation (SSR),
that is a procedure whereby the state-space associated with a DP
recursion is relaxed to compute valid bounds to the original problem.
Elementary routes can be replaced with q-routes, which are
nonnecessarily elementary routes delivering q units of product.

I q-routes can contain loops.
I 2-vertex loops can be easily avoided.
I k-vertex loops (with k ≥ 3) cannot be easily avoided.

Given [d̄ij ], the cost of a least-cost q-route can be computed via DP
in pseudo-polynomial time:

I state-space graph X = {(q, i) : i ∈ V ′, qi ≤ q ≤ Q};
I functions f (q, i), ∀(q, i) ∈ X , where f (q, i) is the cost of a least-cost

path P ∈ P (nonnecessarily elementary) that ends at customer i and
delivers q units of product.
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Capacitated Vehicle Routing Problem Solving the Pricing Problem

Solving the Pricing Problem
ng -route Relaxation

[Baldacci et al. 2011c] proposed the ng -route relaxation.

For each path P ∈ P, P = {0, i1, . . . , ik−1, ik}, let P ′ be the path
defined as P ′ = {0, i1, . . . , ik−1}.
Let Ni (Ni ⊆ V ) be a set of vertices associated with i ∈ V .

With each path P = {0, i1, . . . , ik}, P ∈ P, we associate the set

ΠP ⊆ VP defined as: ΠP = {ir ∈ VP′ : ir ∈ ∩k
s=r+1Nis}.

Example:
I P = {0, 1, 2, 3, 4, 1} ⇒ P ′ = {0, 1, 2, 3, 4}.
I N1 = {3, 4}, N2 = {1, 5}, N3 = {1, 4}, N4 = {2, 3}.
I 1 /∈ N2 ∩ N3 ∩ N4 ∩ N1

2 /∈ N3 ∩ N4 ∩ N1

3 ∈ N4 ∩ N1

4 ∈ N1
I ⇒ ΠP = {3, 4}
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Capacitated Vehicle Routing Problem Solving the Pricing Problem

Solving the Pricing Problem
The ng -route Relaxation

An ng -path is a path P ∈ P s.t. σP /∈ ΠP′ and P ′ is an ng -path.
... from the previous example:

I P = {0, 1, 2, 3, 4, 1} ⇒ P ′ = {0, 1, 2, 3, 4}.
I N1 = {3, 4}, N2 = {1, 5}, N3 = {1, 4}, N4 = {2, 3}.
I 1 /∈ N2 ∩ N3 ∩ N4

2 /∈ N3 ∩ N4

3 ∈ N4
I ⇒ ΠP′ = {3}
I 1 /∈ ΠP′ and P ′ is an ng-path (it is elementary!) ⇒ P is an ng-path.

An ng -route is an ng -path P plus the edge {σP , 0}.
Given [d̄ij ], the cost of a least-cost ng -route can be computed with
DP:

I state-space graph X = {(NG , q, i) : NG ⊆ Ni , i ∈ V ′, qi ≤ q ≤ Q};
I functions f (NG , q, i), ∀(NG , q, i) ∈ X , where f (NG , q, i) is the cost of

a least-cost ng -path P that ends at customer i , delivers q units of
product and s.t. ΠP = NG .
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Capacitated Vehicle Routing Problem Solving the Master Problem

Solving the Master Problem

The master problem is typically affected by degeneracy.

Instead of using the simplex, we use a dual ascent heuristic relying on
the following theorem:

Theorem 1.

Let λ = (λ0, λ1, . . . , λn) be a vector of penalties, where λi ∈ R, ∀i ∈ V ,
are associated with (8) and λ0 ∈ R with (9). A feasible dual solution u of
cost z(SP(λ)) = u0 +

∑
i∈V ui is obtained as: u0 = λ0,

ui = qi minr∈R

{
air

cr−λ0−
∑

j∈V ajrλj∑
j∈V ajrqj

}
, ∀i ∈ V .

A near-optimal dual solution of (SP) can be computed by mean of
Theorem 1 and by applying subgradient optimization to update the
penalty vector λ.
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Capacitated Vehicle Routing Problem Adding Cuts from the 2-Index Model

Adding Cuts from the (2I) to (SP)

Any family of cuts valid for the (2I ) can be easily added to (SP).

RCC (4) (i.e.,
∑
{i , j}∈δ(S) xij ≥ 2k(S), ∀S ∈ S), can be added as:∑

r∈R
ρrsyr ≥ 2k(S), ∀S ∈ S, (11)

where ρrs is the times route r ∈ R traverses an edge of δ(S).

Such cuts do not change the pricing problem that remains “robust”
[Fukasawa et al. 2006].

Let vS be the dual variable of (11), the pricing problem can be solved
as before on the matrix d̄ij = dij − 1

2 (ui + uj)−
∑

S∈Sij
vS , where

Sij = {S ∈ S : {i , j} ∈ δ(S)}, ∀{i , j} ∈ E .
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Capacitated Vehicle Routing Problem Bounding Procedure H

General Description of Bounding Procedure H

H computes 3 lower bounds, LB1, LB2 and LB3 s.t.
LB1 ≤ LB2 ≤ LB3, corresponding to 3 dual solutions (u1, v1),
(u2, v2), (u3, v3), of the linear relaxation of SP plus RCC (11).

The master problem is solved with the dual ascent procedure,
describe before, based on Theorem 1.

LB1 is obtained by using q-routes as columns.

LB2 is obtained by using ng -routes as columns.

LB3 is obtained by using elementary routes as columns.

RCC (11) are separated heuristically once at the beginning and are
cuts violated by the linear relaxation of (2I ).

18 / 45



Capacitated Vehicle Routing Problem Bounding Procedure H

Outline of Bounding Procedure H

1. Solve the linear relaxation of (2I ).

2. Separate a set S of violated RCC (4).

3. Compute the dual solution (u1, v1), of problem (SP) + RCC , of cost LB1 with
a CG method, where:

I Columns are q-routes and are generated by DP.
I The master is solved with Theorem 1.
I S is the set of rounded capacity constraints.

4. Compute the dual solution (u2, v2), of problem (SP) + RCC , of cost LB2 with
a CG method, where:

I Columns are ng -routes and are generated by DP.
I The master is solved with Theorem 1.
I S is the set of rounded capacity constraints.
I The master problem is initialized by using (u1, v1).

5. Compute the dual solution (u3, v3), of problem (SP) + RCC , of cost LB3 with
a CG method, where:

I Columns are elementary routes and are generated by DP.
I The master is solved with Theorem 1.
I S is the set of rounded capacity constraints.
I The master problem is initialized by using (u2, v2).

19 / 45



Capacitated Vehicle Routing Problem Adding Cuts from the SP Model

Adding Cuts from (SP)

Lower bound LB3 can be improved by adding cuts from the set
packing/partitioning (e.g., clique inequalities).

Such cuts make the pricing problem “non-robust”, so the algorithms
for solving the subproblem need relevant changes.
A class of tractable, but still effective, cuts is the Subset-Row
Inequalities (SRI) - introduced by [Jepsen et al. 2008]:

I C ⊆ {C ⊆ V : |C | = 3}
I R(C ) ⊆ R routes that visit at least two of the customers in C ∈ C∑

r∈R(C)

yr ≤ 1, ∀C ∈ C. (12)

SRI (12) can be separated by complete enumeration and can be
handled in the pricing problem by properly tailoring dominance rules.

Let g be the vector of dual variables associated with (12).
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Capacitated Vehicle Routing Problem Multiple Feasible Dual Solutions

Multiple Feasible Dual Solutions I

Lower bound LB3 can be also improved by using multiple feasible
dual solutions to eliminate columns.

Consider a generic IP problem with n variables and m constraints

z(F ) = min cx (13)

s.t. Ax = b, (14)

x ∈ Bn. (15)

I LF linear relaxation of F
I z(LF ) optimal solution cost of LF
I D dual of LF
I zUB upper bound to z(F )
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Capacitated Vehicle Routing Problem Multiple Feasible Dual Solutions

Multiple Feasible Dual Solutions II

Let w′ be a feasible D solution of cost zLB .

Any optimal F solution x∗ satisfies z(F ) = zLB +
∑

j∈J c ′j , where c ′j is

the reduced cost of xj w.r.t. w′ and J = {j : x∗j = 1, j = 1, . . . , n}.
Then, any variable xj s.t. zLB + c ′j > zUB can be removed from (F )
because cannot be in any optimal solution.

The solution cost, z(LF ′), of the linear relaxation of the resulting
problem (F ′) is s.t. z(LF ′) ≥ z(LF ).
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Capacitated Vehicle Routing Problem Multiple Feasible Dual Solutions

Multiple Feasible Dual Solutions III

Min x1 +x2 +x3 +4x4 +3x5 +3.5x6

[w1] x1 +x4 +x5 +x6 = 1
[w2] +x2 +x4 +x5 = 1
[w3] x3 +x4 +x6 = 1
[w4] x1 +x2 +x5 = 1
[w5] x1 +x3 +x6 = 1
[w6] x2 +x3 = 1

xi ∈ {0, 1}, i = 1, . . . , 6

z(F ) = 4 and z(LF ) = 3.5

zUB = 4.5 with x = (0, 1, 0, 0, 0, 1)

zLB = 2 with w′ = ( 1
3 ,

1
3 ,

1
3 ,

1
3 ,

1
3 ,

1
3 )⇒ zUB − zLB = 2.5

c′(w′) = (0, 0, 0, 3, 2, 2.5)⇒ remove x4 ⇒ z(LF ′) = 4
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Capacitated Vehicle Routing Problem Bounding Procedure CCG

Bounding Procedure CCG

CCG is a column-and-cut generation algorithm that computes lower
bound LB4 corresponding to a dual solution (u4, v4, g4) of the linear
relaxation of (SP) plus RCC (11) and SRI (12).

CCG is executed after procedure H.

The master problem is solved with the simplex.

The pricing problem is solved with DP recursions.

We use multiple feasible dual solutions, so each column of negative
reduced cost w.r.t. the current dual solution that is generated is such
that its reduced cost w.r.t. (u3, v3) is less than the gap between a
known upper bound zUB to the CVRP and LB3.

The set S of RCC is inherited from bounding procedure H.

SRI inequalities are separated by complete enumeration.
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Capacitated Vehicle Routing Problem Exact Method

Outline of the Exact Method

1. Call bounding procedure H to compute a feasible dual solution (u3, v3)
of cost LB3 of the linear relaxation of (SP) plus RCC.

2. Call bounding procedure CCG to compute a feasible dual solution
(u4, v4, g4) of cost LB4 of the linear relaxation of (SP) plus RCC and
SRI.

3. Generate, via DP, the set R̂ ⊆ R of routes s.t. c3
r ≤ zUB − LB3 and

c4
r ≤ zUB − LB4, ∀r ∈ R̂, where c3

r and c4
r are the reduced costs of

route r w.r.t. (u3, v3) and (u4, v4, g4), respectively.

4. Compute an optimal CVRP solution by solving, with an IP solver,
problem (SP) by replacing the set of routes R with R̂.

If the DP recursion for generating routes runs out of memory in any of the
first three steps, the algorithms terminates prematurely without providing
any optimal solution.
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Capacitated Vehicle Routing Problem Computational Results

Computational Results on the CVRP I

Our exact method (hereafter BMR) was tested on 6 classes, A, B, E ,
M, F , P, of instances from the literature.

All tests were performed on IBM Intel Xeon X7350@2.93 GHz a.

We compare the computational results achieved with the following
exact methods:

I [Lysgaard et al. 2004] (LLE ) - Intel Celeron 700 MHz (a ≈ 10x faster)
I [Fukasawa et al. 2006] (FLL) - Pentium 4 2.4 GHz (a ≈ 3x faster)
I [Baldacci et al. 2008] (BCM) - Pentium 4 2.6 GHz (a ≈ 3x faster)
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Capacitated Vehicle Routing Problem Computational Results

Computational Results on the CVRP II

BMR BCM FLL LLE

Class NP Opt LB CPU Opt LB CPU Opt BCP BC LB CPU Opt LB CPU

A 22 22 99.9 30 22 99.8 118 22 20 2 99.2 1,961 15 97.9 6,638

B 20 20 99.9 67 20 99.8 417 20 6 14 99.5 4,763 19 99.4 8,178

E-M 12 9 99.8 303 8 99.4 1,025 9 7 2 98.9 126,987 3 97.7 39,592

F 3 2 100.0 164 3 0 3 99.9 2,398 3 99.9 1,046

P 24 24 99.8 85 22 99.7 187 24 16 8 99.2 2,892 16 97.7 11,219

Avg 99.9 92 99.7 323 99.3 17, 409 98.4 9, 935

Tot 81 77 72 78 49 29 56

BMR: our method - BCM: [Baldacci et al. 2008] - FLL: [Fukasawa et al. 2006] - LLE: [Lysgaard et al. 2004]
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Vehicle Routing Problem with Time Windows Problem Description

Vehicle Routing Problem with Time Windows (VRPTW)

The VRPTW generalizes the CVRP: there is the additional constraint
that each customer must be visited within a given time window.

An digraph G = (V ′,A) is given.

V ′ is a set of n + 1 vertices V ′ = {0, 1, . . . , n}, s.t. V ′ = V ∪ {0},
where V = {1, . . . , n} represents n customers and 0 a depot.

A cost dij and a travel time tij are associated with each arc (i , j) ∈ A
(matrices [dij ] and [tij ] satisfy the triangular inequality).

m identical vehicles of capacity Q are based at 0.

Customer i ∈ V requires qi units of product (0 < qi ≤ Q) from 0.

A time window [ei , li ] is associated with each customer i ∈ V .

X Find m routes of minimum total cost to serve all customers.
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Vehicle Routing Problem with Time Windows Literature Review

Literature Review on the VRPTW

Recent exact algorithms on the VRPTW:

Branch-and-Price on the set partitioning formulation with elementary
routes [Feillet et al. 2004, Danna and Le Pape 2005, Chabrier 2006]

Branch-and-Price on the set partitioning formulation with k-cycle
elimination (with k ≥ 3) on columns [Irnich and Villeneuve 2006].

Branch-and-Cut-and-Price on the set partitioning formulation with
elementary routes [Jepsen et al. 2008, Desaulniers et al. 2008].

Column generation on the set partitioning formulation
[Baldacci et al. 2011c].
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Vehicle Routing Problem with Time Windows Exact Method

Our Exact Method

The SP formulation is valid for the VRPTW. We only have to
consider the travel time as a resource while generating feasible routes
in order to visit customers within their time windows.

Thus, the exact method proposed for the CVRP can be easily
extended to the VRPTW by simply tailoring the pricing algorithm so
as to take into account time window constraints.
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Vehicle Routing Problem with Time Windows Computational Results

Computational Results on the VRPTW I

Our method was tested on the well-known Solomon benchmark
testbed.

All tests were performed on IBM Intel Xeon X7350@2.93 GHz a.

We compare the computational results achieved with the following
exact methods:

I [Jepsen et al. 2008] - Pentium 4 3.0 GHz (a ≈ 3x faster)
I [Desaulniers et al. 2008] - Dual Core AMD Opteron 2.6 GHz (a ≈ 2x

faster)
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Vehicle Routing Problem with Time Windows Computational Results

Computational Results on the VRPTW II

BMR JPSP DHL

Class n NP Opt CPU Opt CPU Opt CPU

C2 50 8 8 8 7 79

RC2 50 8 8 27 7 268

R2 50 11 11 124 9 7,086

C1 100 9 9 25 9 468 9 18

RC1 100 8 8 276 8 11,004 8 2,150

R1 100 12 12 251 12 27,412 12 2,327

C2 100 8 8 40 7 2,795 8 2,093

RC2 100 8 8 3,767 5 3,204 6 15,394

R2 100 11 10 28,680 4 35,292 8 63,068

Avg 3, 955 9, 767 12, 920

Solved by JPSP 261 9, 767

Solved by DHL 1, 825 12, 920

BMR: our method - JPSP: [Jepsen et al. 2008] - DHL: [Desaulniers et al. 2008]
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Traveling Salesman Problem with Time Windows Problem Description

Traveling Salesman Problem with Time Windows (TSPTW)

The TSPTW is a special case of the VRPTW, where a single vehicle
is available and no capacity constraint is imposed.

X Find a least-cost hamiltonian route (tour).
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Traveling Salesman Problem with Time Windows Literature Review

Literature Review on the TSPTW

Recent exact algorithms on the TSPTW:

Branch-and-Bound algorithms
[Christofides et al. 1981, Baker 1983, Langevin et al. 1993].

Branch-and-Cut algorithms [Ascheuer et al. 2001, Dash et al. 2010].

Constraint programming-based methods [Focacci et al. 2002].

DP recursions [Dumas et al. 1995, Mingozzi et al. 1997,
Balas and Simonetti 2001, Li 2009].

Column generation [Baldacci et al. 2011d].
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Traveling Salesman Problem with Time Windows Set Partitioning Formulation

Set Partitioning Formulation (SP) for the TSPTW

The (SP) model is valid for the TSPTW.

z(SP) = min
∑
r∈R

cryr (16)

s.t.
∑
r∈R

airyr = 1, ∀i ∈ V , (17)∑
r∈R

yr = 1, (18)

yr ∈ {0, 1}, ∀r ∈ R. (19)

We rely on SSR to compute lower bounds to the TSPTW.
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Traveling Salesman Problem with Time Windows Exact Method

Outline of the Exact Method

A dual solution u of cost zLB of the linear relaxation of (SP) is
computed.

Such lower bound is obtained by using ng -routes or ngL-routes as
columns, where ng -routes were described before and ngL-routes are
(informally) ng -routes with the additional property that a subset of
customers is visited once and only once.

The problem is solved to optimality with an iterative DP recursion
based on u.
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Traveling Salesman Problem with Time Windows Computational Results

Computational Results on the TSPTW I

Our exact method was tested on 6 classes of instances from the
literature.

All tests were performed on a P8400a Intel Core 2 Duo@2.26 GHz.

We compare the computational results achieved with the following
exact methods:

I [Ascheuer et al. 2001] (hereafter AFG ) - Sun sparc Station 10 (≈ 10x
slower than a) - time limit 18, 000 seconds

I [Focacci et al. 2002] (FLM) - PC Pentium III 700 MHz (≈ 6x slower
than a) - time limit 1, 800 seconds

I [Dash et al. 2010] (DGLT ) - Intel 2.40 GHz (≈ 10% faster than a) -
time limit 18, 000 seconds

I [Li 2009] (LI ) - Lenovo with 4 Intel processors@2 GHz (≈ 10% slower
than a) - no time limit
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Traveling Salesman Problem with Time Windows Computational Results

Computational Results on the TSPTW II

BMR AFG FLM DGLT LI

Class NP Opt CPU Opt CPU Opt CPU Opt CPU Opt CPU

Ascheuer E 32 32 2.4 32 171.5 31 30.5 32 2.1 27 376.4

Ascheuer H 18 18 40.9 0 - 1 149.8 13 1,196.3 10 579.0

Pesant 27 27 4.3 23 135.9 25 303.7 18 1,680.8

Potvin 28 28 12.2 17 33.3

Gendreau 140 140 36.7 46 1,462.7

Ohlmann 25 24 399.8

All 270 269 59.5

BMR: our method - AFG: [Ascheuer et al. 2001] - FLM: [Focacci et al. 2002] - DGLT: [Dash et al. 2010] - LI: [Li 2009]

Recent developments to the exact method outlined let us solve the
last open Ohlmann instance.
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Extensions of the Solution Framework

The solution framework described has been extended to solve other
variants of the VRP and the TSP.

I TSP with Cumulative Costs [working paper]
I Pickup and Delivery VRP with Time Windows [Baldacci et al. 2011b]
I Heterogeneous VRP [Baldacci and Mingozzi 2008]
I Period Routing Problem [Baldacci et al. 2011a]
I Multi-Trip VRP [Mingozzi et al. 2011]
I Capacitated Location Routing [Baldacci et al. 2011f]
I 2-Echelon Capacitated VRP [Baldacci et al. 2011e]

The results obtained showed that the methods proposed are
competitive with the state-of-the-art exact methods from the
literature.
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Conclusion

Conclusions

We presented an exact solution framework, based on a set partitioning
model, for some vehicle routing and traveling salesman problems.

We outlined the difficulties faced in developing the exact solution
framework, in particular some problems arising from applying a
column generation scheme.

We presented the results achieved to show the effectiveness of the
method proposed when compared with the state-of-the-art exact
algorithms from the literature.
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