New Route Relaxation and Pricing Strategies

for Solving Different Variants of the

 Vehicle Routing ProblemRoberto Roberti
DEIS, University of Bologna
joint work with

Roberto Baldacci - DEIS, University of Bologna
Enrico Bartolini - CIRRELT, Montréal
Aristide Mingozzi - Department of Mathematics, University of Bologna

Journée du GT Transport et Logistique - Paris 2011

Introduction I

- We present an exact solution framework for solving some variants of the Vehicle Routing Problem (VRP) and the Traveling Salesman Problem (TSP).
- We analyze pros and cons of the formulations we use and describe the problems we tackled while solving the basic variant of the VRP class, the Capacitated VRP (CVRP).
- We describe some variants of the VRP and TSP where the exact method was successfully applied:
- VRP with Time Windows (VRPTW);
- TSP with Time Windows (TSPTW).
- We show the computational results and comparison with the state-of-the-art exact methods.
- We briefly review other VRP variants for which we proposed other exact methods inspired by the framework described.

Introduction II

The content of this talk is mainly taken from the following papers:

- R. Baldacci, N. Christofides, and A. Mingozzi. An Exact Algorithm for the Vehicle Routing Problem based on the Set Partitioning Formulation with Additional Cuts. Mathematical Programming, 2008.
- R. Baldacci, E. Bartolini, A. Mingozzi, and R. Roberti. An Exact Solution Framework for a Broad Class of Vehicle Routing Problems. Computational Management Science, 2010.
- R. Baldacci, A. Mingozzi, and R. Roberti. New Route Relaxation and Pricing Strategies for the Vehicle Routing Problem. Operations Research, forthcoming, 2011.
- R. Baldacci, A. Mingozzi, and R. Roberti. New State-Space Relaxations for Solving the Traveling Salesman Problem with Time Windows. INFORMS Journal on Computing, 2011.

Capacitated Vehicle Routing Problem (CVRP)

- An undirected graph $G=\left(V^{\prime}, E\right)$ is given.
- V^{\prime} is a set of $n+1$ vertices $V^{\prime}=\{0,1, \ldots, n\}$, s.t. $V^{\prime}=V \cup\{0\}$, where $V=\{1, \ldots, n\}$ represents n customers and 0 a depot.
- A cost $d_{i j}$ is associated with each edge $\{i, j\} \in E$ (matrix $\left[d_{i j}\right]$ satisfies the triangular inequality).
- m identical vehicles of capacity Q are based at 0 .
- Customer $i \in V$ requires q_{i} units of product $\left(0<q_{i} \leq Q\right)$ from 0 .
- A route is an elementary cycle of G that visits 0 and s.t. the total request of the visited customers does not exceed Q.
- The cost of a route is the sum of the costs of the traversed edges.
\checkmark Find m routes of minimum total cost to serve all customers.

Literature Review on the CVRP

Recent exact algorithms on the CVRP:

- Branch-and-Cut on the two-commodity flow formulation [Baldacci et al. 2004].
- Branch-and-Cut on the 2-index formulation [Lysgaard et al. 2004].
- Combined Branch-and-Cut and Branch-and-Cut-and-Price [Fukasawa et al. 2006].
- Column generation on the set partitioning formulation [Baldacci et al. 2008, Baldacci et al. 2011c].

2-Index Formulation (2I) I

- $\mathcal{S}=\{S: S \subseteq V,|S| \geq 2\}$.
- $q(S)=\sum_{i \in S} q_{i}$.
- $k(S)=\left\lceil\frac{q(S)}{Q}\right\rceil$.
- $\delta(S)=\{\{i, j\} \in E: i \in S, j \notin S$ or $i \notin S, j \in S\}$.
- Integer variables $x_{i j}$ s.t. $x_{i j} \in\{0,1\}, \forall\{i, j\} \in E \backslash \delta(\{0\})$, and $x_{i j} \in\{0,1,2\}, \forall\{i, j\} \in \delta(\{0\})$.

2-Index Formulation (2I) II

$$
\begin{array}{ll}
z(2 I)=\min & \sum_{\{i, j\} \in E} d_{i j} x_{i j} \\
\text { s.t. } \sum_{\{i, j\} \in \delta(\{h\})} x_{i j}=2, & \forall h \in V, \\
& \sum_{\{i, j\} \in \delta(\{0\})} x_{0 j}=2 m, \\
& \sum_{\{i, j\} \in \delta(S)} x_{i j} \geq 2 k(S), \\
\begin{array}{ll}
x_{i j} \in\{0,1\}, & \forall S \in \mathcal{S}, \\
x_{i j} \in\{0,1,2\}, & \forall\{i, j\} \in E \backslash \delta(\{0\}), \\
& \forall\{i, j\} \in \delta(\{0\}) .
\end{array} \tag{5}
\end{array}
$$

- Constraints (2) are degree constraints, whereas constraints (4) are rounded capacity constraints (RCC).

Pros and Cons

- Pros
- No need for column generation (CG).
- A lot of families of cuts usually inspired by the TSP (generalized capacity, rounded capacity, framed capacity, hypotour, extended hypotour, comb, strengthened comb, multistar, partial multistar, path-bin, Gomory mixed integer inequalities, ...).
- Effective on instances with loose capacity constraints and tens of customers per route.
- Cons
- Generally weak linear relaxation.
- Cut separation procedures usually heuristic.
- Not effective on instances with tight capacity constraints.
- Cannot be trivially adapted for solving variants of the CVRP.

Set Partitioning Formulation (SP)

- \mathcal{R} index set of all feasible routes of G.
- c_{r} cost of route $r \in \mathcal{R}$.
- $a_{i r}$ number of visits of route $r \in \mathcal{R}$ to customer $i \in V$.
- y_{r} binary variable for route $r \in \mathcal{R}$.

$$
\begin{align*}
& z(S P)= \min \tag{7}\\
& \sum_{r \in \mathcal{R}} c_{r} y_{r} \tag{8}\\
& \text { s.t. } \sum_{r \in \mathcal{R}} a_{i r} y_{r}=1, \quad \forall i \in V, \tag{9}\\
& \sum_{r \in \mathcal{R}} y_{r}=m, \tag{10}\\
& y_{r} \in\{0,1\}, \quad \forall r \in \mathcal{R} .
\end{align*}
$$

Pros and Cons

- Pros
- Linear relaxation stronger than $2 /$ linear relaxation.
- Just $n+1$ constraints in the master.
- Cuts from 2l are valid and easy to handle in solving the pricing.
- Cuts from the set packing/partitioning problem are usually effective.
- Effective on instances with tight capacity constraints.
- Can be easily adapted for handling some variants of the basic CVRP, such as time windows, pickup and delivery, ...
- Cons
- Huge number of columns \Rightarrow column generation needed.
- Pricing problem consists of an Elementary Shortest Path Problem with Resource Constraints (ESPPRC), which is $\mathcal{N} \mathcal{P}$-hard.
- Highly degenerate master problem.
- Hard to handle cuts from the set packing/partitioning problem in solving the pricing.
- Not effective on instances with loose capacity constraints and tens of customers per route.

Solving the Pricing Problem

- The pricing problem consists of an Elementary Shortest Path Problem with Resource Constraints (ESPPRC).
- Let $\mathbf{u}=\left(u_{0}, u_{1}, \ldots, u_{n}\right)$ be the dual variables of $(S P)$, where u_{0} is associated with (9) and $u_{i}, i=1, \ldots, n$, with (8).
- Given the reduced cost matrix $\left[\bar{d}_{i j}\right]$, where $\bar{d}_{i j}=d_{i j}-\frac{1}{2}\left(u_{i}+u_{j}\right)$, the ESPPRC calls for finding the cost of a least-cost route.

Solving the Pricing Problem
 Exact Dynamic Programming Recursion

- Let \mathcal{P} be the set of paths of G s.t. each path $P \in \mathcal{P}$ starts from 0 , visits a set of vertices $V_{P} \subseteq V$, delivers q_{P} units of product, and ends at vertex $\sigma_{P} \in V_{P}$.
- The ESPPRC can be solved with Dynamic Programming (DP) recursions:
- state-space graph $\mathcal{X}=\left\{(X, i): X \subseteq V, i \in V^{\prime}\right\} ;$
- functions $f(X, i), \forall(X, i) \in \mathcal{X}$, where $f(X, i)$ is the cost of a least-cost path P that visits the set of customers X, ends at customer $i \in X$, and such that $\sum_{j \in X} q_{j} \leq Q$.

Solving the Pricing Problem

q-route Relaxation

- [Christofides et al. 1981] proposed the State-Space Relaxation (SSR), that is a procedure whereby the state-space associated with a DP recursion is relaxed to compute valid bounds to the original problem.
- Elementary routes can be replaced with q-routes, which are nonnecessarily elementary routes delivering q units of product.
- q-routes can contain loops.
- 2-vertex loops can be easily avoided.
- k-vertex loops (with $k \geq 3$) cannot be easily avoided.
- Given $\left[\bar{d}_{i j}\right]$, the cost of a least-cost q-route can be computed via DP in pseudo-polynomial time:
- state-space graph $\mathcal{X}=\left\{(q, i): i \in V^{\prime}, q_{i} \leq q \leq Q\right\}$;
- functions $f(q, i), \forall(q, i) \in \mathcal{X}$, where $f(q, i)$ is the cost of a least-cost path $P \in \mathcal{P}$ (nonnecessarily elementary) that ends at customer i and delivers q units of product.

Solving the Pricing Problem

ng-route Relaxation

- [Baldacci et al. 2011c] proposed the ng-route relaxation.
- For each path $P \in \mathcal{P}, P=\left\{0, i_{1}, \ldots, i_{k-1}, i_{k}\right\}$, let P^{\prime} be the path defined as $P^{\prime}=\left\{0, i_{1}, \ldots, i_{k-1}\right\}$.
- Let $N_{i}\left(N_{i} \subseteq V\right)$ be a set of vertices associated with $i \in V$.
- With each path $P=\left\{0, i_{1}, \ldots, i_{k}\right\}, P \in \mathcal{P}$, we associate the set $\Pi_{P} \subseteq V_{P}$ defined as: $\Pi_{P}=\left\{i_{r} \in V_{P^{\prime}}: i_{r} \in \cap_{s=r+1}^{k} N_{i_{s}}\right\}$.
- Example:
- $P=\{0,1,2,3,4,1\} \Rightarrow P^{\prime}=\{0,1,2,3,4\}$.
- $N_{1}=\{3,4\}, N_{2}=\{1,5\}, N_{3}=\{1,4\}, N_{4}=\{2,3\}$.
- $1 \notin N_{2} \cap N_{3} \cap N_{4} \cap N_{1}$
$2 \notin N_{3} \cap N_{4} \cap N_{1}$ $3 \in N_{4} \cap N_{1}$
$4 \in N_{1}$
- $\Rightarrow \Pi_{P}=\{3,4\}$

Solving the Pricing Problem

The ng-route Relaxation

- An ng-path is a path $P \in \mathcal{P}$ s.t. $\sigma_{P} \notin \Pi_{P^{\prime}}$ and P^{\prime} is an $n g$-path.
- ... from the previous example:
- $P=\{0,1,2,3,4,1\} \Rightarrow P^{\prime}=\{0,1,2,3,4\}$.
- $N_{1}=\{3,4\}, N_{2}=\{1,5\}, N_{3}=\{1,4\}, N_{4}=\{2,3\}$.
- $1 \notin N_{2} \cap N_{3} \cap N_{4}$ $2 \notin N_{3} \cap N_{4}$ $3 \in N_{4}$
$\Rightarrow \Pi_{P^{\prime}}=\{3\}$
- $1 \notin \Pi_{P^{\prime}}$ and P^{\prime} is an ng-path (it is elementary!) $\Rightarrow P$ is an ng-path.
- An ng-route is an $n g$-path P plus the edge $\left\{\sigma_{P}, 0\right\}$.
- Given $\left[\bar{d}_{i j}\right]$, the cost of a least-cost $n g$-route can be computed with DP:
- state-space graph $\mathcal{X}=\left\{(N G, q, i): N G \subseteq N_{i}, i \in V^{\prime}, q_{i} \leq q \leq Q\right\}$;
- functions $f(N G, q, i), \forall(N G, q, i) \in \mathcal{X}$, where $f(N G, q, i)$ is the cost of a least-cost ng-path P that ends at customer i, delivers q units of product and s.t. $\Pi_{P}=N G$.

Solving the Master Problem

- The master problem is typically affected by degeneracy.
- Instead of using the simplex, we use a dual ascent heuristic relying on the following theorem:

Theorem 1.
Let $\boldsymbol{\lambda}=\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n}\right)$ be a vector of penalties, where $\lambda_{i} \in \mathbb{R}, \forall i \in V$, are associated with (8) and $\lambda_{0} \in \mathbb{R}$ with (9). A feasible dual solution \mathbf{u} of cost $z(S P(\boldsymbol{\lambda}))=u_{0}+\sum_{i \in V} u_{i}$ is obtained as:

$$
\left\{\begin{aligned}
u_{0} & =\lambda_{0} \\
u_{i} & =q_{i} \min _{r \in \mathcal{R}}\left\{a_{i r} \frac{c_{r}-\lambda_{0}-\sum_{j \in V} a_{j r} \lambda_{j}}{\sum_{j \in V} a_{j r} q_{j}}\right\}, \quad \forall i \in V
\end{aligned}\right.
$$

- A near-optimal dual solution of $(S P)$ can be computed by mean of Theorem 1 and by applying subgradient optimization to update the penalty vector $\boldsymbol{\lambda}$.

Adding Cuts from the (21) to (SP)

- Any family of cuts valid for the (2I) can be easily added to (SP).
- RCC (4) (i.e., $\sum_{\{i, j\} \in \delta(S)} x_{i j} \geq 2 k(S), \forall S \in \mathcal{S}$), can be added as:

$$
\begin{equation*}
\sum_{r \in \mathcal{R}} \rho_{r s} y_{r} \geq 2 k(S), \quad \forall S \in \mathcal{S} \tag{11}
\end{equation*}
$$

where $\rho_{r s}$ is the times route $r \in \mathcal{R}$ traverses an edge of $\delta(S)$.

- Such cuts do not change the pricing problem that remains "robust" [Fukasawa et al. 2006].
- Let v_{S} be the dual variable of (11), the pricing problem can be solved as before on the matrix $\bar{d}_{i j}=d_{i j}-\frac{1}{2}\left(u_{i}+u_{j}\right)-\sum_{S \in \mathcal{S}_{i j}} v_{S}$, where $\mathcal{S}_{i j}=\{S \in \mathcal{S}:\{i, j\} \in \delta(S)\}, \forall\{i, j\} \in E$.

General Description of Bounding Procedure H

- H computes 3 lower bounds, $L B_{1}, L B_{2}$ and $L B_{3}$ s.t. $L B_{1} \leq L B_{2} \leq L B_{3}$, corresponding to 3 dual solutions ($\mathbf{u}^{1}, \mathbf{v}^{1}$), $\left(\mathbf{u}^{2}, \mathbf{v}^{2}\right),\left(\mathbf{u}^{3}, \mathbf{v}^{3}\right)$, of the linear relaxation of $S P$ plus RCC (11).
- The master problem is solved with the dual ascent procedure, describe before, based on Theorem 1.
- $L B_{1}$ is obtained by using q-routes as columns.
- $L B_{2}$ is obtained by using ng-routes as columns.
- $L B_{3}$ is obtained by using elementary routes as columns.
- RCC (11) are separated heuristically once at the beginning and are cuts violated by the linear relaxation of (2I).

Outline of Bounding Procedure H

1. Solve the linear relaxation of (2/).
2. Separate a set \mathcal{S} of violated RCC (4).
3. Compute the dual solution $\left(\mathbf{u}^{\mathbf{1}}, \mathbf{v}^{\mathbf{1}}\right)$, of problem $(S P)+R C C$, of cost $L B_{1}$ with a CG method, where:

- Columns are q-routes and are generated by DP.
- The master is solved with Theorem 1.
- \mathcal{S} is the set of rounded capacity constraints.

4. Compute the dual solution $\left(\mathbf{u}^{2}, \mathbf{v}^{2}\right)$, of problem $(S P)+R C C$, of cost $L B_{2}$ with a CG method, where:

- Columns are ng-routes and are generated by DP.
- The master is solved with Theorem 1.
- \mathcal{S} is the set of rounded capacity constraints.
- The master problem is initialized by using ($\mathbf{u}^{1}, \mathbf{v}^{1}$).

5. Compute the dual solution $\left(\mathbf{u}^{\mathbf{3}}, \mathbf{v}^{\mathbf{3}}\right)$, of problem $(S P)+R C C$, of cost $L B_{3}$ with a CG method, where:

- Columns are elementary routes and are generated by DP.
- The master is solved with Theorem 1.
- \mathcal{S} is the set of rounded capacity constraints.
- The master problem is initialized by using ($\mathbf{u}^{2}, \mathbf{v}^{2}$).

Adding Cuts from (SP)

- Lower bound $L B_{3}$ can be improved by adding cuts from the set packing/partitioning (e.g., clique inequalities).
- Such cuts make the pricing problem "non-robust", so the algorithms for solving the subproblem need relevant changes.
- A class of tractable, but still effective, cuts is the Subset-Row Inequalities (SRI) - introduced by [Jepsen et al. 2008]:
- $\mathcal{C} \subseteq\{C \subseteq V:|C|=3\}$
- $\mathcal{R}(C) \subseteq \mathcal{R}$ routes that visit at least two of the customers in $C \in \mathcal{C}$

$$
\begin{equation*}
\sum_{r \in \mathcal{R}(C)} y_{r} \leq 1, \quad \forall C \in \mathcal{C} . \tag{12}
\end{equation*}
$$

- SRI (12) can be separated by complete enumeration and can be handled in the pricing problem by properly tailoring dominance rules.
- Let \mathbf{g} be the vector of dual variables associated with (12).

Multiple Feasible Dual Solutions I

- Lower bound $L B_{3}$ can be also improved by using multiple feasible dual solutions to eliminate columns.
- Consider a generic IP problem with n variables and m constraints

$$
\begin{align*}
& z(F)= \min \mathbf{c x} \tag{13}\\
& \text { s.t. } \mathbf{A} \mathbf{x}=\mathbf{b}, \tag{14}\\
& \mathbf{x} \in \mathbb{B}^{n} . \tag{15}
\end{align*}
$$

- LF linear relaxation of F
- $z(L F)$ optimal solution cost of $L F$
- D dual of $L F$
- zuB upper bound to $z(F)$

Multiple Feasible Dual Solutions II

- Let \mathbf{w}^{\prime} be a feasible D solution of cost $z_{L B}$.
- Any optimal F solution \mathbf{x}^{*} satisfies $z(F)=z_{L B}+\sum_{j \in J} c_{j}^{\prime}$, where c_{j}^{\prime} is the reduced cost of x_{j} w.r.t. \mathbf{w}^{\prime} and $J=\left\{j: x_{j}^{*}=1, j=1, \ldots, n\right\}$.
- Then, any variable x_{j} s.t. $z_{L B}+c_{j}^{\prime}>z_{U B}$ can be removed from (F) because cannot be in any optimal solution.
- The solution cost, $z\left(L F^{\prime}\right)$, of the linear relaxation of the resulting problem $\left(F^{\prime}\right)$ is s.t. $z\left(L F^{\prime}\right) \geq z(L F)$.

Multiple Feasible Dual Solutions III

$$
\begin{aligned}
& \operatorname{Min} x_{1}+x_{2}+x_{3}+4 x_{4}+3 x_{5}+3.5 x_{6}
\end{aligned}
$$

$$
\begin{aligned}
& x_{i} \in\{0,1\}, i=1, \ldots, 6
\end{aligned}
$$

- $z(F)=4$ and $z(L F)=3.5$
- $z_{U B}=4.5$ with $\mathbf{x}=(0,1,0,0,0,1)$
- $z_{L B}=2$ with $\mathbf{w}^{\prime}=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right) \Rightarrow z_{U B}-z_{L B}=2.5$
- $\mathbf{c}^{\prime}\left(\mathbf{w}^{\prime}\right)=(0,0,0,3,2,2.5) \Rightarrow$ remove $x_{4} \Rightarrow z\left(L F^{\prime}\right)=4$

Bounding Procedure CCG

- CCG is a column-and-cut generation algorithm that computes lower bound $L B_{4}$ corresponding to a dual solution $\left(\mathbf{u}^{4}, \mathbf{v}^{4}, \mathbf{g}^{4}\right)$ of the linear relaxation of (SP) plus RCC (11) and SRI (12).
- CCG is executed after procedure H.
- The master problem is solved with the simplex.
- The pricing problem is solved with DP recursions.
- We use multiple feasible dual solutions, so each column of negative reduced cost w.r.t. the current dual solution that is generated is such that its reduced cost w.r.t. $\left(\mathbf{u}^{3}, \mathbf{v}^{3}\right)$ is less than the gap between a known upper bound $z_{U B}$ to the CVRP and $L B_{3}$.
- The set \mathcal{S} of RCC is inherited from bounding procedure H.
- SRI inequalities are separated by complete enumeration.

Outline of the Exact Method

1. Call bounding procedure H to compute a feasible dual solution $\left(\mathbf{u}^{3}, \mathbf{v}^{3}\right)$ of cost $L B_{3}$ of the linear relaxation of $(S P)$ plus RCC.
2. Call bounding procedure CCG to compute a feasible dual solution $\left(\mathbf{u}^{4}, \mathbf{v}^{4}, \mathbf{g}^{4}\right)$ of cost $L B_{4}$ of the linear relaxation of $(S P)$ plus RCC and SRI.
3. Generate, via DP, the set $\hat{\mathcal{R}} \subseteq \mathcal{R}$ of routes s.t. $c_{r}^{3} \leq z_{U B}-L B_{3}$ and $c_{r}^{4} \leq z_{U B}-L B_{4}, \forall r \in \hat{\mathcal{R}}$, where c_{r}^{3} and c_{r}^{4} are the reduced costs of route r w.r.t. $\left(\mathbf{u}^{3}, \mathbf{v}^{3}\right)$ and $\left(\mathbf{u}^{4}, \mathbf{v}^{4}, \mathbf{g}^{4}\right)$, respectively.
4. Compute an optimal CVRP solution by solving, with an IP solver, problem (SP) by replacing the set of routes \mathcal{R} with $\hat{\mathcal{R}}$.

If the DP recursion for generating routes runs out of memory in any of the first three steps, the algorithms terminates prematurely without providing any optimal solution.

Computational Results on the CVRP I

- Our exact method (hereafter BMR) was tested on 6 classes, A, B, E, M, F, P, of instances from the literature.
- All tests were performed on IBM Intel Xeon X7350@2.93 GHz ${ }^{a}$.
- We compare the computational results achieved with the following exact methods:
- [Lysgaard et al. 2004] (LLE) - Intel Celeron 700 MHz (${ }^{a} \approx 10 x$ faster)
- [Fukasawa et al. 2006] (FLL) - Pentium 42.4 GHz (${ }^{a} \approx 3 x$ faster)
- [Baldacci et al. 2008] (BCM) - Pentium 4 2.6 GHz (${ }^{a} \approx 3 x$ faster)

Computational Results on the CVRP II

		BMR	BCM	FLL	LLE
Class	NP	Opt LB CPU	Opt LB CPU	Opt BCP BC LB CPU	Opt LB CPU
A	22	$22 \quad 99.930$	2299.8118	$22 \quad 20 \quad 299.21,961$	$1597.96,638$
B	20	$\begin{array}{lll}20 & 99.9 & 67\end{array}$	2099.8417	$20 \quad 6 \quad 1499.5 \quad 4,763$	1999.4 8,178
E-M	12	$\begin{array}{llll}9 & 99.8 & 303\end{array}$	$899.41,025$	$9 \quad 7 \quad 298.9126,987$	397.7 39,592
F	3	2100.0164		$3 \quad 0 \quad 399.9 \quad 2,398$	$399.91,046$
P	24	$\begin{array}{lll}24 & 99.8 & 85\end{array}$	2299.7187	$24 \quad 16 \quad 899.2 \begin{array}{llll}2,892\end{array}$	$1697.711,219$
Avg		$99.9 \quad 92$	$99.7 \quad 323$	99.3 17, 409	98.4 9,935
Tot	81	77	72	$78 \quad 49 \quad 29$	56

BMR: our method - BCM: [Baldacci et al. 2008] - FLL: [Fukasawa et al. 2006] - LLE: [Lysgaard et al. 2004]

Vehicle Routing Problem with Time Windows (VRPTW)

- The VRPTW generalizes the CVRP: there is the additional constraint that each customer must be visited within a given time window.
- An digraph $G=\left(V^{\prime}, A\right)$ is given.
- V^{\prime} is a set of $n+1$ vertices $V^{\prime}=\{0,1, \ldots, n\}$, s.t. $V^{\prime}=V \cup\{0\}$, where $V=\{1, \ldots, n\}$ represents n customers and 0 a depot.
- A cost $d_{i j}$ and a travel time $t_{i j}$ are associated with each arc $(i, j) \in A$ (matrices $\left[d_{i j}\right]$ and $\left[t_{i j}\right]$ satisfy the triangular inequality).
- m identical vehicles of capacity Q are based at 0 .
- Customer $i \in V$ requires q_{i} units of product $\left(0<q_{i} \leq Q\right)$ from 0 .
- A time window $\left[e_{i}, l_{i}\right]$ is associated with each customer $i \in V$.
\checkmark Find m routes of minimum total cost to serve all customers.

Recent exact algorithms on the VRPTW:

- Branch-and-Price on the set partitioning formulation with elementary routes [Feillet et al. 2004, Danna and Le Pape 2005, Chabrier 2006]
- Branch-and-Price on the set partitioning formulation with k-cycle elimination (with $k \geq 3$) on columns [Irnich and Villeneuve 2006].
- Branch-and-Cut-and-Price on the set partitioning formulation with elementary routes [Jepsen et al. 2008, Desaulniers et al. 2008].
- Column generation on the set partitioning formulation [Baldacci et al. 2011c].

Our Exact Method

- The SP formulation is valid for the VRPTW. We only have to consider the travel time as a resource while generating feasible routes in order to visit customers within their time windows.
- Thus, the exact method proposed for the CVRP can be easily extended to the VRPTW by simply tailoring the pricing algorithm so as to take into account time window constraints.

Computational Results on the VRPTW I

- Our method was tested on the well-known Solomon benchmark testbed.
- All tests were performed on IBM Intel Xeon X7350@2.93 GHz ${ }^{a}$.
- We compare the computational results achieved with the following exact methods:
- [Jepsen et al. 2008] - Pentium 43.0 GHz (${ }^{a} \approx 3 x$ faster)
- [Desaulniers et al. 2008] - Dual Core AMD Opteron 2.6 GHz (a ${ }^{a} \approx 2 x$ faster)

Computational Results on the VRPTW II

			BMR		$J P S P$		DHL	
Class	n	$N P$	Opt	$C P U$	Opt	$C P U$	Opt	$C P U$
C2	50	8	8	8	7	79		
RC2	50	8	8	27	7	268		
R2	50	11	11	124	9	7,086		
C1	100	9	9	25	9	468	9	18
RC1	100	8	8	276	8	11,004	8	2,150
R1	100	12	12	251	12	27,412	12	2,327
C2	100	8	8	40	7	2,795	8	2,093
RC2	100	8	8	3,767	5	3,204	6	15,394
R2	100	11	10	28,680	4	35,292	8	63,068
Avg			3,955		9,767		12,920	
Solved by JPSP		261		9,767				
Solved by	DHL		1,825				12,920	

BMR: our method - JPSP: [Jepsen et al. 2008] - DHL: [Desaulniers et al. 2008]

Traveling Salesman Problem with Time Windows (TSPTW)

- The TSPTW is a special case of the VRPTW, where a single vehicle is available and no capacity constraint is imposed.
\checkmark Find a least-cost hamiltonian route (tour).

Literature Review on the TSPTW

Recent exact algorithms on the TSPTW:

- Branch-and-Bound algorithms
[Christofides et al. 1981, Baker 1983, Langevin et al. 1993].
- Branch-and-Cut algorithms [Ascheuer et al. 2001, Dash et al. 2010].
- Constraint programming-based methods [Focacci et al. 2002].
- DP recursions [Dumas et al. 1995, Mingozzi et al. 1997, Balas and Simonetti 2001, Li 2009].
- Column generation [Baldacci et al. 2011d].

Set Partitioning Formulation (SP) for the TSPTW

- The $(S P)$ model is valid for the TSPTW.

$$
\begin{align*}
& z(S P)= \min \tag{16}\\
& \sum_{r \in \mathcal{R}} c_{r} y_{r} \tag{17}\\
& \text { s.t. } \sum_{r \in \mathcal{R}} a_{i r} y_{r}=1, \quad \forall i \in V, \tag{18}\\
& \sum_{r \in \mathcal{R}} y_{r}=1, \tag{19}\\
& y_{r} \in\{0,1\}, \quad \forall r \in \mathcal{R} .
\end{align*}
$$

- We rely on SSR to compute lower bounds to the TSPTW.

Outline of the Exact Method

- A dual solution \mathbf{u} of cost $z_{L B}$ of the linear relaxation of $(S P)$ is computed.
- Such lower bound is obtained by using ng-routes or ngL-routes as columns, where $n g$-routes were described before and $n g L$-routes are (informally) ng-routes with the additional property that a subset of customers is visited once and only once.
- The problem is solved to optimality with an iterative DP recursion based on \mathbf{u}.

Computational Results on the TSPTW I

- Our exact method was tested on 6 classes of instances from the literature.
- All tests were performed on a P8400 ${ }^{\text {a }}$ Intel Core 2 Duo@2.26 GHz.
- We compare the computational results achieved with the following exact methods:
- [Ascheuer et al. 2001] (hereafter AFG) - Sun sparc Station 10 ($\approx 10 x$ slower than ${ }^{\text {a }}$) - time limit 18, 000 seconds
- [Focacci et al. 2002] (FLM) - PC Pentium III 700 MHz ($\approx 6 x$ slower than ${ }^{a}$) - time limit 1,800 seconds
- [Dash et al. 2010] (DGLT) - Intel $2.40 \mathrm{GHz}\left(\approx 10 \%\right.$ faster than $\left.{ }^{2}\right)$ time limit 18, 000 seconds
- [Li 2009] (LI) - Lenovo with 4 Intel processors@2 GHz ($\approx 10 \%$ slower than ${ }^{a}$) - no time limit

Computational Results on the TSPTW II

		BMR		AFG		FLM		DGLT		LI	
Class	$N P$	Opt	$C P U$	Opt	CPU						
Ascheuer E	32	32	2.4	32	171.5	31	30.5	32	2.1	27	376.4
Ascheuer H	18	18	40.9	0	-	1	149.8	13	$1,196.3$	10	579.0
Pesant	27	27	4.3			23	135.9	25	303.7	18	$1,680.8$
Potvin	28	28	12.2							17	33.3
Gendreau	140	140	36.7							46	$1,462.7$
Ohlmann	25	24	399.8								
All	270	269	59.5								

BMR: our method - AFG: [Ascheuer et al. 2001] - FLM: [Focacci et al. 2002] - DGLT: [Dash et al. 2010] - LI: [Li 2009]

- Recent developments to the exact method outlined let us solve the last open Ohlmann instance.

Extensions of the Solution Framework

- The solution framework described has been extended to solve other variants of the VRP and the TSP.
- TSP with Cumulative Costs [working paper]
- Pickup and Delivery VRP with Time Windows [Baldacci et al. 2011b]
- Heterogeneous VRP [Baldacci and Mingozzi 2008]
- Period Routing Problem [Baldacci et al. 2011a]
- Multi-Trip VRP [Mingozzi et al. 2011]
- Capacitated Location Routing [Baldacci et al. 2011f]
- 2-Echelon Capacitated VRP [Baldacci et al. 2011e]
- The results obtained showed that the methods proposed are competitive with the state-of-the-art exact methods from the literature.

Conclusions

- We presented an exact solution framework, based on a set partitioning model, for some vehicle routing and traveling salesman problems.
- We outlined the difficulties faced in developing the exact solution framework, in particular some problems arising from applying a column generation scheme.
- We presented the results achieved to show the effectiveness of the method proposed when compared with the state-of-the-art exact algorithms from the literature.

Bibliography I

[Ascheuer et al. 2001] N. Ascheuer, M. Fischetti, and M. Grötschel. Solving the Asymmetric Traveling Salesman Problem with Time Windows by Branch-and-Cut. Mathematical Programming, 2001.
[Baker 1983] E. K. Baker. An Exact Algorithm for the Time-Constrained Traveling Salesman Problem. Operations Research, 1983.
[Balas and Simonetti 2001] E. Balas, and N. Simonetti. Linear Time Dynamic-Programming Algorithms for new Classes of Restricted TSPs: a Computational Study. INFORMS Journal on Computing, 2001.
[Baldacci et al. 2011a] R. Baldacci, E. Bartolini, A. Mingozzi, and A. Valletta. An Exact Algorithm for the Period Routing Problem. Operations Research, 2011a.
[Baldacci et al. 2011b] R. Baldacci, E. Bartolini, and A. Mingozzi. An Exact Algorithm for the Pickup and Delivery Problem with Time Windows. Operations Research, 2011b.
[Baldacci and Mingozzi 2008] R. Baldacci and A. Mingozzi. A Unified Exact Method for Solving Different Classes of Vehicle Routing Problems. Mathematical Programming, 2008.
[Baldacci et al. 2010] R. Baldacci, E. Bartolini, A. Mingozzi, and R. Roberti. An Exact Solution Framework for a Broad Class of Vehicle Routing Problems. Computational Management Science, 2010.

Bibliography II

[Baldacci et al. 2008] R. Baldacci, N. Christofides, and A. Mingozzi. An Exact Algorithm for the Vehicle Routing Problem based on the Set Partitioning Formulation with Additional Cuts. Mathematical Programming, 2008.
[Baldacci et al. 2004] R. Baldacci, E. Hadjiconstantinou, and A. Mingozzi. An Exact Algorithm for the Capacitated Vehicle Routing Problem based on a Two-Commodity Network Flow Formulation. Operations Research, 2004.
[Baldacci et al. 2011c] R. Baldacci, A. Mingozzi, and R. Roberti. New Route Relaxation and Pricing Strategies for the Vehicle Routing Problem. Operations Research, forthcoming, 2011c.
[Baldacci et al. 2011d] R. Baldacci, A. Mingozzi, and R. Roberti. New State-Space Relaxations for Solving the Traveling Salesman Problem with Time Windows. INFORMS Journal on Computing, 2011d.
[Baldacci et al. 2011e] R. Baldacci, A. Mingozzi, R. Roberti, and R. Wolfler Calvo. An Exact Method for the 2-Echelon Capacitated Vehicle Routing Problem. working paper, 2011e.
[Baldacci et al. 2011f] R. Baldacci, A. Mingozzi, and R. Wolfler Calvo. An Exact Method for the Capacitated Location-Routing Problem. Operations Research, forthcoming, 2011f.
[Chabrier 2006] A. Chabrier. Vehicle Routing Problem with Elementary Shortest Path based Column Generation. Computers \& Operations Research, 2006.

Bibliography III

[Christofides et al. 1981] N. Christofides, A. Mingozzi, and P. Toth. State-space relaxation procedures for the computation of bounds to routing problems. Networks, 1981.
[Danna and Le Pape 2005] E. Danna and C. Le Pape. Accelerating Branch-and-Price with Local Search: A Case Study on the Vehicle Routing Problem with Time Windows. Column Generation Book, 2005.
[Dash et al. 2010] S. Dash, O. Günlük, A. Lodi, and A. Tramontani. A Time Bucket Formulation for the TSP with Time Windows. INFORMS Journal on Computing, 2010.
[Desaulniers et al. 2008] G. Desaulniers, F. Lessard, and A. Hadjar. Tabu Search, Partial Elementarity, and Generalized k-Path Inequalities for the Vehicle Routing Problem with Time Windows. Transportation Science, 2008.
[Dumas et al. 1995] Y. Dumas, J. Desrosiers, E. Gélinas, M. M. Solomon. An Optimal Algorithm for the Traveling Salesman Problem with Time Windows. Operations Research, 1995.
[Feillet et al. 2004] D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen. An Exact Algorithm for the Elementary Shortest Path Problem with Resource Constraints: Application to some Vehicle Routing Problems. Networks, 2004.
[Focacci et al. 2002] F. Focacci, A. Lodi, and M. Milano. A Hybrid Exact Algorithm for the TSPTW. INFORMS Journal on Computing, 2002.

Bibliography IV

[Fukasawa et al. 2006] R. Fukasawa, H. Longo, J. Lysgaard, M. Poggi, M. Reis, E. Uchoa, and R. F. Werneck. Robust Branch-and-Cut-and-Price for the Capacitated Vehicle Routing Problem. Mathematical Programming, 2006.
[Irnich and Villeneuve 2006] S. Irnich and D. Villeneuve. The Shortest-Path Problem with Resource Constraints and k -Cycle Elimination for $\mathrm{k} \geq 3$. INFORMS Journal on Computing, 2006.
[Jepsen et al. 2008] M. Jepsen, B. Petersen, S. Spoorendonk, and D. Pisinger. Subset-Row Inequalities Applied to the Vehicle-Routing Problem with Time Windows. Operation Research, 2008.
[Langevin et al. 1993] A. Langevin, M. Desrochers, J. Desrosiers, S. Gélinas, F. Soumis. A Two-Commodity Flow Formulation for the Traveling Salesman and the Makespan Problems with Time Windows. Networks, 1993.
[Li 2009] J. Q. Li. A Computational Study of Bi-directional Dynamic Programming for the Traveling Salesman Problem with Time Windows. submitted, 2009.
[Lysgaard et al. 2004] J. Lysgaard, A. N. Letchford, and R. W. Eglese. A New Branch-and-Cut Algorithm for the Capacitated Vehicle Routing Problem. Mathematical Programming, 2004.
[Mingozzi et al. 1997] A. Mingozzi, L. Bianco, and S. Ricciardelli. Dynamic Programming Strategies for the Traveling Salesman Problem with Time Windows and Precedence Constraints. Operations Research, 1997.

Bibliography V

[Mingozzi et al. 2011] A. Mingozzi, R. Roberti, and P. Toth. An Exact Method for the Multi-Trip Vehicle Routing Problem. submitted, 2011.

