Balancing a bike-sharing system in Real Time

Daniel Chemla, Frédéric Meunier, Roberto Wolfler-Calvo, Houssame Yahiaoui, Thomas Pradeau

June 2011

GT-LG, Paris

Talk plan

- Introduction and motivation
- Modelization
- Exploitation methods
 - Using a truck
 - Online Tarification
- Evaluation
 - Simulator presentation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Results

Motivation: improving regulation issue

 It is statistically impossible to be sure to find a bike or a park place in 100% of the cases
Albert Asseraf, Strategy and Marketing France Chief
Executive, JCDecaux
Le Figaro, 26 mars 2010

Motivation: improving regulation issue

 It is statistically impossible to be sure to find a bike or a park place in 100% of the cases
Albert Asseraf, Strategy and Marketing France Chief
Executive, JCDecaux
Le Figaro, 26 mars 2010

System modelization

- Clients arrival rate at a station: Poisson process
- Destination choice: O-D matrix generated with gravity model
- Goal : improving client satisfaction
 - No bike: the client leaves the system unsatisfied
 - No paking: the client leaves the system unsatisfied and with the bike

 \blacktriangleright S the set of stations, |S|=n and m_n the total number of bikes

The Queue Modelization

- A station is modelled as a M/M/1 queue where servers are the users and bikes are in the queues (infinite capacity)
- \blacktriangleright The time spent in trajectory is modelled as a $M/M/\infty$ queue

$$N_n(t)=\{N_{ij}(t),(i,j)\in S^2,t\geq 0\}$$

such that:

- N_{ij}(t) number of bikes going from station i to j at time t
- N_{ii}(t) the number of bikes parked are station i

The former process $N_n(t), t \ge 0$ is an irreductible Markov Chain and has an invariant probability that is not easy to compute Asymptotic approximation to have exploitable results:

- ▶ Open network of independant network of N^2 queues
- The probability of the open network has a product form
- Asymptoticly the original network in its stationnary state is behaving as the open network

- Improving efficiency: avoid stations to be empty or full
- First way: ordering trucks to balance the system, moving bikes from attractive stations to repulsive ones
- Second way: without trucks, incitating people to regulate the system by encouraging them to park bikes in empty stations

Heuristic using trucks need a target state defined for each station. Heuristic here are made for one truck **First heuristic: objective driven**

- The truck is sent to the two most unbalanced stations
- Arriving at the station it tries to balance it for the best

- A new call to the operating system every two moves
- The evolution of the system not taken into account

Heuristic using trucks need a target state defined for each station. Heuristic here are made for one truck **First heuristic (bis): objective driven**

The truck is sent to the two most unbalanced stations - with a correction using the incoming flows of bikes

- Arriving at the station it tries to balance it for the best
- A new call to the operating system every two moves
- The evolution of the system not taken into account

Second heuristic: DP

The truck is defined by its state. At timestep k

$$\mathsf{E}_{\mathsf{k}} = (\mathsf{V}_{\mathsf{k}},\mathsf{p}_{\mathsf{k}},\mathsf{I}_{\mathsf{k}},\mathsf{t}_{\mathsf{k}}) \in \mathsf{S}_{\mathsf{n}}^{\mathsf{k}} \times \mathsf{V}_{\mathsf{k}} \times [|\mathsf{0},\mathsf{K}_{\mathsf{c}}|] \times [|\mathsf{0},\mathsf{T}_{\mathsf{max}}|]$$

where

▶ V_k : list of the already visited stations since the start of the mission |V_k| = k,

- p_k : truck position
- ▶ **I**_k : truck load. (**K**_c = truck capacity)
- ▶ t_k : time slop elapsed since the start of the mission For each station $i \in S$ a target state T_i is defined

Cost of going from state E_k to station E_{k+1} :

$$J(E_k, E_{k+1}) = |T_i - (N_{ii}(\overline{t_i}) + L(I_k, N_{ii}(\overline{t_i}))| + \sum_{j \notin \{V_k \cup \{i\}\}} |T_j - N_{jj}(\overline{t_i})|$$

where $p_{k+1} = i \notin V_k$ $\overline{t_i} = t_k + T_{V_k,i}$

 $Cost \text{ of going from state } E_k \text{ to station } E_{k+1}:$

$$J(E_k, E_{k+1}) = |T_i - (N_{ii}(\overline{t_i}) + L(I_k, N_{ii}(\overline{t_i}))| + \sum_{j \notin \{V_k \cup \{i\}\}} |T_j - N_{jj}(\overline{t_i})|$$

where
$$\mathbf{p}_{k+1} = \mathbf{i} \notin \mathbf{V}_k$$

 $\overline{\mathbf{t}_i} = \mathbf{t}_k + \mathbf{T}_{\mathbf{V}_k, \mathbf{i}}$
 \triangleright Backward DP thanks to Bellman equation to obtain the best
command for the truck

$$\mathsf{J}^*(\mathsf{E}_k) = \min_{s \notin \mathsf{V}_k} \mathbb{E}\left[\mathsf{J}(\mathsf{E}_k,s) + \mathsf{J}^*(\mathsf{E}_{k+1}(s)) | \mathsf{N}_s(t_k)\right]$$

In practice, experiments done for small cities (up to $20\ \text{stations})$ and $2\ \text{to}\ 3\ \text{timesteps}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Third heuristic: The Colored Cluster balancing approach

- The truck's optimal decision is done taken into account the number of bikes at each stations and on the trucks
- a huge number of states if taken all these informations into account
- Clustering stations: a client does not mind changing stations if they are a few tens of meters away
- Coloring Cluster: the optimal decision should not be very depending of the exact number of bikes in a cluster but on the average level of filling; 3 levels are defined: deficit of bikes, average filling, excess of bikes

➤ The number of states is then NbStates = 3^{NbCluster} * 3 * NbCluster = 13122 for 6 clusters.

With the probability matrix to go from a state to another and defining a target state in which all stations are balanced we can find the optimal policy to get to the target state for the least mean cost

- The optimal policy is obtained thanks to a classical policy iteration algorithm
- Problem : obtain the probability matrix
 - With the Queue modelization
 - With a nanosimulator

Fourth heuristic: The Online Tarification Approach

- Objective: Regulate without any truck
- Control: Prices on arrival stations
- ► → Defining a targeted level of filling for all stations TargetFilling
- $\blacktriangleright \ x^k_{(i,j)} \geq 0$: People that wanted to go from station i to j but park at station k instead

► $c_{(i,j)}^k = C_{(i,k)}^B + C_{(k,j)}^F - C_{(i,j)}^V$: Cost to stop at station k instead of j and walk to station j

$$\begin{array}{lll} \text{Min} & \sum_{\substack{(i,j),k \in S^3 \\ (i,j) \in S^2}} x_{(i,j)}^k c_{(i,j)}^k \\ \text{s.t.} & \sum_{\substack{(i,j) \in S^2 \\ \sum_{\substack{k \in S \\ k \in S \\ k_{(i,j)}^k \geq 0}}} x_{(i,j)}^k & = & \mathsf{T}_k & \text{ for all } k \in \mathsf{S} & (i) \\ & & \sum_{\substack{k \in S \\ k \in S \\ k_{(i,j)}^k \geq 0}} x_{(i,j)}^k & = & \gamma \lambda_i \mathsf{P}_{ij} & \text{ for all } (i,j) \in \mathsf{S}^2 & (ii) \\ & & \text{ for all } (i,j,k) \in \mathsf{S}^3 & (iii) \\ & & & (1) \end{array}$$

Where

T_k = max{0, TargetFilling - Load_k}: current default in bikes

►
$$\lambda_i$$
: Mean arrival rate per station
► $\gamma = \frac{\sum_{k \in S} T_k}{\sum_{k \in S} \lambda_k}$: normalization constant

$$\begin{array}{lll} \text{Max} & \sum_{\substack{(\mathbf{i},\mathbf{j})\in\mathsf{S}^2\\ \mathbf{s}.\mathbf{t}. \end{array}} \gamma\lambda_{\mathbf{i}}\mathsf{P}_{\mathbf{ij}}\beta_{(\mathbf{i},\mathbf{j})} + \sum_{\mathbf{k}\in\mathsf{S}}\mathsf{T}_{\mathbf{k}}\mu_{\mathbf{k}} \\ \text{s.t.} & \mathbf{c}_{(\mathbf{i},\mathbf{j})}^{\mathbf{k}} - \mu_{\mathbf{k}} - \beta_{(\mathbf{i},\mathbf{j})} & \geq & \mathbf{0} \quad \text{for all } (\mathbf{i},\mathbf{j},\mathbf{k})\in\mathsf{S}^3 \quad (\mathbf{i}) \\ \beta_{(\mathbf{i},\mathbf{j})}, \mu_{\mathbf{k}}\in\mathbb{R} & & \text{for all } (\mathbf{i},\mathbf{j},\mathbf{k})\in\mathsf{S}^3 \quad (\mathbf{i}) \\ & & & & (2) \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Dash a set of dual prices $\{\mu_{\mathsf{k}}, \mathsf{k} \in \mathsf{S}\}$

$$\begin{array}{lll} \text{Max} & \sum_{\substack{(\mathbf{i},\mathbf{j})\in\mathsf{S}^2\\ \mathsf{s.t.} & \mathsf{c}_{(\mathbf{i},\mathbf{j})}^{\mathsf{k}}-\mu_{\mathsf{k}}-\beta_{(\mathbf{i},\mathbf{j})} \\ & \beta_{(\mathbf{i},\mathbf{j})},\mu_{\mathsf{k}}\in\mathbb{R} \end{array} \xrightarrow{} \begin{array}{ll} \mathbf{0} & \text{for all } (\mathbf{i},\mathbf{j},\mathsf{k})\in\mathsf{S}^3 & (\mathbf{i}) \\ & \beta_{(\mathbf{i},\mathbf{j})},\mu_{\mathsf{k}}\in\mathbb{R} \end{array} \xrightarrow{} \begin{array}{ll} \mathbf{0} & \text{for all } (\mathbf{i},\mathbf{j},\mathsf{k})\in\mathsf{S}^3 & (\mathbf{i}) \\ & \text{for all } (\mathbf{i},\mathbf{j},\mathsf{k})\in\mathsf{S}^3 & (\mathbf{i}) \\ & (2) \end{array}$$

Dash a set of dual prices $\{\mu_{\mathsf{k}}, \mathsf{k} \in \mathsf{S}\}$

 \triangleright when a client appears at station **i** and want to go to **j** he can go to **k** instead for the following cost:

$$\mathsf{u}(\mathsf{k}) = \mathsf{c}^{\mathsf{k}}_{(\mathsf{i},\mathsf{j})} - \mu_{\mathsf{k}}$$

Each client chooses the solution that has the least cost for him.

$$eta_{(\mathfrak{i},\mathfrak{j})}^{*}=\min_{\mathsf{k}\in\mathsf{S}}\mathsf{c}_{(\mathfrak{i},\mathfrak{j})}^{\mathsf{k}}-\mu_{\mathsf{k}}$$

is the price that will finally pay a client who wants to go from **i** to **j**. He will go to station $\mathbf{k}^* \in \mathbf{S}$ such that $\mathbf{c}_{(\mathbf{i},\mathbf{j})}^{\mathbf{k}^*} - \mu_{\mathbf{k}^*} = \beta_{(\mathbf{i},\mathbf{j})}^*$

Simulator

- Clients are generated with respect to a Poisson process
- Their targeted destination is taken with respect to a O-D matrix that has been generated with a gravity model
- The time elapsed while driving from a station to another is computed with respect to the distance and altitude between two stations
- Clients who do not find bikes or parking spots can visit several stations before leaving the system with respect to a bound in time and stations given by their profil type

Indicator

- Number of satisfied clients
- Number of clients who did not find a bike
- Number of clients who did not find a parking
- Number of clients who change their targeted station for another one (tarification approach)

Result: Low case demand - edoras

Size	Indicator	Empty	OB	OB-corr	DP	CC	ОТ
20	Satisfied	677	962	963	738	714	829 + 156
	No bikes	199	1	1	154	171	
	No parking	124	29	28	104	124	
50	Satisfied	2027	2265	2281			2279 + 166
	No bikes	323	144	133			67
	No parking	174	106	97			6
100	Satisfied	3213	3401	3437			4165 + 424
	No bikes	1385	1230	1210			554
	No parking	618	570	556			32
250	Satisfied	8720	8870	8880			—
	No bikes	3615	3495	3481			—
	No parking	1464	1423	1426			—

Result: Medium case demand - edoras

Size	Indicator	Empty	OB	OB-corr	DP	CC	ОТ
20	Satisfied	1130	1649	1666			1556 + 288
	No bikes	660	210	191			97
	No parking	188	104	104			23
50	Satisfied	3849	4173	4234			4330 + 311
	No bikes	973	714	661			397
	No parking	269	198	185			44
100	Satisfied	5290	5589	5641			7096 + 790
	No bikes	4283	4021	3970			2385
	No parking	918	863	862			128
250	Satisfied	12817	13024	13051			—
	No bikes	13058	12863	12830			—
	No parking	2161	2132	2137			—

Result: High case demand - edoras

Size	Indicator	Empty	OB	OB-corr	DP	CC	OT
20	Satisfied	1535	2333	2393			2364 + 457
	No bikes	1579	825	762			430
	No parking	219	144	145			45
50	Satisfied	5845	6364	6436			6533 + 468
	No bikes	2309	1850	1782			1391
	No parking	353	260	250			74
100	Satisfied	6977	7392	7482			9858 + 1193
	No bikes	9588	9188	9096			6176
	No parking	1113	1073	1072			242
250	Satisfied	15285	15560	15537			—
	No bikes	29447	29173	29193			—
	No parking	2364	2343	2348			—

Some remarks for the pricing experiments

Update of the prices: all 15 minutes

 $\mathsf{Walk}/\mathsf{Bike:}$ a travel of x seconds by bike 'costs' 5x seconds when done on foot

The prices in simulator: in seconds. For instances with size

- > 20: maximal price: 3000
- ▶ 50: maximal price: 4200
- ▶ 100: maximal price: 6000

To make the conversion, take (value of travel time in a Western city)

$\mathbf{8} \text{ euros} = \mathbf{1} \text{ hours}$

A web-site where the simulator can be downloaded:

http://cermics.enpc.fr/~meuniefr/OADLIBSim_Site/index.html