Balancing a bike-sharing system in Real Time

Daniel Chemla, Frédéric Meunier, Roberto Wolfler-Calvo, Houssame Yahiaoui, Thomas Pradeau

June 2011

GT-LG, Paris

Talk plan

- Introduction and motivation
- Modelization
- Exploitation methods
- Using a truck
- Online Tarification
- Evaluation
- Simulator presentation
- Results

Motivation: improving regulation issue

- It is statistically impossible to be sure to find a bike or a park place in 100% of the cases
Albert Asseraf, Strategy and Marketing France Chief Executive, JCDecaux
Le Figaro, 26 mars 2010

Motivation: improving regulation issue

- It is statistically impossible to be sure to find a bike or a park place in 100\% of the cases
Albert Asseraf, Strategy and Marketing France Chief Executive, JCDecaux
Le Figaro, 26 mars 2010

System modelization

- Clients arrival rate at a station: Poisson process
- Destination choice: O-D matrix generated with gravity model
- Goal : improving client satisfaction
- No bike: the client leaves the system unsatisfied
- No paking: the client leaves the system unsatisfied and with the bike
- \mathbf{S} the set of stations, $|\mathbf{S}|=\mathbf{n}$ and $\mathbf{m}_{\mathbf{n}}$ the total number of bikes

The Queue Modelization

- A station is modelled as a $M / M / 1$ queue where servers are the users and bikes are in the queues (infinite capacity)
- The time spent in trajectory is modelled as a $M / M / \infty$ queue

$$
\mathbf{N}_{\mathrm{n}}(\mathbf{t})=\left\{\mathbf{N}_{\mathrm{ij}}(\mathbf{t}),(\mathbf{i}, \mathbf{j}) \in \mathbf{S}^{2}, \mathbf{t} \geq \mathbf{0}\right\}
$$

such that:

- $\mathbf{N}_{\mathrm{ij}}(\mathbf{t})$ number of bikes going from station \mathbf{i} to \mathbf{j} at time \mathbf{t}
- $\mathbf{N}_{\mathrm{ii}}(\mathbf{t})$ the number of bikes parked are station \mathbf{i}

The former process $\mathbf{N}_{\mathbf{n}}(\mathbf{t}), \mathbf{t} \geq \mathbf{0}$ is an irreductible Markov Chain and has an invariant probability that is not easy to compute

The Queue Modelization

Asymptotic approximation to have exploitable results:

- Open network of independant network of \mathbf{N}^{2} queues
- The probabilty of the open network has a product form
- Asymptoticly the original network in its stationnary state is behaving as the open network

Exploitation system

- Improving efficiency: avoid stations to be empty or full
- First way: ordering trucks to balance the system, moving bikes from attractive stations to repulsive ones
- Second way: without trucks, incitating people to regulate the system by encouraging them to park bikes in empty stations

Exploitation system

Heuristic using trucks need a target state defined for each station. Heuristic here are made for one truck

First heuristic: objective driven

- The truck is sent to the two most unbalanced stations
- Arriving at the station it tries to balance it for the best
- A new call to the operating system every two moves
- The evolution of the system not taken into account

Exploitation system

Heuristic using trucks need a target state defined for each station.
Heuristic here are made for one truck
First heuristic (bis): objective driven

- The truck is sent to the two most unbalanced stations - with a correction using the incoming flows of bikes
- Arriving at the station it tries to balance it for the best
- A new call to the operating system every two moves
- The evolution of the system not taken into account

Exploitation system

Second heuristic: DP

The truck is defined by its state. At timestep \mathbf{k}

$$
E_{k}=\left(V_{k}, p_{k}, I_{k}, t_{k}\right) \in S_{n}^{k} \times V_{k} \times\left[\left|0, K_{c}\right|\right] \times\left[\left|0, T_{\max }\right|\right]
$$

where

- $\mathbf{V}_{\mathbf{k}}$: list of the already visited stations since the start of the mission $\left|\mathbf{V}_{\mathbf{k}}\right|=\mathbf{k}$,
- $\mathbf{p}_{\mathbf{k}}$: truck position
- $\mathbf{I}_{\mathbf{k}}$: truck load. ($\mathbf{K}_{\mathbf{c}}=$ truck capacity $)$
- $\mathbf{t}_{\mathbf{k}}$: time slop elapsed since the start of the mission

For each station $\mathbf{i} \in \mathbf{S}$ a target state $\mathbf{T}_{\mathbf{i}}$ is defined

Exploitation system

Cost of going from state $\mathbf{E}_{\mathbf{k}}$ to station $\mathbf{E}_{\mathbf{k}+\mathbf{1}}$:
$J\left(E_{k}, E_{k+1}\right)=\mid T_{i}-\left(N_{i i}\left(\bar{t}_{i}\right)+L\left(I_{k}, N_{i i}\left(\bar{t}_{i}\right)\right)\left|+\sum_{j \notin\left\{\mathrm{v}_{\mathrm{k}} \cup\{i\}\right\}}\right| \mathrm{T}_{\mathrm{j}}-\mathrm{N}_{\mathrm{ij}}\left(\overline{\mathrm{t}}_{\mathrm{i}}\right) \mid\right.$
where $\mathbf{p}_{\mathbf{k}+\mathbf{1}}=\mathbf{i} \notin \mathbf{V}_{\mathbf{k}}$
$\overline{\mathbf{t}_{\mathrm{i}}}=\mathrm{t}_{\mathrm{k}}+\mathrm{T}_{\mathrm{v}_{\mathrm{k}}, \mathrm{i}}$

Exploitation system

Cost of going from state $\mathbf{E}_{\mathbf{k}}$ to station $\mathbf{E}_{\mathbf{k}+\mathbf{1}}$:

$$
J\left(E_{k}, E_{k+1}\right)=\mid T_{i}-\left(N_{i i}\left(\bar{t}_{i}\right)+L\left(I_{k}, N_{i i}\left(\bar{t}_{i}\right)\right)\left|+\sum_{j \notin\left\{V_{k} \cup\{i\}\right\}}\right| T_{j}-N_{j j}\left(\bar{t}_{i}\right) \mid\right.
$$

where $\mathbf{p}_{\mathbf{k}+\mathbf{1}}=\mathbf{i} \notin \mathbf{V}_{\mathbf{k}}$
$\overline{\mathbf{t}_{\mathbf{i}}}=\mathbf{t}_{\mathrm{k}}+\mathrm{T}_{\mathrm{v}_{\mathrm{k}}, \mathbf{i}}$
\triangleright Backward DP thanks to Bellman equation to obtain the best command for the truck

$$
J^{*}\left(E_{k}\right)=\min _{s \notin V_{k}} \mathbb{E}\left[J\left(E_{k}, s\right)+J^{*}\left(E_{k+1}(s)\right) \mid N_{s}\left(t_{k}\right)\right]
$$

In practice, experiments done for small cities (up to 20 stations) and 2 to 3 timesteps

Exploitation system

Third heuristic: The Colored Cluster balancing approach

- The truck's optimal decision is done taken into account the number of bikes at each stations and on the trucks
- a huge number of states if taken all these informations into account
- Clustering stations: a client does not mind changing stations if they are a few tens of meters away
- Coloring Cluster: the optimal decision should not be very depending of the exact number of bikes in a cluster but on the average level of filling; 3 levels are defined: deficit of bikes, average filling, excess of bikes
$\rightarrow \rightarrow$ The number of states is then
NbStates $=3^{\text {NbCluster }} * 3 *$ NbCluster $=13122$ for 6 clusters.

Exploitation system

- With the probability matrix to go from a state to another and defining a target state in which all stations are balanced we can find the optimal policy to get to the target state for the least mean cost
- The optimal policy is obtained thanks to a classical policy iteration algorithm
- Problem : obtain the probability matrix
- With the Queue modelization
- With a nanosimulator

Exploitation system

Fourth heuristic: The Online Tarification Approach

- Objective: Regulate without any truck
- Control: Prices on arrival stations
- \rightarrow Defining a targeted level of filling for all stations TargetFilling
$-\mathrm{x}_{(\mathrm{i}, \mathrm{j})}^{\mathbf{k}} \geq \mathbf{0}$: People that wanted to go from station \mathbf{i} to \mathbf{j} but park at station \mathbf{k} instead
$-\mathrm{c}_{(\mathrm{i}, \mathrm{j})}^{\mathbf{k}}=\mathrm{C}_{(\mathrm{i}, \mathrm{k})}^{\mathrm{B}}+\mathbf{C}_{(\mathrm{k}, \mathrm{j})}^{\mathrm{F}}-\mathrm{C}_{(\mathrm{i}, \mathrm{j})}^{\mathrm{V}}$: Cost to stop at station \mathbf{k} instead of \mathbf{j} and walk to station \mathbf{j}

Exploitation system

Min $\quad \sum x_{(i, j)}^{k} \mathbf{c}_{(i, j)}^{k}$
$\sum^{(i, j, k) \in S^{3}}$
s.t. $\quad \sum_{(i, j) \in S^{2}} x^{k}$

$$
\begin{array}{ll}
=\quad \mathbf{T}_{\mathbf{k}} & \text { for all } \mathbf{k} \in \mathbf{S} \\
=\gamma \lambda_{\mathbf{i}} \mathbf{P}_{\mathbf{i j}} & \text { for all }(\mathbf{i}, \mathbf{j}) \in \mathbf{S}^{2} \\
& \text { for all }(\mathbf{i}, \mathbf{j}, \mathbf{k}) \in \mathbf{S}^{\mathbf{3}} \tag{iii}
\end{array}
$$

Where

- $\mathrm{T}_{\mathrm{k}}=\max \left\{0\right.$, TargetFilling $\left.-\operatorname{Load}_{\mathrm{k}}\right\}$: current default in bikes
- $\boldsymbol{\lambda}_{\mathbf{i}}$: Mean arrival rate per station
- $\gamma=\frac{\sum_{k \in S} T_{k}}{\sum_{k \in S} \lambda_{k}}$: normalization constant

Exploitation system

$$
\begin{array}{ll}
\text { Max } & \sum^{(i, j) \in S^{2}} ⿵ \\
& \gamma \lambda_{i} P_{i j} \beta_{(i, j)}+\sum_{k \in S} T_{k} \mu_{k} \tag{2}\\
\text { s.t. } & c_{(i, j)}^{k}-\mu_{k}-\beta_{(i, j)} \\
& \boldsymbol{\beta}_{(i, j)}, \mu_{k} \in \mathbb{R}
\end{array}
$$

Exploitation system

$\operatorname{Max} \sum_{(\mathrm{i}, \mathrm{j}) \in \mathrm{S}^{2}} \gamma \lambda_{\mathrm{i}} \mathrm{P}_{\mathrm{ij}} \boldsymbol{\beta}_{(\mathrm{i}, \mathrm{j})}+\sum_{\mathrm{k} \in \mathrm{S}} \mathrm{T}_{\mathrm{k}} \boldsymbol{\mu}_{\mathrm{k}}$
$\begin{array}{lll}\text { s.t. } & \mathbf{c}_{(i, j)}^{k}-\boldsymbol{\mu}_{\mathrm{k}}-\boldsymbol{\beta}_{(\mathrm{i}, \mathbf{j})} & \geq \mathbf{0} \\ & \boldsymbol{\beta}_{(\mathrm{i}, \mathrm{j})}, \boldsymbol{\mu}_{\mathrm{k}} \in \mathbb{R} & \text { for all }(\mathbf{i}, \mathbf{j}, \mathbf{k}) \in \mathbf{S}^{\mathbf{3}} \\ & & \text { for all }(\mathbf{i}, \mathbf{j}, \mathbf{k}) \in \mathbf{S}^{3}\end{array}$
\triangleright a set of dual prices $\left\{\mu_{\mathrm{k}}, \mathbf{k} \in \mathbf{S}\right\}$

Exploitation system

$\operatorname{Max} \sum_{(\mathrm{i}, \mathrm{j}) \in \mathrm{S}^{2}} \gamma \boldsymbol{\lambda}_{\mathrm{i}} \mathbf{P}_{\mathrm{ij}} \boldsymbol{\beta}_{(\mathrm{i}, \mathrm{j})}+\sum_{\mathrm{k} \in \mathrm{S}} \mathbf{T}_{\mathrm{k}} \boldsymbol{\mu}_{\mathrm{k}}$
s.t. $\quad \mathbf{c}_{(i, j)}^{\mathbf{k}}-\boldsymbol{\mu}_{\mathbf{k}}-\boldsymbol{\beta}_{(\mathbf{i}, \mathbf{j})} \quad \geq \mathbf{0} \quad$ for all $(\mathbf{i}, \mathbf{j}, \mathbf{k}) \in \mathbf{S}^{\mathbf{3}}$

$$
\boldsymbol{\beta}_{(\mathbf{i}, \mathbf{j})}, \boldsymbol{\mu}_{\mathrm{k}} \in \mathbb{R} \quad \text { for all }(\mathbf{i}, \mathbf{j}, \mathbf{k}) \in \mathbf{S}^{3}
$$

$$
\begin{array}{ll}
\geq \mathbf{0} & \text { for all }(\mathbf{i}, \mathbf{j}, \mathbf{k}) \in \mathbf{S}^{3} \\
& \text { for all }(\mathbf{i}, \mathbf{j}, \mathbf{k}) \in \mathbf{S}^{3} \tag{ii}
\end{array}
$$

\triangleright a set of dual prices $\left\{\boldsymbol{\mu}_{\mathbf{k}}, \mathbf{k} \in \mathbf{S}\right\}$
\triangleright when a client appears at station \mathbf{i} and want to go to \mathbf{j} he can go to \mathbf{k} instead for the following cost:

$$
\mathbf{u}(\mathrm{k})=\mathrm{c}_{(\mathrm{i}, \mathrm{j})}^{\mathrm{k}}-\mu_{\mathrm{k}}
$$

Each client chooses the solution that has the least cost for him.

$$
\beta_{(i, j)}^{*}=\min _{k \in S} c_{(i, j)}^{k}-\mu_{k}
$$

is the price that will finally pay a client who wants to go from \mathbf{i} to \mathbf{j}. He will go to station $\mathbf{k}^{*} \in \mathbf{S}$ such that $\mathbf{c}_{(\mathbf{i}, \mathbf{j})}^{\mathbf{k}^{*}}-\boldsymbol{\mu}_{\mathbf{k}^{*}}=\boldsymbol{\beta}_{(\mathbf{i}, \mathbf{j})}^{*}$

Evaluation of the system

Simulator

- Clients are generated with respect to a Poisson process
- Their targeted destination is taken with respect to a O-D matrix that has been generated with a gravity model
- The time elapsed while driving from a station to another is computed with respect to the distance and altitude between two stations
- Clients who do not find bikes or parking spots can visit several stations before leaving the system with respect to a bound in time and stations given by their profil type

Indicator

- Number of satisfied clients
- Number of clients who did not find a bike
- Number of clients who did not find a parking
- Number of clients who change their targeted station for another one (tarification approach)

Evaluation of the system

Result: Low case demand-edoras

Size	Indicator	Empty	OB	OB-corr	DP	CC	OT
20	Satisfied	$\mathbf{6 7 7}$	$\mathbf{9 6 2}$	$\mathbf{9 6 3}$	$\mathbf{7 3 8}$	$\mathbf{7 1 4}$	$\mathbf{8 2 9 + 1 5 6}$
	No bikes	199	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1 5 4}$	$\mathbf{1 7 1}$	
	No parking	124	$\mathbf{2 9}$	$\mathbf{2 8}$	$\mathbf{1 0 4}$	$\mathbf{1 2 4}$	
50	Satisfied	$\mathbf{2 0 2 7}$	$\mathbf{2 2 6 5}$	$\mathbf{2 2 8 1}$			$\mathbf{2 2 7 9 + 1 6 6}$
	No bikes	$\mathbf{3 2 3}$	$\mathbf{1 4 4}$	$\mathbf{1 3 3}$			67
	No parking	174	$\mathbf{1 0 6}$	$\mathbf{9 7}$			$\mathbf{6}$
100	Satisfied	$\mathbf{3 2 1 3}$	$\mathbf{3 4 0 1}$	$\mathbf{3 4 3 7}$			$\mathbf{4 1 6 5 + 4 2 4}$
	No bikes	$\mathbf{1 3 8 5}$	$\mathbf{1 2 3 0}$	$\mathbf{1 2 1 0}$			554
	No parking	$\mathbf{6 1 8}$	$\mathbf{5 7 0}$	$\mathbf{5 5 6}$			$\mathbf{3 2}$
250	Satisfied	$\mathbf{8 7 2 0}$	$\mathbf{8 8 7 0}$	$\mathbf{8 8 8 0}$			-
	No bikes	$\mathbf{3 6 1 5}$	$\mathbf{3 4 9 5}$	$\mathbf{3 4 8 1}$			-
	No parking	$\mathbf{1 4 6 4}$	$\mathbf{1 4 2 3}$	$\mathbf{1 4 2 6}$			-

Evaluation of the system

Result: Medium case demand - edoras

Size	Indicator	Empty	OB	OB-corr	DP	CC	OT
20	Satisfied	1130	1649	1666			$1556+288$
	No bikes	660	210	191			97
	No parking	188	104	104			23
50	Satisfied	3849	4173	4234			$4330+311$
	No bikes	973	714	661			397
	No parking	269	198	185			44
100	Satisfied	5290	5589	5641			$7096+790$
	No bikes	4283	4021	3970			2385
	No parking	918	863	862			128
250	Satisfied	12817	13024	13051			-
	No bikes	13058	12863	12830			-
	No parking	2161	2132	2137			-

Evaluation of the system

Result: High case demand-edoras

Size	Indicator	Empty	OB	OB-corr	DP	CC	OT
20	Satisfied	1535	2333	2393			$2364+457$
	No bikes	1579	825	762			430
	No parking	219	144	145			45
50	Satisfied	5845	6364	6436			$6533+468$
	No bikes	2309	1850	1782			1391
	No parking	353	260	250			74
100	Satisfied	6977	7392	7482			$\mathbf{9 8 5 8 + 1 1 9 3}$
	No bikes	9588	9188	9096			6176
	No parking	1113	1073	1072			242
250	Satisfied	15285	15560	15537			-
	No bikes	29447	$\mathbf{2 9 1 7 3}$	29193			-
	No parking	2364	2343	2348			-

Some remarks for the pricing experiments

Update of the prices: all $\mathbf{1 5}$ minutes
Walk/Bike: a travel of \mathbf{x} seconds by bike 'costs' $\mathbf{5 x}$ seconds when done on foot

The prices in simulator: in seconds. For instances with size

- 20: maximal price: 3000
- 50: maximal price: 4200
- 100: maximal price: 6000

To make the conversion, take (value of travel time in a Western city)

8 euros = 1 hours

A web-site where the simulator can be downloaded:
http://cermics.enpc.fr/~meuniefr/OADLIBSim_Site/index.html

