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Abstract

We present several new standard and differential approximation results for the P4-
partition problem using the Hassin and Rubinstein’ algorithm (Information Process-
ing Letters, 63: 63-67, 1997). Those results concern both minimization and maxi-
mization versions of the problem. However, the main point of this paper lies on the
establishment it does of the robustness of this algorithm, in the sense that this latter
provides good quality solutions, whatever version of the problem is addressed, what-
ever approximation framework is considered in order to evaluate the approximate
solutions.

Key words: graph partitioning, P4-packing, approximation algorithms,
performance ratio, standard approximation, differential approximation.

1 Introduction

Consider an instance I of an NP-hard optimization problem Π and a polynomial-
time algorithm A that computes feasible solutions for Π. Denote respectively
by apxΠ(I) the value of a solution computed by A on I, by optΠ(I) the
value of an optimum solution and by worΠ(I) the value of a worst solu-
tion (that corresponds to the optimum value when reversing the optimiza-
tion goal). The quality of A is expressed by the means of approximation ra-
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tios that somehow compare the approximate value to the optimum one. So
far, two measures stand out from the literature: the standard ratio [2] (the
most widely used) and the differential ratio [3,4,7,10]. The standard ratio is
defined by ρΠ(I, A) = apxΠ(I)/optΠ(I) if Π is a maximization problem, by
ρΠ(I, A) = optΠ(I)/apxΠ(I) otherwise, whereas the differential ratio is de-
fined by δΠ(I, A)(worΠ(I)−apxΠ(I))/(worΠ(I)−optΠ(I)). Instead of dividing
the approximate value by the optimum one, this latter measure divides the
distance from a worst solution to the approximate value by the instance diam-
eter. Within the worst case analysis framework and given a universal constant
ε ≤ 1 (resp., ε ≥ 1), an algorithm A is said to be an ε-standard approxi-
mation for a maximization (resp. a minimization) problem Π if ρAΠ

(I) ≥ ε
∀I (resp., ρAΠ

(I) ≤ ε ∀I). With respect to differential approximation, A is
said to be ε-differential approximate for Π if δAΠ

(I) ≥ ε, ∀I, for a universal
constant ε ≤ 1. Equivalently, because any solution value is a convex com-
bination of the two values worΠ(I) and optΠ(I), an approximate solution
value apxΠ(I) will be an ε-differential approximation if for any instance I,
apxΠ(I) ≥ ε×optΠ(I)+ (1− ε)×worΠ(I) (for the maximization case; reverse
the sense of the inequality when minimizing). Within the worst case analysis
framework and considering both standard and differential ratios, we focus on
a special problem, the weighted P4-partition problem. Furthermore, we study
the performance of a single algorithm on various versions of this problem. Do-
ing so, we put to the fore the effectiveness of this algorithm by proving that
it provides approximation ratios for both standard and differential measures,
for both maximization and minimization versions of the problem.

In the weighted Pk-partition problem (PkP in short), we are given a complete
graph Kkn together with a distance function d : E → N on its edges. A Pk is an
induced path of length k− 1 (or, equivalently, an induced path on k vertices)
and the cost of such a path is the sum of its edge weight. Given an instance
I = (Kkn, d), the aim is to compute a partition T ∗ = {P ∗

1 , . . . , P ∗
n} of V (Kkn)

into n vertex-disjoint Pk (what we call a Pk-partition) that is of optimum
weight (that is, of maximum weight if the goal is to maximize (MaxPkP),
of minimum weight otherwise (MinPkP), where the value of a solution T ∗

is given by d(T ∗) =
∑q

i=1 d(P ∗
i ). When considering the minimization version,

we will more often assume that the distance function satisfies the triangular
inequality, i.e., d(x, y) ≤ d(x, z) + d(z, y), ∀x, y, z; MinMetricPkP will refer
to this restriction. Finally, we also deal with a special case of metric instances
where the distance function is worth either 1 or 2; the corresponding problems
will be denoted by MaxPkP1,2 and MinPkP1,2. Note that for k = 2, a P2-
partition is a perfect matching and hence, MinP2P and MaxP2P both are
polynomial. On the other hand, all these problems turn to be NP-hard for
k ≥ 3, [9,16]. Nevertheless, MaxPkP is standard-approximable for any k, [11].
In particular, MaxP3P and MaxP4P are respectively 35/67−ε, [12] and 3/4,
[11] approximable. On the other hand, MinPkP may not be approximated
within 2p(n) for any polynomial p, for any k; this is due to the fact that
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the Pk-partition problem, which consists in deciding whether a graph does
or not admit a partition of its vertex set into Pk, is NP-complete, [9,15,16].
Furthermore, even when restricting to metric instances and more specifically
for k = 4, no approximation rate has (to our knowledge) been established for
MinMetricPkP so far. Finally, note that this latter problem (and PkP in
general) is very close to the vehicle routing problem when restricting the route
of each vehicle to at most k intermediate stops, [1,8].

In the second section, we study the relationship between TSP and PkP under
differential ratio; namely, we show how a differential approximation for TSP

enables a differential approximation for PkP. In the third section, that con-
tains the main result of this paper, we propose a complete analysis, from both
a standard and a differential point of view, of an algorithm proposed by Has-
sin and Rubinstein [11]. We prove that, with respect to the standard ratio,
this algorithm provides new approximation rates for MetricP4P, namely:
the approximate solution respectively achieves a 3/2-, a 7/6- and a 9/10-
standard approximation for MinMetricP4P, MinP4P1,2 and MaxP4P1,2.
Under differential ratio, the approximate solution is a 1/2-approximation for
general P4P, a 2/3-approximation for P4Pa,b. The gap between differential
and standard ratios that might be reached for a maximization problem may
be explained by the fact that, within the differential framework, the approx-
imate value has to be located within the interval [wor(I), opt(I)], instead of
[0, opt(I)] when considering the standard measure. That is the aim of differ-
ential approximation: thanks to the reference it does to wor(I), this measure
is both more precise (relevant with respect to the notion of guaranteed perfor-
mance) and more robust (since minimizing and maximizing turn to be equiva-
lent and more generally, differential ratio is stable under affine transformation
of the objective function). In addition to the new approximation bounds that
they provide, the obtained results enable to establish the robustness of the
algorithm that is addressed here, since this latter provides good quality solu-
tions, whatever version of the problem we deal with, whatever approximation
framework within which we estimate the approximate solutions.

2 From Traveling salesman problem to PkP

A common technic in order to obtain an approximate solution for MaxPkP

from a Hamiltonian cycle is called the deleting and turning around method, see
[11,12,8]. Starting from a tour, this method builds k solutions of MaxPkP and
picks the best among them, where the ith solution is obtained by deleting 1
edge upon k from the input cycle, starting from its ith edge. The quality of the
output T ′ obviously depends on the quality of the initial tour; in this way it is
proven in [11,12], that any ε-standard approximation for MaxTSP provides
a k−1

k
ε-standard approximation for MaxPkP. From a differential point of
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T1 T2 T3 T4

Fig. 1. An example of the 4 solutions T1, . . . , T4.

T∗ T ∗

L R L R

Fig. 2. A worst and an optimum solutions when n = 1.

view, things are less optimistic: even for k = 4, there exists an instance family
(In)n≥1 that verifies apx(In) = 1

2
optMaxP4P

(In)+ 1
2
worMaxP4P(In). This instance

family is defined as In = (K8n, d) for n ≥ 1, where the vertex set V (K8n) may
be partitioned into two sets L = {ℓ1, . . . , ℓ4n} and R = {r1, . . . , r4n} in such a
way that the associated distance function d is worth 0 on L× L, 2 on R × R
and 1 on L× R. Thus, for any n ≥ 1, the following property holds:

Property 1 apx(In) = 6n, optMaxP4P
(In) = 8n, worMaxP4P(In) = 4n.

If the initial tour is described as Γ = {e1, . . . , en, e1}, then the deleting and
turning around method produces 4 solutions T1, . . . , T4 where Ti = ∪n−1

j=0{{ej+i,
ej+i+1, ej+i+2}} for i = 1, . . . , 4 (indexes are considered mod n). Figure 1
provides an illustration of this process (the dashed lines correspond to the
edges from Γ \ Ti).

First, observe that any tour Γ on In is optimum, of total weight 8n. Indeed,
any tour contains as many edges with their two endpoints in L as edges with
their two endpoints in R and thus, d(Γ) = |Γ∩L×R|+2|Γ∩R×R| = |Γ| = 8n.
Hence, starting from the optimum cycle Γ∗ = [r1, . . . , r4n, l1, . . . , l4n, r1], the
four solutions T1, . . . , T4 outputted by the algorithm (see Figure 1) will all
be worth d(Ti) = 6n, while an optimum solution T ∗ and a worst solution
T∗ are of total weight respectively 8n and 4n (see Figure 2). Indeed, because
any P4-partition T is a 2n edge cut down tour, we get, on the one hand,
optMaxTSP(In) ≥ d(T ) and, on the other hand, d(T ) ≥ 8n − 4n = 4n, which
concludes this argument.

Nevertheless, the deleting and turning around method leads to the following
weaker differential approximation relation:

Lemma 2 ¿From an ε-differential approximation of MaxTSP, one can poly-
nomially compute a ε

k
-differential approximation of MaxPkP. In particular,
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we deduce from [10,13] that MaxPkP is 2
3k

-differential approximable.

Let us show that the following inequality holds for any instance I = (Kkn, d)
of MaxPkP:

optMaxTSP(I) ≥
1

k − 1
optMaxPkP(I) + worMaxPkP(I) (1)

Let T ∗ be an optimum solution of MaxPkP, then arbitrarily add some edges
to T ∗ in order to obtain a tour Γ. From this latter, we can deduce k − 1
solutions Ti for i = 1, . . . , k − 1, by applying the deleting and turning around
method in such a way that any of the solutions Ti contains (Γ \T ∗). Thus, we
get (k − 1)worMaxPkP(I) ≤

∑k−1
i=1 d(Ti) = (k − 1)d(Γ)− optMaxPkP(I). Hence,

consider that d(Γ) ≤ optMaxTSP(I) and the result follows. By applying again
the deleting and turning around method, but this time from a worst tour, we
may obtain k approximate solutions of MaxPkP, which allows us to deduce:

worMaxTSP(I) ≥
k

k − 1
worMaxPkP(I) (2)

Finally, let Γ′ be an ε-differential approximation of MaxTSP, we deduce from
Γ′ k approximate solutions of MaxPkP. If T ′ is set to the best one, we get
d(T ′) ≥ k

k−1
d(Γ′) and thus:

apx(I) ≥
k

k − 1
d(Γ′) ≥

k

k − 1
(εoptMaxTSP(I) + (1− ε)worMaxTSP(I)) (3)

Using inequalities (1), (2) and (3), we get apx(I) ≥ ε
k
optMaxPkP(I) + (1 −

ε
k
)worMaxPkP(I) and the proof is complete.

To conclude with the relationship between PkP and TSP with respect to their
approximability, observe that the minimization case also is trickier. Notably,
if we consider MinMetricP4P, then the instance family I ′

n = (K8n, d′) built
as the same as In with a distinct distance function defined as d′(ℓi, ℓj) =
d′(ri, rj) = 1 and d′(ℓi, rj) = n2 + 1 for any i, j, then we have: optTSP(I ′

n) =
2n2 + 8n and optP4P

(I ′
n) = 6n.

3 Approximating P4P by the means of optimum matchings

Here starts the analysis, from both a standard and a differential point of view,
of an algorithm proposed by Hassin and Rubinstein in [11], where the au-
thors show that the approximate solution is a 3/4-standard approximation
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for MaxP4P. First, dealing with the standard ratio, we prove that this algo-
rithm provides a 3/2-approximation for MinMetricP4P and respectively a
7/6 and a 9/10-approximation for MinP4P1,2 and MaxP4P1,2. As a corollary
of a more general result, we also obtain an alternative proof of the result of
[11]. We then prove that, with respect to the differential measure, the ap-
proximate solution achieves a 1/2-approximation in general graphs, for both
maximization and minimization versions of the problem. Finally, this latter
ratio is raised up to 2/3 when restricting to bi-valuated graphs.

3.1 Description of the algorithm

The algorithm proposed in [11] runs in two stages: first, it computes an op-
timum weight perfect matching MT ′ on (K4n, d); then, it builds on the edges
of MT ′ a second optimum weight perfect matching RT ′ in order to complete
the solution (note that “optimum weight” signifies “maximum weight” if the
goal is to maximize, “minimum weight” if the goal is to minimize). Precisely,
we define the instance (K2n, d′) (to any edge ev ∈ MT ′ corresponds a vertex
v in K2n), where the distance function d′ is defined as follows: for any edge
[v1, v2], d′(v1, v2) is set to the weight of the heaviest edge that links ev1

and
ev2

, that is, if v1 represents ev1
= [x1, y1] and v2 represents ev2

= [x2, y2], then
d′(v1, v2) = max {d(x1, x2), d(x1, y2), d(y1, x2), d(y1, y2)} (when dealing with
the minimum version of the problem, set the weight to the lightest). We thus
build on (K2n, d′) an optimum weight matching RT ′ , which is then transposed
to the initial graph (K4n, d) by selecting the edge that realizes the same cost.
Since the computation of an optimum weight perfect matching is polynomial,
the whole algorithm runs in polynomial time, whether the goal is to minimize
or to maximize.

3.2 General P4P within the standard framework

For any solution T , we denote respectively by MT and RT the set of the
final edges and the set of the middle edges of its chains. Furthermore, we will
consider for any chain PT = {x, y, z, t} of the solution the edge [t, x] that
completes PT into a cycle. If RT denotes the set of these edges, we observe
that RT ∪ RT forms a perfect matching. Finally, for any edge e ∈ T , we will
denote by PT (e) the P4 from the solution that contains e and by CT (e) the
4-length cycle that contains PT (e).

Lemma 3 For any instance I = (K4n, d), if T is a feasible solution and T ∗

is an optimum solution, then there exist 4 pairwise disjoint edge sets A, B, C
and D that verify:
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MT A MT B MT A

AMTMT

A

MT

A A A MT

A ∩ MT

B

MT A MT A MT A

AMTCMTMT

A MT

MT

AC

Fig. 3. The construction of sets A and C.

(i) A ∪B = T ∗ and C ∪D = RT ∗.
(ii) A ∪ C and B ∪D both are perfect matchings on I.

(iii) A ∪ C ∪MT is a perfect 2-matching on I of which cycles are of length a
multiple of 4.

Let T ∗ = MT ∗ ∪RT ∗ be an optimum solution, we apply the following process:

1 Set A = MT ∗ , B = RT ∗ , C = ∅, D = RT ∗ ;
Set G′ = (V, A ∪ C ∪MT ) (consider the simple graph);

2 While there exists an edge e ∈ RT ∗ that links two connected components
of G′, do:
2.1 move CT ∗(e) ∩MT ∗ from A to B;

move CT ∗(e) ∩RT ∗ from B to A;
move CT ∗(e) ∩RT ∗ from D to C;

2.2 G′ ← (V, A ∪ C ∪MT );
3 output A, B, C and D;

At the initialization stage, the connected components of the partial graph
induced by (A ∪ C ∪MT ) are either cycles that alternate edges from (A ∪ C)
and MT , or isolated edges from MT ∗∩MT . During step 2, at each iteration, the
process merges together two connected components of G′ into a single cycle;
an illustration of the process is proposed in Figure 3. Note that all along the
process, the sets A, B, C and D define a partition of T ∗ ∪ RT ∗ and thus,
remain pairwise disjoint.

For (i): Immediate from definition of the process (edges from T ∗ are moved
from A to B, from B to A, but never out of A ∪ B; the same holds for RT ∗
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A1 ∪ MT ′

A2 ∪ MT ′

Fig. 4. Two possible P4 partitions deduced from A ∪ C ∪MT ′ .

and the two sets C and D).

For (ii): At the initialization stage, A ∪ C and B ∪ D respectively coincides
with MT ∗ and RT ∗ ∪RT ∗ , that both are perfect matchings. More precisely, for
any chain PT ∗ from the optimum solution, if CT ∗ denotes the associated 4-
length cycle, then A∪C and B∪D respectively contains the perfect matching
CT ∗ ∩MT ∗ and CT ∗ ∩ (RT ∗ ∪RT ∗) on V (PT ∗). Now, at each iteration, one just
swaps the perfect matchings that are used in A∪C or B∪D in order to cover
the vertices of a given chain PT ∗ and thus, both A ∪ C and B ∪ D remain
perfect matchings.

For (iii): At the end of the process, (A∪C)∩MT = ∅ and thus, because A∪C
and MT both are perfect matchings, then A∪C ∪MT is a perfect 2-matching.
Now, consider a cycle Γ of G′ = (V, A ∪ C ∪MT ); by definition of step 2, any
edge e from RT ∗ that is incident to Γ has its two endpoints in V (Γ), which
means that Γ contains whether the two edges of CT ∗(e) ∩ MT ∗ , or the two
edges of CT ∗(e) ∩ (RT ∗ ∪RT ∗). In other words, if any vertex u from any path
PT ∗ ∈ T ∗ belongs to V (Γ), then the whole vertex set V (PT ∗) actually is a
subset of V (Γ) and therefore, we deduce that |V (Γ)| = 4k.

Theorem 4 The solution T ′ provided by the algorithm achieves a 3
2
-standard

approximation for MinMetricP4P and this ratio is tight.

Let T ∗ be an optimum solution on I = (K4n, d), we consider 4 pairwise disjoint
sets A, B, C and D in accordance with the application of Lemma 3 to the
solution T ′. According to property (iii), we can split A ∪ C into two sets A1

and A2 in such a way that Ai ∪MT ′ (i = 1, 2) is a P4-partition (see Figure 4
for an illustration). Hence, Ai constitutes an alternative solution for RT ′ and
because this latter is optimum, we obtain:

2d(RT ′) ≤ d(A) + d(C) (4)
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Moreover, item (ii) of Lemma 3 states that B∪D is a perfect matching; since
MT ′ is optimum, it thus verifies:

d(MT ′) ≤ d(B) + d(D) (5)

Hence, it suffices to sum inequalities (4) and (5) (and also to consider item (i)
of Lemma 3) in order to obtain:

d(MT ′) + 2d(RT ′) ≤ d(T ∗) + d(RT ∗) (6)

Now, because I satisfies the triangular inequality, we observe that d(RT ∗) ≤
d(T ∗) and thus deduce from inequality 6:

d(MT ′) + 2d(RT ′) ≤ 2optMinMetricP4P
(I) (7)

(Note that this latter inequality is only true when minimizing.) Which enables
to conclude, if we consider that d(MT ′) ≤ d(MT ∗) ≤ d(T ∗). Finally, the tight-
ness is provided by the instance family In = (K8n, d) that has been described
in Property 1.

Concerning the maximization case and using Lemma 3, one can also obtain
an alternative proof of the result given in [11].

Theorem 5 The solution T ′ provided by the algorithm achieves a 3
4
-standard

approximation for MaxP4P.

The inequality (6) becomes

d(MT ′) + 2d(RT ′) ≥ optMaxP4P
(I) + d(RT ∗) (8)

Considering this time that 2 × d(MT ′) ≥ optMaxP4P
(I) + d(RT ∗), we deduce

apxMaxP4P
(I) ≥ 3

4

(

optMaxP4P
(I) + d(RT ∗)

)

.

3.3 General P4P within the differential framework

When dealing with the differential ratio, MinP4P, MinMetricP4P, and
MaxP4P are equivalent to approximate, since PkP problems belong to the
class FGNPO, [14]. Note that such an equivalence is more generally true for
any couple of problems that only differ by an affine transformation of their
objective function.
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Theorem 6 The solution T ′ provided by the algorithm achieves a 1
2
-differential

approximation for P4P and this ratio is tight.

We consider the maximization version. First, observe that RT ∗ is a n-cardinality
matching. Hence, for any perfect matching M of I such that M ∪RT ∗ do form
a P4-partition, we have:

d(M) + d(RT ∗) ≥ worMaxP4P(I) (9)

Adding inequalities (8) and (9), we thus conclude:

2apxMaxP4P
(I) ≥ d(MT ′) + 2d(RT ′) + d(M) ≥ worMaxP4P(I) + optMaxP4P

(I)

In order to establish the tightness of this ratio, we refer to Property 1.

3.4 Bi-valuated metric P4P with weights 1 & 2 within the standard frame-
work

As it has been recently done for MinTSP in [5,6], we now focus on instances
where any edge is worth either 1 or 2; indeed, such an analysis enables a keener
comprehension of a given algorithm. Furthermore, because the P4-partition
problem is NP-complete, the problems MaxP4P1,2 and MinP4P1,2 still are
NP-hard.

Let us first introduce some more notations. For a given instance I = (K4n, d)
of P4P1,2 with d(e) ∈ {1, 2}, we denote by MT ′,i (resp., RT ′,i) the set of
edges from MT ′ that are of weight i. If we aim at maximizing, then p (resp.,
q) indicates the cardinality of MT ′,2 (resp., of RT ′,2); otherwise, it indicates
the quantity |MT ′,1| (resp., |RT ′,1|). In any case, p and q respectively count
the number of “good weight edges” in the sets MT ′ and RT ′. With respect to
the optimum solution, we define the sets MT ∗,i, RT ∗,i for i = 1, 2 and the
cardinalities p∗, q∗ as the same.

Lemma 7 For any instance I = (K4n, d), if T is a feasible solution and T ∗

is an optimum solution, then there an edge set A that verifies:

(i) A ⊆ MT ∗,2 ∪ RT ∗,2 (resp., A ⊆ MT ∗,1 ∪RT ∗,1) and |A| = q∗ if the goal is to
maximize (resp., to minimize);

(ii) G′ = (V, MT ′ ∪ A) is a simple graph made of pairwise disjoint chains.

We only prove the maximization case. Wlog., we may assume that the follow-
ing property always holds for T ∗:
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Property 8 For any 3-length chain P ∈ T ∗, |P ∩MT ∗,2| ≥ |P ∩ RT ∗,2|.

Otherwise, T ∗ would contain a chain P = {[x, y], [y, z], [z, t]} that verifies
d(x, y) = d(z, t) = 1 and d(y, z) = 2; thus, by swapping P for P ′ = {[y, z], [z, t],
[t, x]} within T ∗, one could generate an alternative optimum solution.

We now consider G′ the multi-graph induced by MT ′ ∪ RT ∗,2 (the edges from
MT ′∩RT ∗,2 appear twice). This graph consists of elementary cycles and chains:
its cycles alternate edges from MT ′ and RT ∗,2 (note that the 2-length cycles
correspond to the edges from RT ∗,2∩MT ′); its chains (that may be of length 1)
also alternate edges from MT ′ and RT ∗,2, with the particularity that their
terminal edges all belong to MT ′ .

Let Γ be a cycle on G′ and e be an edge from Γ∩RT ∗,2. If PT ∗(e) = {x, y, z, t}
denotes the path from the optimum solution that contains e, then e = [y, z].
The initial vertex x of the chain PT ∗(e) necessarily is the endpoint of some
chain from G′: otherwise, the edge [x, y] from PT ∗(e)∩MT ∗ would be incident
to 2 distinct edges from RT ∗ , which would contradicts the fact that T ∗ is a
P4 partition. The same obviously holds for t. W.l.o.g., we may assume from
Property 8 [x, y] ∈ MT ∗,2. In the light of these remarks and in order to build
an edge set A that fulfills the requirements (i) and (ii), we then proceed as
follows:

1 Set A = RT ∗,2;
Set G′ = (V, A ∪MT ) (consider the multi-graph);

2 While there exists a cycle Γ in G′, do:
2.1 pick e from Γ ∩RT ∗,2;

pick f from PT ∗(e) ∩MT ∗,2;
A← A \ {e} ∪ {f};

2.2 G′ ← (V, A ∪MT );
3 output A;

By construction, the set A outputted by the algorithm is of cardinality q∗ and
contains exclusively edges of weight 2. Furthermore, thanks to the stopping
criterion of the step 2, and because each iteration of this step merges a cycle
and a chain into a chain, G′ = (V, A∪MT ) is a simple graph of which connected
components are elementary chains (an illustration of this step is provided by
Figure 5). Finally, the validity of this process (namely, the existence of edge
f at step 2.1) directly comes from the above discussion.
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Γ

MT MT MT

MT

MT MT MT

MT

A ∩ RT∗,2

MT∗,2

A

Fig. 5. The construction of set A.

Theorem 9 The solution T ′ provided by the algorithm achieves a 9
10

-standard
approximation for MaxP4P1,2 and a 7

6
-standard approximation for MinP4P1,2.

These ratios are tight.

Let consider A the edge subset of the optimum solution that may be deduced
from the application of Lemma 7 to the approximate solution. We arbitrarily
complete A by the means of an edge set B in such a way that A ∪ B ∪MT ′

constitutes a perfect 2-matching. As we did while proving Theorem 4, we
split the edge set A ∪ B into two sets A1 and A2 in order to obtain two P4-
partitions MT ′ ∪ A1 and MT ′ ∪ A2 of V (K4n). As both A1 ∪ B1 and A2 ∪ B2

complete MT ′ into a P4-partition and because RT ′ is optimum, we deduce
that Ai does not contain more “good weight edges” than RT ′ does, that is:
q ≥ |{e ∈ Ai : d(e) = 2}| if the goal is to maximize, q ≥ |{e ∈ Ai : d(e) = 1}|
otherwise. Since A ⊆ A1 ∪A2 and |A| = q∗, we immediately deduce:

q ≥ q∗/2 (10)

On the other hand, the optimality of MT ′ leads to the following relation:

p ≥ max{p∗, q∗} (11)

Moreover, the quantities p∗ and q∗ structurally verify:

n ≥ max{p∗/2, q∗} (12)

Finally, whether the goal is to maximize or to minimize, we can express the
value of any solution T as:

d(T ) =











3n + (p + q) when maximizing,

6n− (p + q) when minimizing.
(13)

This expected results may now be obtained by the means of a little algebra
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I = (K8, d) T ∗ T ′

Fig. 6. Instance I = (K8, d) that establishes the tightness for MaxP4P1,2.

on relations (10), (11), (12) and (13):

10apxMaxP4P1,2
(I) = 10(3n + p + q)

= 9(3n) + 3n + 9p + p + 10q

≥ 9(3n) + 3q∗ + 9p∗ + q∗ + 5q∗

= 9(3n + p∗ + q∗) = 9optMaxP4P1,2
(I)

6apxMinP4P1,2
(I) = 6(6n− p− q)

= 6(6n) − 6p − 6q

≤ 6(6n) − 6p∗ − 3q∗ + (2n− p∗) + (4n− 4q∗)

≤ 7(6n− p∗ − q∗) = 7optMinP4P1,2
(I)

The tightness for MaxP4P1,2 is established thanks to the instance I = (K8, d)
depicted in Figure 6, where the edges of distance 2 are drawn in continuous
line, whereas the edges of distance 1 on T ∗ and T ′ are drawn in dotted line
(other edges are not drawn). One can easily see optMaxP4P1,2

(I) = 10 and
apxMaxP4P1,2

(I) = 9. Concerning the minimization case, the ratio is tight on
the instance J = (K8, d) that verifies: opt(J) = d(T ∗) = 6 and apx(J) =
d(T ′) = 7. J = (K8, d) is depicted in Figure 7 (the 1-weight edges are drawn
in continuous line and the 2-weight edges on T ∗ and T ′ are drawn in dotted
line).

3.5 Bi-valuated metric P4P with weights a and b within the differential frame-
work

As we have already mentioned, the differential measure is stable under affine
transformation; now, any instance from MaxP4Pa,b may be mapped into an
instance of MaxP4P1,2 or MinP4Pa,b by the way of such a transformation.
Thus, proving MaxP4P1,2 is ε-differential approximable actually establishes

13



J = (K8, d) T ∗ T ′

Fig. 7. Instance I = (K8, d) that establishes the tightness for MinP4P1,2.

that MinP4Pa,b and MaxP4Pa,b are ε-differential approximable for any couple
of real values a < b.

Theorem 10 The solution T ′ provided by the algorithm achieves a 2
3
-differential

approximation for P4Pa,b and this ratio is tight.

Let I = (K4n, d) be an instance of MaxP4P1,2. We use the notations that
were introduced while proving Theorem 9, namely: p = |MT ′,2|, p∗ = |MT ∗,2|,
q = |RT ′,2| and q∗ = |RT ∗,2|. Furthermore, for i = 1, 2, P i

T ′ will refer to the
set of chains from T ′ of which central edge is of weight i. Note that the chains
from P1

T ′ may be of total weight 3, 4 or 5, whereas the chains from P2
T ′ may

be of total weight 5 or 6 (at least one extremal edge must be of weight 2,
or MT ′ is not optimum). We will more specifically denote by P2

T ′,5 and P2
T ′,6

the chains from P2
T ′ that are of total weight respectively 5 and 6. Finally, for

i = 1, 2, M i
T ′ will refer to the set of edges e ∈ MT ′ such that PT ′(e) ∈ P i

T ′

(that is, e is element of a chain from T ′ of which central edge has weight i).
Thanks to relations (10) and (11), we first express some upper bounds for
optMaxP4P1,2

(I):

optMaxP4P1,2
(I) ≤ min {3n + p + 2q, 3n + 2p} (14)

It order to obtain a differential approximation, one also has to produce an effi-
cient bound for worMaxP4P1,2

(I). To do so, we will deduce from the optimality
of MT ′ and RT ′ some edges of weight 1 that will enable us to approximate
the worst solution. We first consider the vertices from V (P1

T ′): they are “easy”
to cover by the means of 3-length chains of total weight 3, since we may
immediately deduce from the optimality of RT ′ the following property (an il-
lustration is provided by Figure 8, where dotted lines indicate edges of weight
1 and dashed lines indicate unspecified weight edges):

Property 11 [x, y] 6= [x′, y′] ∈M1
T ′ ⇒ ∀e ∈ {x, y} × {x′, y′} , d(e) = 1

We now consider the vertices from V (P2
T ′,5). Let PT ′ = {x, y, z, t} with [x, y] ∈

MT ′,2 be a chain from P2
T ′,5, we deduce from the optimality of MT ′ that

d(t, x) = 1; hence, the 3-length chain P ′
T ′ = {y, z, t, x} covers the vertices

14
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Fig. 8. 1-weight edges on V (M1
T ′).

x

y

x′

y′

α

β γ

δ

M1

T ′
M1

T ′

M2

T ′

d(y, β) = 2

Fig. 9. 1-weight edges that may be deduced from the optimality of RT ′ .

{x, y, z, t} with a total cost 4. Let us assume that P2
T ′,6 = ∅, then we are able

to build a P4 partition of V (K4n) using exclusively edges of weight 1, but
|P2

T ′,5| edges of weight 2 in order to cover V (P2
T ′,5). Hence, a worst solution

will cost at most 3n + q, while the approximate solution is of total weight
3n + p + q. Thus, using relation 14, we would be able to conclude. Of course,
there is no reason for P2

T ′,6 = ∅; nevertheless, this discussion has brought to
the fore the following fact: the difficult point of the proof lies on the partition-
ing of V (P2

T ′,6) into “light” 3-length chains, what we are attempting to do by
now.

We first stand two more properties that are immediate from the optimality of
MT ′ and RT ′ , respectively.

Property 12 [x, y] ∈ MT ′,1 and [x′, y′] ∈ MT ′,2 ⇒ min {d(x, x′), d(y, y′)} =
min {d(x, y′), d(y, x′)} = 1

Property 13 If [x, y] 6= [x′, y′] ∈ M1
T ′ and PT ′ = {α, β, γ, δ} ∈ P2

T ′, then
max {d(e)|e ∈ {α, β} × {x, y}} = 2 ⇒ max {d(e)|e ∈ {γ, δ} × {x′, y′}} = 1.
(See Figure 9 for an illustration, where continuous and dotted lines respectively
indicate 2- and 1-weight edges, whereas dashed lines indicate unspecified weight
edges).

¿From Properties 12 and 13, we now are able to propose a “light” P4 partition
of P2

T ′,6.

Property 14 Given a chain PT ′ ∈ P2
T ′,6 and two edges [x, y] 6= [x′y′] ∈ M1

T ,
then there exists a P4 partition P = {P1, P2} of (V (PT ′) ∪ {x, y, x′, y′} ) that
is of total weight at most 8. Furthermore, if [x, y] and [x′, y′] both belong to
MT ′,1, then we can decrease this weight down to (at most) 7 (see Figure 10 for
an illustration).

Consider PT ′ = {α, β, γ, δ} ∈ P2
T ′,6 and [x, y] 6= [x′y′] ∈ M1

T . We set P1 =
{α, x, x′, δ} and P2 = {β, y, y′, γ}. If every edge from {α, β, γ, δ}×{x, x′, y, y′}
is of weight 1, then P1 ∪ P2 has a total weight 6. Conversely, if there exists
a 2-weight edge (assume that [β, y] is such an edge), then P1 ∪ P2 is of total
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T ′
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T ′
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T ′ ,6

d(y, β) = 2
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α

β γ

δ

Fig. 10. A P4 partition of (PT ′ , e1, e2) ∈ P
2
T ′,6 × (M1

T ′)2 of total weight at most 7.

weight at most 8: indeed, we get d(x, x′) = d(y, y′) = 1 from Property 11 and
d(δ, x′) = d(γ, y′) = 1 from Property 13. Furthermore, if d(x, y) = 1, then
d(α, x) = 1 from Property 12 and thus, d(P1) + d(P2) = 7. We now are able
to compute an approximate worst solution that will provide an efficient upper
bound for worMaxP4P1,2

(I).

0 Set T = T ′, T∗ = ∅;
1 While ∃ {P, e1, e2} ⊆ T s.t. (P, e1, e2) ∈ P

2
T ′,6 ×M1

T ′,1 ×M1
T ′,1

1.1 compute P = {P1, P2} on V (P ) ∪ V (e1) ∪ V (e2) with d(P) ≤ 7;
1.2 T ← T \ {P, e1, e2} , T∗ ← T∗ ∪ {P1, P2};

2 While ∃ {P, e1, e2} ⊆ T s.t. (P, e1, e2) ∈ P
2
T ′,6 ×M1

T ′ ×M1
T ′

2.1 compute P = {P1, P2} on V (P ) ∪ V (e1) ∪ V (e2) with d(P) ≤ 8;
2.2 T ← T \ {P, e1, e2} , T∗ ← T∗ ∪ {P1, P2};

3 While ∃P ⊆ T s.t. P ∈ P2
T ′,6

3.1 T ← T \ P, T∗ ← T∗ ∪ {P};
4 While ∃P ⊆ T s.t. P ∈ P2

T ′,5

4.1 compute P = {P1} on V (P ) with d(P) ≤ 4;
4.2 T ← T \ P, T∗ ← T∗ ∪ {P1};

5 While ∃ {e1, e2} ⊆ T s.t. (e1, e2) ∈M1
T ′ ×M1

T ′

5.1 compute P = {P1} on V (e1) ∪ V (e2) with d(P) = 3;
5.2 T ← T \ e1, e2, T∗ ← T∗ ∪ {P1};

6 Output T∗;

In order to estimate the value of the approximate worst solution T∗, one has to
count the number p∗ + q∗ of 2-weight edges it contains. Let p1

i refer to |M1
T ′ ∩

MT ′,i| for i = 1, 2 (the cardinality p1
1 enables the expression of the number of

iterations during step 1). Steps 1, 2 and 3 respectively put into T∗ at most one,
two and three 2-weight edges per iteration. Any chain from P2

T ′,6 is treated
by one of the three steps 1 to 3. If 2|P2

T ′,6| ≥ p1
1, only |P2

T ′,6| − ⌊p
1
1/2⌋ chains
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Fig. 11. A partition of T ′.

from P2
T ′,6 are treated by one of the steps 2 and 3. Finally, if |P2

T ′,6| ≥ |P
1
T ′|,

only |P2
T ′,6| − |P

1
T ′| chains from P2

T ′,6 are treated during step 3. Furthermore,
step 4 puts at most |P2

T ′,5| 2-weight edges into T∗ (at most one per iteration),
while steps 0 and 5 do not incorporate any 2-weight edges within T∗. Thus,
considering q = |P2

T ′,5| + |P
2
T ′,6| and |P1

T ′| = n − q, we obtain the following

inequality (where expression X(+) is equivalent to max {X, 0}):

p∗ + q∗ ≤ q + (|P2
T ′,6| − ⌊p

1
1/2⌋)(+) + (|P2

T ′,6| − n + q)(+) (15)

Let us introduce some more notations. Likewise P2
T ′ = P2

T ′,5 ∪P
2
T ′,6, we define

a partition of P1
T ′ into three subsets P1

T ′,3, P
1
T ′,4 and P1

T ′,5 according to the
chain total weight. Note that, since the subsets P1

T ′,j define a partition of T ′,
we have n = |P1

T ′,3| + |P
1
T ′,4| + |P

1
T ′,5| + |P

2
T ′,5| + |P

2
T ′,6| (see Figure 11 for an

illustration of this partition; the edges of distance 2 are drawn in continuous
lines whereas the edges of distance 1 are drawn in dotted lines).

We now will establish the three following relations in order to compare the
worst solution value to both the approximate solution and the optimum solu-
tion values:

p ≥ q∗ + (|P2
T ′,6| − ⌊p

1
1/2⌋)(+) (16)

2q ≥ q∗ + (|P2
T ′,6|+ q − n)(+) (17)

q ≥ p∗ + q∗ − (|P2
T ′,6| − ⌊p

1
1/2⌋)(+) − (|P2

T ′,6|+ q − n)(+) (18)

Actually, by summing inequalities 16 to 18, together with 2p ≥ 2p∗, we may
obtain the expected result:

3apxMaxP4P
(I) = 3(3n + p + q)

≥ 2(3n + p∗ + q∗) + (3n + p∗ + q∗)

= 2optMaxP4P1,2
(I) + worMaxP4P1,2

(I)

Proof of inequality 16: Obvious if 2|P2
T ′,6| ≤ p1

1, since p ≥ q∗ (from inequality
11). Otherwise, one can write p as the sum p = n + |P2

T ′,6| + |P
1
T ′,5| − |P

1
T ′,3|.

Now, |P1
T ′,5|− |P

1
T ′,3| is precisely the half of the difference between the number

of 2-weight and of 1-weight edges in M1
T ′ : since p1

2 = |P1
T ′,4| + 2|P1

T ′,5| and
p1

1 = |P1
T ′,4| + 2|P1

T ′,3|, then p1
2 − p1

1 = 2(|P1
T ′,5| − |P

1
T ′,3|). ¿From this latter
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equality, we deduce that p1
1 and p1

2 have the same parity; hence, we have
1/2(p1

2 − p1
1) = ⌊p1

2/2⌋ − ⌊p1
1/2⌋ and thus, p = n + |P2

T ′,6| + ⌊p
1
2/2⌋ − ⌊p1

1/2⌋.
Just observe that n and q∗ verify n ≥ q∗ in order to conclude.

Proof of inequality 17: Obvious if |P2
T ′,6| ≤ n−q, since 2q ≥ q∗ (from inequality

10). Otherwise, consider that q, n and |P2
T ′,6| verify: q ≥ |P2

T ′,6| and n ≥ q∗.

Proof of inequality 18: Immediate from Property 14.

The tightness is provided by the instance I = (K8, d) that is pictured on
Figure 6; since this latter contains a vertex v such that any edge from v is of
weight 2, the result follows.
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