
Jebelean-Weber’s Algorithm without

Spurious Factors

Sidi Mohamed Sedjelmaci

LIPN, CNRS UPRES-A 7030
Université Paris-Nord,

Av. J.B.-Clément, 93430 Villetaneuse, France.

sms@lipn.univ-paris13.fr

ABSTRACT

Tudor Jebelean and Ken Weber intro-
duced an algorithm for finding (a, b)-pairs
satisfying au + bv ≡ 0 (mod k), with 0 <
|a|, |b| <

√
k. It is based on Sorenson’s

“k-ary reduction” This algorithm does not
preserve the GCD and its related GCD algo-
rithm has an O(n2) time bit complexity in
the worst case. We present a modified ver-
sion which avoids this problem. We show
that a slightly modified GCD algorithm has
an O(n2/ log n) running time in the worst
case, where n is the number of bits of the
larger input.

Keywords: Integer greatest common divisor

(GCD); Parallel GCD algorithm; Extended

GCD algorithm; Complexity analysis; Num-

ber theory.

1 INTRODUCTION

Given two integers a and b, the great-
est common divisor of a and b, denoted
GCD(a, b), is the largest integer which
divides both a and b. Applications for
GCD algorithms include computer arith-
metic, integer factoring, cryptology and
symbolic computation [7, 15, 5] . In [10],
Sorenson proposed the “right-shift k-ary
algorithm”. It is based on the following
reduction. Given two positive integers
u > v relatively prime to k (i.e., (u, k)
and (v, k) are coprime), pairs of integers
(a, b) can be found that satisfy

au + bv ≡ 0 (mod k),
with 0 < |a|, |b| <

√
k. (1)

If we perform the transformation (also
called “k-ary reduction”):

(u, v) 7−→ (u′, v′) = (|au+bv|/k,min(u, v)),

which replaces u with u′ = |au + bv|/k,
the size of u is reduced by roughly
1
2 log2(k) bits since

|au + bv|/k ≤ 2 max(|a|, |b|)u

k
<

2u√
k

. (2)

Sorensen suggests table lookup to
find sufficiently small a and b satisfy-
ing (1). By contrast, Jebelean [4] and
Weber [16] both propose a simple al-
gorithm, which finds such small a and
b that satisfy (1) with time complex-
ity O(n2). This latter algorithm we
call the “Jebelean-Weber algorithm”, or
JWA for short. A GCD algorithm based
on this reduction works very well in prac-
tice and is included in Gnu MP multi-
precision library [2]. However this GCD
algorithm does not preserve the GCD,
since for some α|a

GCD(v, |au + bv|/k) = α GCD(u, v),

whence some spurious factors must be
eliminated (see example in Section 4).
This drawback affects the efficiency of
the GCD algorithm, at least for small
integers (≤ 1000 bits). In this present
work we show how a slightly modified
version of JWA easily avoids this prob-
lem. Not only is this modified version
desirable for GCD computations but it
is also needed in many other applica-
tions, such as Jacobi symbol computa-
tion or modular inverse, to mention only
a few [7].

1

The paper is organized as follows.
Notations and definitions are given in
Section 2. In Section 3, we recall the
Jebelean-Weber algorithm and propose
a modified version. Section 4 deals with
the correctness. In Section 5 we describe
our algorithm, study its time complexity,
and report on preliminary experiments.
We conclude with some remarks in Sec-
tion 6.

2 NOTATION

Throughout this paper, we restrict our-
selves to the set of non-negative integers.
Let u and v be two such (non-negative)
integers; u and v are respectively n-bits
and p-bits numbers with u ≥ v ≥ 1. Let
k be an integer parameter s.t. k ≥ 4.

Given a non-negative integer x ∈ N ,
`2(x) represents the number of signifi-
cant bits of an non-negative integer x,
not counting leading zeros: `2(x) =
blog2(x)c + 1, if x ≥ 1 and `2(0) = 0.
So n = `2(u), p = `2(v) and p sat-
isfies 2p−1 ≤ v < 2p. We let ρ =
ρ(u, v) = `2(u)− `2(v) + 1. Thus, we ob-
tain 2ρ−2 < u/v < 2ρ.

Let a, b be positive integers, the in-
teger x = a mod b is the unique non-
negative integer x such that 0 ≤ x ≤ b−1
and x − a is divisible by b. Note that
this notation still holds when a < 0.
If b is relatively prime to k, then r =
a/b mod k is the unique non-negative in-
teger r such that 0 ≤ r ≤ k − 1 and
r b ≡ a (mod k).

As noticed by many authors the main
difficulty in GCD algorithms happens
when the input data u and v are roughly
of the same size [10, 4, 16]. So we
shall assume that when Sorenson’s re-
duction is applied : u/v <

√
k. Oth-

erwise, we usually apply a more effi-
cient reduction: an Euclidean step or
the bmod, defined as: bmod(u, v) = |u−
(u/v mod 2ρ)v|/2ρ.

The extended version of Euclid GCD
algorithm is noted EEA [5]. It is tightly
linked with continued fractions [3, 5] and

is important for its multiple applications
in cryptology and computer algebra.

3 THE ALGORITHMS

3.1 JWA: The Jebelean-Weber Algo-
rithm

First we recall the JWA as stated in [16].

Input: x, y > 0, k ≥ 4, and gcd(k, x) =
gcd(k, y) = 1.
Output: (n, d) such that 0 < n, |d| <√

k, and ny ≡ dx (mod k).

r := x/y mod k ;
f1 = (n1, d1) := (k, 0) ;
f2 = (n2, d2) := (r, 1) ;

while n2 ≥
√

k do
f1 := f1 − bn1/n2c f2 ;
swap (f1, f2) ;

endwhile

return f2

Fig. 1. The Jebelean-Weber Algorithm

When (n, d) is the output result of
JWA, the pair (a, b) = (d,−n) (or
(−d, n)) satisfies the property au + bv =
0 mod k. The algorithm JWA is nothing
but the extended version of Euclid EEA
applied to the pair (k, u/v mod k), where
only one column is added instead of two
for EEA (see [5]), and they only differ on
their exit test.

3.2 The Modified Jebelean-Weber
Algorithm: M-JWA

We give below a modified version that
avoids spurious factors introduced in
JWA.

Input: x, y > 0, k ≥ 4 such that
gcd(k, x) = gcd(k, y) = 1
Output: A 2 × 2 integer matrix M =

M(x, y, k) =
(

n1 d1

n2 d2

)
such that 0 <

n2, |d2| <
√

k, n2y ≡ d2x (mod k) and
n1y ≡ d1x (mod k).

r := x/y mod k ;
f1 = (n1, d1) := (k, 0) ;
f2 = (n2, d2) := (r, 1) ;

2

while n2 ≥
√

k do
f1 := f1 − bn1/n2c f2 ;
swap (f1, f2) ;

endwhile

return M =
(

n1 d1

n2 d2

)
Fig. 2. The Modified Jebelean-Weber

Algorithm: M-JWA

The new transformation associated
with the output matrix of M-JWA is de-
fined by (u, v)← (R1, R2) with:

R1 = |n1v − d1u|/k and (3)
R2 = |n2v − d2u|/k. (4)

We will prove in the next section that the
transformation (u, v) ← (R1, R2) pre-
serves the GCD, i.e.: GCD(R1, R2) =
GCD(u, v) and avoids the spurious fac-
tors of algorithm JWA.

4 CORRECTNESS

Before proving that indeed, M-JWA pre-
serves the GCD, we first recall below
some well known properties [3, 5] of EEA
that are also valid for JWA as well as
for M-JWA. Let (ns, ds)s≥1 be the pair of
sequences corresponding to the succes-
sive results of f2 in JWA or M-JWA and
(n0, d0) = (k, 0); then ∀s ≥ 1 we have

• ns > 0 and dsds+1 < 0

• ns/ds ≡ x/y (mod k)

• nsds+1 − ns+1ds = (−1)sk

• (ns)s is decreasing and (|ds|)s is in-
creasing.

Lemma 4.1 The output of JWA satis-
fies n2y − d2x ≡ 0 (mod k) and

0 < n2, |d2| <
√

k ≤ n1.

Proof : ([16]) In the last iteration i of
JWA or M-JWA ni must meet the condition
ni <

√
k < ni−1. Hence, since ni−1|di|+

ni|di−1| = k, ni−1|di| ≤ k and |di| <
k/ni−1 ≤

√
k. Moreover, we have at the

end of the while loop n2 <
√

k ≤ n1.
QED

We prove in the following that the out-
put integer matrix of M-JWA enjoys more
interesting properties.

Lemma 4.2 Let u ≥ v ≥ 1 and k ≥
4 be three positive integers such that
gcd(u, k) = gcd(v, k) = 1 and u/v <

√
k.

Let
(

c d
a b

)
be the output integer ma-

trix of M-JWA with (u, v) as inputs, then
G = (|du − cv|)/k is a positive integer
such that 0 ≤ G ≤ v.

Proof : First, G is an integer since
c/d ≡ a/b ≡ u/v mod k = r. More-
over, if r <

√
k then c = k, d = 0 and

G = v. Otherwise k > r ≥
√

k and since
|d| ≤ |b|, we proceed in two cases:
Case 1: If |b| = |d|, then this case only
happens only when b = −1, d = 1, c = r
and bk/rc = 1. Since k > c >

√
k > u/v,

we obtain
G = |u−cv|/k = |u/v−c|(v/k) =

(c− u/v)(v/k) < (c/k)v < v.
Case 2: If |b| > |d|. We have G ≤ (|d|u+
cv)/k = (|d|ukv + c/k)v. Let us prove that
|d|u
kv + c/k < 1, i.e.: u/v < k−c

|d| . From

|b| > |d| we obtain |b|−1
|d| ≥ 1. From

Lemma 4.1 we have c ≥
√

k and using
the relation k = c|b| + a|d|, we obtain
the result

k − c

|d|
=

c|b|+ a|d| − c

|d|

= c(
|b| − 1
|d|

) + a ≥
√

k > u/v.

QED

Lemma 4.3 Let u ≥ v ≥ 1 and k ≥ 1
be three integers such that GCD(u, k) =

GCD(v, k) = 1. Let M =
(

c d
a b

)
be

an integer matrix with |det M | = |cb −
ad| = k. If there exist two integers R1,
R2 satisfying

k

(
R1

R2

)
= M

(
u
v

)
, then

GCD(R1, R2) =GCD(u, v).

Proof : Let α = GCD(u, v) and β =
GCD(R1, R2) then k R1 = (cu + dv)
so α|kR1 but GCD(u, k) = 1 then

3

GCD(α, k) = 1 and α|R1. Similarly
k R2 = (au + bv) and α|R2. Hence α|β.
Moreover, since |cb − ad| = k 6= 0, M−1

exists and
(

u
v

)
= k×M−1

(
R1

R2

)
=

k×ε/k×
(

bR1 − dR2

−aR1 + cR2

)
, with ε = ±1,

hence β|α and the result α = β. QED

Example: If k = 2ρ, then the transfor-
mation (u, v) := (v, bmod(u, v)) preserves
the GCD since the associated matrix is

M =
(

0 k
1 −r

)
, with r = u/v mod k.

Remark: It is worth to note that
this lemma generalizes a well known
result in the case k = ±1, i.e.: if(

R1

R2

)
= M

(
u
v

)
, and det M = ±1

then GCD(R1, R2) = GCD(u, v). This
situation occurs in EEA.

A similar method can be applied to
eliminate spurious factors for the left-
shift k-ary GCD of Sorenson [10]. Fol-
lowing the same approach, a pair of
integers (c, d) can be found such that

det
(

c d
a b

)
= ±1.

Proposition 4.1

Let M(u, v, k) =
(

n1 d1

n2 d2

)
be the out-

put integer matrix of M-JWA, given in-
put u, v and k such that u/v <

√
k. If(

R1

R2

)
=

(
|n1v − d1u|/k
|n2v − d2u|/k

)
, then R1

and R2 are two integers satisfying
0 ≤ R1 ≤ v, 0 ≤ R2 ≤ 2u/

√
k and

GCD(R1, R2) = GCD(u, v).

Proof : We have

k

(
R1

R2

)
= N

(
u
v

)
, where N is one

of the four following matrices

N1 =
(
−d1 n1

−d2 n2

)
, N2 =(

d1 −n1

d2 −n2

)
, N3 =

(
−d1 n1

d2 −n2

)
or N4 =

(
d1 −n1

−d2 n2

)
. Then

the result derives straightforwards from
Lemma 4.2, Lemma 4.3 and relation (2).

QED

Example: Let (u, v) = (28865, 19203)
and k = 26 = 64. Note that

GCD(u, v) = 1. We obtain in turn
u/v mod k = 1/3 mod 64 = 43, and

M =
(

21 −1
1 3

)
. Hence

R1 = |u + 21v|/64 = 6752, and R2 =
|3u − v|/64 = 1053. The JWA algo-
rithm uses the transformation (u, v) ←
(v,R2). However GCD(v,R2) =
GCD(19203, 1053) = 3 6= GCD(u, v),
while, with M-JWA algorithm, we obtain
GCD(R1, R2) = GCD(6752, 1053) =
GCD(u, v) = 1. The spurious factor
3 has been eliminated. Table 1 gives
some examples of spurious factors with
Fibonacci pair inputs.

5 THE M-JWA GCD ALGORITHM

An easy GCD algorithm can be de-
signed by simply alternating M-JWA re-
ductions and Euclidean reductions to
achieve an O(n2/ log n) running time in
the worst case. This algorithm is sim-
ilar to ModGenBin algorithm of Soren-
son [12], however the difference is that
there are no spurious factors at all. We
first recall some results on basic arith-
metic (see [10, 11] for more details).

Lemma 5.1 Let x, y and k = 2m,
m ≥ 2 be three positive integers with
x > y. If y ≤ k, then xy, bx/yc and
x mod y can be computed in O(log x) bit
operations. If y > k, then xy can be
computed in O(log x+(log x log y)/ log k)
bits operations. Moreover, bx/yc and
x mod y can be computed in O(log x +
(logdx/ye log y)/ log k) bits operations.
These results require precomputed tables
of size O(k2 log k) bits. It requires at
most O(k2 log2 k) bit operations to com-
pute these tables.

Proof : See [12]. QED

If the length n of the input u is such
that log n > W/2, where W = 32 or 64,
then we allow the parameter k to grow
with the length n: log k = Θ(log n). For
example, as in [12], we can choose the
parameter k such that k = n0.4.

Input: u ≥ v ≥ 3, two odd integers.
Output: gcd(u, v).

4

k = 232 or k = 264;
n := blog2(u)c+ 1;
if (n0.4 > k) then

m := b0.4 log2 nc+ 1;
m := m + (m mod 2); k := 2m;
Precompute tables
(see Lemma 5.1) ;

endif
while uv 6= 0 do

if u < v then (u, v) := (v, u);
if u/v <

√
k then(

c d
a b

)
:= M-JWA(u, v, k);

u := |du− cv|/k;
v := |bu− av|/k;

else (u, v) := (v, u mod v);
makeodd(u); makeodd(v);

endwhile
return u + v;

Fig. 3. The Modified Jebelean-Weber
GCD Algorithm: M-JWA-GCD

The makeodd(x) function removes all
the powers of 2 from the integer x.
M-JWA(u, v, k) is the output matrix of
M-JWA algorithm described in Fig. 2.

5.1 COMPLEXITY ANALYSIS

Theorem 5.1 If u and v are two
positive integers of at most n bits
in length, then M-JWA-GCD computes
gcd(u, v) with a worst case running time
of O(n2/ log n).

Proof : The proof is similar to those de-
scribed in [10, 11, 12]. First we assume
that only M-JWA reductions occur. The
computation of the matrix M-JWA(u, v, k)
costs O(log2 k). The computation of
|du − cv| and |bu − av| can be com-
puted in O(n) time. Since there are,
at most, O(n/ log k) iterations, then we
obtain O((n/ log k) × (n + log2 k)) =
O(n2/ log n) running time.

Now, we assume that only Euclidean
steps occur. Let vi and qi, i = 1, 2, . . . , s,
be respectively the remainders and quo-
tients sequences obtained in Euclid algo-
rithm, with s = O(n/ log k). The run-
ning time is bounded by (up to a con-

stant)

s∑
i=1

log vi log qi

log k
+ O(log vi) + O(log qi)

≤ n + 1
log k

s∑
i=1

log qi + sn = O(n2/ log n),

since log k = Θ(log n) and
∏s

i=1 qi ≤ 2n.
Finally, the precomputed tables re-

quire a memory space of O(k2 log k) =
O(n0.8 log n) bits, which is no more
than the length of the inputs u and v.
It also needs at most O(k2 log2 k) =
O(n0.8 log2 n) bit operations in time to
compute these tables. QED

5.2 EXPERIMENTS

The implementation is written in GNU
C Compiler gcc, version 2.7 (Stallman,
1991 [2]) with the 3.1.1 Gnu MP li-
brary on a Pentium IV, 3.1 GHz Dell
PC, running Linux system. The average
times are in microseconds (µs). We used
the same parameters for both M-JWA-GCD
and JWA-GCD and the code is not opti-
mized. The experiments were done on
N = 104 random numbers u and v of
size SIZE words of 32 bits, with 10 ≤
SIZE ≤ 70. We used k = 230 with
M-JWA reduction for `2(u) − `2(v) ≤ 4,
and Euclidean step otherwise.

The results described in Table 2 show
that M-JWA-GCD has a slightly better run-
ning time for integers of size less than 30
words of 32 bits. For larger inputs, the
parameter k = 230 was not suitable and
we suggest to experiment it with more
M-JWA reductions, i.e.: for `2(u)−`2(v) ≤
C, with C > 4 and larger parameter k,
i.e.: k = 264.

6 CONCLUSION

We have shown that a slight modifica-
tion easily avoids the spurious factors in-
troduced by JWA. Although in our ex-
periments M-JWA is faster only for inte-
gers less then 30 words of 32 bits, it
makes the complexity analysis much eas-
ier and helps to design other Jebelean
like GCD algorithms. Sorenson also pro-
posed in [12] a small modification of the

5

N Spurious factor
300 5
1000 151875
2000 122542875
3000 ∼ 1.02 1015

4000 ∼ 2.37 1015

5000 ∼ 1.15 1019

6000 ∼ 2.74 1025

9000 ∼ 9.67 1043

Table 1: Spurious factors in JWA with Fi-
bonacci pair of inputs (FN , FN−1) .

SIZE M-JWA JWA
10 39.4 42.3
20 117.7 118.4
30 150.1 153.4
40 246.0 240.8
50 353.9 339.5
70 588.7 563.0

Table 2: CPU times in microseconds for
M-JWA and JWA gcd algorithms with 104

random integers of SIZE words of 32
bits.

JWA algorithm but its GCD algorithm
has an O(n2/ log n) running time on av-
erage, and O(n2) running time in the
worst case. We improve this result, since
our algorithm has an O(n2/ log n) run-
ning time in the worst case. On the
other hand, for very large integers, there
are many half-gcd like algorithms [1, 6,
8, 14, 15, 9] that computes the GCD in
O(n log2 n log log n) time, but all these
fast algorithms fall down to more basic
algorithms at some point of their recur-
sion. Moreover, we observe that Soren-
son’s reduction (1) is basically a half-gcd
like procedure (consider k = 2n) and the
cofactors a and b in relation (1) depend
only on the least significant bits of u and
v. Therefor, one may consider to built
a half-gcd like algorithm based on a re-
cursive Sorenson’s reduction. This is the
direction we intend to next take our re-
search.

References

[1] A.V. Aho, J.E. Hopcroft and
J.D. Ullman, The Design and Anal-
ysis of Computer Algorithms, Addi-
son Wesley, 1974

[2] Gnu MP 4.1.2, online reference
http://swox.com/gmp/manual,
/index.html, 2002.

[3] G.H. Hardy and E.V. Wright, An
Introduction To The Theory of
Number, Oxford University Press.,
London, 1979

[4] T. Jebelean, A Generalization of the
Binary GCD Algorithm, in Proc.
of the International Symposium on
Symbolic and Algebraic Computa-
tion (ISSAC’93), 1993, 111-116

[5] D.E. Knuth, The Art of Computer
Programming, Vol. 2, 3rd ed., Ad-
dison Wesley, 1981

[6] D. Lichtblau, Half-GCD and Fast
rational recovery, in Proc. of the
International Symposium on Sym-
bolic and Algebraic Computation
(ISSAC’2005), 2005, 254-258

[7] A.J. Manezes, P.C.van Oorschot,
S.,A., Vanstone, Handbook of Ap-
plied Cryptography, Vol. 1-2, 2nd
ed., CRC Press, 1997

[8] A. Schönhage, Schnelle Berech-
nung von Kettenbruchentwicklugen,
Acta Informatica, 1, 1971, 139-144

[9] M.S. Sedjelmaci, The Accelerated
Euclidean Algorithm, Poster talk
presented at the International Sym-
posium on Symbolic and Algebraic
Computation (ISSAC’2004), Uni-
versity of Cantabria, Santander,
Spain, July 4-7, 2004

[10] J. Sorenson, Two Fast GCD Algo-
rithms, J. of Algorithms, 16, 1994,
110-144

[11] J. Sorenson, An Analysis of Lehmer
’s Euclidean Algorithm, in Proc.
of the International Symposium on
Symbolic and Algebraic Computa-
tion (ISSAC’95), 1995, 254-258

6

[12] J. Sorenson, An Analysis of the
generalized binary GCD algorithm,
High Primes and Misdemeanors,
Lectures in Honour of Hugh Cowie
Williams, Alf van der Poorten
and Andreas Stein ed., Banff, Al-
berta, Canada, AMS Math Review
2005h:11279, Vol. 41, 2004, 254-258,
http://euclid.butler.edu/

[13] J. Sorenson, Lehmer’s Algorithm
for very Large Numbers, Poster talk
presented at ANTS VI, University
of Vermont, USA, June 13-18, 2004

[14] D. Stehle, P. Zimmermann, A
Binary Recursive Gcd Algorithm,
in Proc. of ANTS VI,University
of Vermont,USA, June 13-18,2004,
411-425

[15] J. von zur Gathen, J. Gerhard,
Modern Computer Algebra1st ed.,
Cambridge University Press, 1999

[16] K. Weber, Parallel implementation
of the accelerated integer GCD algo-
rithm, J. of symbolic Computation
(Special Issue on Parallel Symbolic
Computation), 21, 1996, 457-466

7

