Implementation of Implicit Complexity
Midterm defense

Thomas Rubiano

PhD supervised by V. Mogbil in Université Paris 13 &
J. G. Simonsen in Kobenhavn Universitet &
J.-Y. Moyen,
funded by the Elica Project

Introduction

@ ICC helps to predict and control resources
@ A lot of theories :

e Safe/Normal Recursion (S. Bellantoni and S. Cook)

e Size-change and termination (C.S. Lee, N.D. Jones and
A.M. Ben-Amram)
Polynomes MWP (L. Kristiansen and N.D. Jones)
Non-Size-Increasing programs (M. Hofmann)

Motivations 1/2

@ Most of them concern “toy languages”

@ 20 years of ICC’s theories : time to fill the gap between
theories and actual programs

@ But real languages are complex. ..
@ A good language level : Intermediate Representations
@ A good start : Detection of NSI Programs

Motivations 2/2

Compilers developers mainly focus on optimizations. . .
@ Analysis and Optimizations are not so far apart

@ Providing proven bounds on space and time : a safety and
a security property

Motivations 2/2

Compilers developers mainly focus on optimizations. . .
@ Analysis and Optimizations are not so far apart

@ Providing proven bounds on space and time : a safety and
a security property

A proof of concept to show that ICC and Compilers can fuel
each other

Compilers

and Optimizati
LLVM and Intermediate entation

Section 1

Compilers

Principles

Compilers

Analysis and Optimizations

LLVM and Intermediate Representation

Principles

IR

S Optimizer H

Principles

Compilers

Analysis and Optimizations

LLVM and Intermediate Representation

Principles

IR

\

S S
n

I M
>

m. © &

o c (@]

O < o

TN

37

Compilers Principles
Analysis and Optimizations
LLVM and Intermediate Representation

Analysis

A lot of passes already used by default :

$ gcc —fdump-tree-all -fdump-rtl-all loop.c -o loopgcc
$ Il loop.c.*

loop.c.001t.
loop.c.003t. orlglnal
loop.c.004t.gimple G|mp|e
loop.c.006t.vcg

loop.c.150r.expand
loop.c.151r.sibling
loop.c.153r.initvals RTL
loop.c.154r.unshare

$ Il loop.c.» | we -1
43

A pass-manager stores data in memory from analysis made
previously for next ones.

Compilers Principles
Analysis and Optimizations
LLVM and Intermediate Representation

Order is given as argument to the pass manager :

$ llvm-as < /dev/null | opt -03 -disable-output -debug-pass=Arguments

Pass Arguments: -targetlibinfo -no-aa -tbaa -scoped-noalias -assumption-tracker
-basicaa -notti -verify-di -ipsccp -globalopt -deadargelim —-domtree
—instcombine -simplifycfg -basiccg -prune-eh -inline-cost -inline
—functionattrs -argpromotion -sroa -domtree -early-cse -lazy-value-info
—jump-threading -correlated-propagation -simplifycfg -domtree -instcombine
—tailcallelim -simplifycfg -reassociate -domtree -loops -loop-simplify -lcssa
—loop-rotate -licm -loop-unswitch -instcombine -scalar-evolution
—loop-simplify -lcssa -indvars -loop-idiom -loop-deletion -function_tti
—loop-unroll -memdep -mldst-motion -domtree -memdep -gvn -memdep -memcpyopt
—sccp —domtree -instcombine -lazy-value-info -jump-threading
—correlated-propagation -domtree -memdep -dse -adce -simplifycfg -domtree
—instcombine -barrier -domtree -loops -loop-simplify -lcssa -branch-prob
—block-freq —scalar-evolution -loop-vectorize -instcombine -scalar—evolution
—slp-vectorizer —-simplifycfg -domtree —-instcombine -loops -loop-simplify
—-lcssa -scalar-evolution -function_tti -loop-unroll
—alignment-from-assumptions -strip-dead-prototypes -globaldce -constmerge
-verify -verify-di

A lot of passes are used to prepare optimizations or clean the
n

IR. (e.g. detection of) i is made by finding specific pattern)
i=1

Compilers Principles
Analysis and Optimizations
LLVM and Intermediate Representation

GCC and LLVM

GCC LLVM
Performance =(+) =
Popular high * (deb)
Old 28 years 12 years

University of lllinois/NCSA
Licensing GPLv3 Open Source License (no
copyleft) (and Tools)

Modular (=) built for
Documentation (=)? 4
Community ? Huge and active !

(2012) 16 commits/day, (2014) 34 commits/day,
470 devs, 7.3 Mlines 2.6 Mlines 9/37

Contributions

Compilers Principles
Analysis and Optimizations
LLVM and Intermediate Representation

LLVM Intermediate Representation

o LLVM-IR is a Typed Assembly Language (TAL) and a
Static Single Assignment (SSA) based representation.
This provides :

@ An IR is source-language-independent, then
optimizations and analysis should work on every
languages (properly translated to this IR).

10/37

Introd
NSI Programs Ana h Space-RCG

Conclusion and further work

Section 2

NSI Programs

11/37

Introduction
NSI Programs Analogy with Space-RCG
Conclusion and further work

Bounding Complexity

@ First idea of safe recursion from S. Bellantoni and S. Cook :
repeated iteration is a source of exponential growth

@ The study of Non Size Increasing was introduced by
M. Hofmann : it is not harmful to iterate function which does not
increase the size of its data

@ We want to detect and to certify that a program computes (or
can compute) within a constant amount of space

12/37

Introduction
NSI Programs Analogy with Space-RCG
Conclusion and further work

NSI and Imperative programs

@ Hofmann detects non size increasing programs by adding
a special type ¢ which can be seen as the type of pointers
to free memory in Imperative Programs.

Example (insertion without ¢)

insert (v, [1) —=> cons(v, [1)

insert (y, cons (X, xXs8)) —>
if x<y
then cons(X, (insert (Yy, XS)))
else cons (y, cons (X, xs))

13/37

Introduction
NSI Programs Analogy with Space-RCG
Conclusion and further work

NSI and Imperative programs

@ Hofmann detects non size increasing programs by adding
a special type ¢ which can be seen as the type of pointers
to free memory in Imperative Programs.

Example (insertion with ¢)

insert(d, y, []) —> cons(d, y, [])

insert (d, y, cons(d’, x, xs)) —>
if x<y
then cons(d’, x, (insert(d, y, xs)))
else cons(d, y, cons(d’, x, xs))

@ simply, the constructor consumes one diamond d then
exponentiation is not possible anymore

13/37

Introduction
NSI Programs Analogy with Space-RCG
Conclusion and further work

CFG view

I=1]

insert (d, y, []) —> cons(d,
y, [1)
insert (d, y, cons(d’, x,
xs)) —>
if x<y
then cons (d’, x,
(insert (d, vy,
xs)))
else cons(d, vy,
cons (d’, x, xs)) cons ()

Insert represented as CFG
(Control Flow Graph) :

cons ()

14/37

Introduction
NSI Programs Analogy with Space-RCG
Conclusion and further work

Analogy with Space-RCG

Add a weight (corresponding '
to the space used by the S
program) to the CFG and x=y X<y
we obtain the following RCG
(Resource Control Graph) : +1
+1 +1

15/37

Introduction
NSI Programs Analogy with Space-RCG
Conclusion and further work

Building RCG

In our case we want to build a RCG and find the heaviest path
regarding to allocation memory.
@ LLVM tools already provide the CFG ...
@ We can compute the weight of each Basic Block by
counting number of allocation on. ..
@ we can calculate the heaviest path and detect positive
loops with the Bellman-Ford’s Algorithm

1. Recall : A CFG starts with one entry-block and has several exit-blocks,

that builds the structured programming concept
16/37

Introduction
NSI Programs Analogy with Space-RCG
Conclusion and further work

Is the program NSI ?

@ This analysis just provide an answer to the question “Is the
program/function NSI ?”.

@ We consider all positives loops as occurred a
non-determined number of time.

17/37

Introduction
NSI Programs Analogy with Space-RCG
Conclusion and further work

Conclusion

@ We built a static analyzer in almost 200 lines of code
thanks to the modularity of the compiler.

@ It can be seen as two passes : the first one build a RCG
(reusable) and the second detect positive loops.

@ available on github here

18/37

https://github.com/ThomasRuby/NSIDetectionPass

In theory

. . N In practice
Quasi-invariant block code motion P

Section 3

Quasi-invariant block code motion

19/37

In theory

. . N In practice
Quasi-invariant block code motion pra

From ICC techniques to compiler optimization ?

@ From an idea of Lars Kristiansen, about language theory
and proof on semantic equivalence after an optimization

@ Interesting techniques of data flow analysis in
“mwp-bounds” and in termination analysis using
“size-change graphs”

@ could help to trace and gather dependencies between
variables : build a dependency graph

@ What if we try to do so for compilers optimizations ?

20/37

In theory

. . N In practice
Quasi-invariant block code motion pra

Motivations

@ Learn about variables dependencies around loops

@ Learn about loop optimizations, especially loop-invariant
detection and hoisting

@ Provide another point of view and maybe a new
optimization : “Quasi-invariant block code motion”

@ In a way to assist programmers

@ Seems to not be implemented in compilers. .. (notin
LLVM, maybe in GCC...)

21/37

Quasi-invariant block code motion

Quasi-Invariants

@ A quasi-invariant is a
variable which does not
change after a certain
number of loop
execution

@ A degree of invariance
is the number of time
we need to compute the
loop until the variable is
stable

@ It could be very long for
a human...

In theory
In practice

while (1<100) {
z=y*xy; //2
use(z) ;
y=x+x; //1
use (y) ;
i=i+1;

22/37

In theory
Quasi-invariant block code motion n e

Matrix

Definition

This Data Flow Graph can be represented as a matrix N x N
with N = |var(c)|, we will note C the corresponding matrix to C.

dependence
C:=[xo=x0+1;x =0]; Xo 1 > Yo
100 propagation
C == @ 0 @ X1 —————— 0— _____ > V1
0 0 0
reinitialization
Y2

0
FIGURE — Matrix of dependence

23/37

In theory

. . N In practice
Quasi-invariant block code motion pré

Chunks

@ Command Composition
@ See one block as one command
@ Hoist an entire block (could be a loop!)

24/37

In theory

Quasi-invariant block code motion

In practice

Example of the following sequence :

C1:=[X = Xo + X1; X3 = X2 + 2];
Co '=[X1 = Xoi X3 = X3 % 2];

C1 Cz

(a) Multipaths

Multipath and Composition example

[ca1;c2]
XO7}/O
X3 s

sSos s

(b) Composition

25/37

In theory
In practice

Quasi-invariant block code motion

Condition example

Example of the following sequence : C := if E then Cy; with
E:=x3>0
C1 :=[Xo = Xo + X1: X3 = X2 + 2];

E Ci [i1f E then C4]
Xo7}’o
Xg===--- - > Y1
Xgezz----> >Y2
Xs\WS

) 10 0 0 1.0 0 0

e I I) I R)

E=lo| ©=1p 0 o 1| ©F=l4 ¢ o 1

1 o 0 0 0 10 0 1

FIGURE — Condition

26/37

In theory

. . N In practice
Quasi-invariant block code motion pré

Loop while example

Example of the following sequence (C; is the composition
presented previously) : C := while E do C1; WithE :=x3 > 0
Cq ZZ[XO =Xg+ X{; X3 = Xo + 2; Xy = Xo; X3 = X3 *2],

FIGURE — Finding fix point of dependence (simple example)

27/37

In theory

. . N In practice
Quasi-invariant block code motion pré

Loop while

Let c be acommand suchas:C:=while E doC;:.

@ first occurrence of ¢, will influence the second one and so
on

@ we consider the number of iteration undecidable
@ Let’s define C* = limit(C¥).

@ Ci;j = @«(Ei @ (CT)k,) or we can simplify the notation as
C=(C7)"

28/37

In theory

. . N In practice
Quasi-invariant block code motion pra

Matrix Algebra

The Matrix representing a DFG is composed of elements in

E =1{0,0,1}. The elements in £ are ordered as follows :

() < 0 < 1. And we can introduce two operations noted ¢ and ®
defined as below :

@max‘@ 0 1 ®+‘® 0 1
O |0 0 1 0|0 0 0
0 0 0 1 0O (0 O 1
1 11 1 110 1 1

@ could be seen as a max and ® as a -+ if we consider () as
—0OQ.

Then the composition of matrices is computed as :

Cij = Dk(Aik ® By,) we can write C = Ae B.

29/37

In theory

. . N In practice
Quasi-invariant block code motion pré

Mutual independence of chunks

Definition
If ¢, independent of ¢, and c, independent of c, then C, and
C, are mutually independents :

Ci xXCy
Example of the following sequence :
C1 :=[xo = Xo + X1;
Czi=[x3 = X + X3 % 2];
C1 Cz [c1;co]

Xo——=20-------> > Yo Xo——=)o
X{===----= PLy == mm - o4 Xp===---- > Y1
Xg==--m- - >Z==z - - - > Y2 Xge=zo---3 > V2
Xg--mmmm - 3) 73—}/ X3———=3/5
FIGURE — Composition of mutually independent chunks of commands

In this example, 1 < C» but [C1; C2] is not self-independent.
30/37

In theory
In practice

Quasi-invariant block code motion

Moving Independent Chunks

Lemma

Swapping commands (or chunks of commands) : Ifc; < C,
then
C1;C2 =C2;Cy

| \

Lemma
Moving mutual independent commands out of while : If
C; < Cp andc, < C, then

while E do [C1;C2] =[if E then C;;while E do Cp]

31/37

In theory

i, .) In practice
Quasi-invariant block code motion P

Figure out the invariance degree

Let suppose we have computed the list of dependencies for all
commands. How to compute the degree of one command ?

@ Initialize every degrees to 0

Q Initialize the current command degree cd to oo

© 1IF there is no dependence for the current chunk return 1

© ELSE for each dependence compute the degree dd of the
command
@ IF cd <= dd and the current command dominates this
dependence THEN cd = dd + 1
ELSE cd = dd

32/37

In theory

i, .) In practice
Quasi-invariant block code motion P

A toy for testing

@ to validate, we implemented on a toy parser in python
@ around 400 lines
@ if you have some in mind ?

33/37

Quasi-invariant block code motion

Last example

srand (time (NULL)) ;
int n=rand()%100;
int j=0;
while (j<100) {
fact=1;
i=1;
while (i<n) {
fact=factxi;
i=i+1;
}
j=3+1;
use (fact) ;

In theory
In practice

srand (time (NULL
int n = rand()
int j = 0;
if (3 < 100)
{
fact = 1;
i = dg
while (i < n)
{
fact = fact * 1i;
i=1+1;
}
j=3+1
use (fact) ;
}
while (j < 100)
{
j=3+1
use (fact) ;
}

)i
100;

)

34/37

In theory

i, .) In practice
Quasi-invariant block code motion P

Revelations !

@ | discovered a paper few weeks ago. ..
“A Loop Optimization Technique Based on
Quasi-Invariance” by Litong Song, Yoshihiko Futamura,
Robert Glick, Zhenjiang Hu - 2000

@ We still have new concepts : Chunks, Compositions and
type of dependencies

35/37

In theory

i, .) In practice
Quasi-invariant block code motion P

Questions !

Asked to the french community of compilation :
@ Do you think it’s relevant to write a pass on it ?
@ Do you think it's relevant to write a paper on it ?

36/37

In theory
In practice

Quasi-invariant block code motion

@ Conferences
@ Workshop DICE2016 Eindhoven (NSI programs)
e French Community Of Compilation Aussois (Quasi-invariant
block motion QIBM)
@ Papers
e DICE2016 (NSI programs)
e draft for CC2017 (deadline 1st Nov) on (QIBM) or
EuroLLVM2017
o Talks
e DIKU Copenhagen (Compiler and IR introductions)
e ELICA Bologna (QIBM)
@ Courses
e Summer school OPLSS2015 Eugene (2w)
e Summer school + project CEMRACS2016 Luminy (6w)
o Master Course (Complexity and Computation) University of
Copenhagen (4m) Validated

37/37

In theory

In practice

Quasi-invariant block code motion

[AmADIO (R.), COUPET-GRIMAL (S.), ZILIO (S. Dal) and
JAKUBIEC (L.). —
A functional scenario for bytecode verification of resource
bounds. In : Computer Science Logic, 12th International
Workshop, CSL04. pp. 265-279. —
Springer.

[BAILLOT (P) and TERUI (K.). —
Light types for polynomial time computation in lambda
calculus. Information and Computation, vol. 201 (1), 2009,
pp. 41-62.

[§ BELLANTONI (S.) and COOK (S.). —
A new recursion-theoretic characterization of the poly-time
functions. Computational Complexity, vol. 2, 1992, pp.
97-110.

[§ BONFANTE (G.), MARION (J.-Y.) and MOYEN (J.-Y.). —

37/37

In theory

i, .) In practice
Quasi-invariant block code motion P

Quasi-interpretations a way to control resources.
Theoretical Computer Science, vol. 412 (25), 2011, pp.
2776 — 2796.

GIRARD (J.-Y.). —
Linear Logic. Theoretical Computer Science, vol. 50, 1987,
pp. 1-102.

HOFMANN (M.). —

Linear types and Non-Size Increasing polynomial time
computation. In : Proceedings of the Fourteenth IEEE
Symposium on Logic in Computer Science (LICS’99), pp.
464-473.

LEe (C. S.), JONES (N. D.) and BEN-AMRAM (A. M.). —
The Size-Change Principle for Program Termination. pp.
81-92. —

ACM press.

37/37

	Compilers
	Principles
	Analysis and Optimizations
	LLVM and Intermediate Representation

	NSI Programs
	Introduction
	Analogy with Space-RCG

	Quasi-invariant block code motion
	In theory
	In practice

