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Introduction

ICC helps to predict and control resources
A lot of theories :

Safe/Normal Recursion (S. Bellantoni and S. Cook)
Size-change and termination (C.S. Lee, N.D. Jones and
A.M. Ben-Amram)
Polynomes MWP (L. Kristiansen and N.D. Jones)
Non-Size-Increasing programs (M. Hofmann)
. . .
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Motivations 1/2

Most of them concern “toy languages”
20 years of ICC’s theories : time to fill the gap between
theories and actual programs
But real languages are complex. . .
A good language level : Intermediate Representations
A good start : Detection of NSI Programs
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Motivations 2/2

Compilers developers mainly focus on optimizations. . .
Analysis and Optimizations are not so far apart
Providing proven bounds on space and time : a safety and
a security property

A proof of concept to show that ICC and Compilers can fuel
each other
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Analysis

A lot of passes already used by default :

$ gcc -fdump-tree-all -fdump-rtl-all loop.c -o loopgcc
$ ll loop.c.*
loop.c.001t.tu
loop.c.003t.original
loop.c.004t.gimple
loop.c.006t.vcg
...
loop.c.150r.expand
loop.c.151r.sibling
loop.c.153r.initvals
loop.c.154r.unshare
...
$ ll loop.c.* | wc -l
43

}Gimple

}RTL

A pass-manager stores data in memory from analysis made
previously for next ones.
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Order

Order is given as argument to the pass manager :

$ llvm-as < /dev/null | opt -O3 -disable-output -debug-pass=Arguments
Pass Arguments: -targetlibinfo -no-aa -tbaa -scoped-noalias -assumption-tracker

-basicaa -notti -verify-di -ipsccp -globalopt -deadargelim -domtree
-instcombine -simplifycfg -basiccg -prune-eh -inline-cost -inline
-functionattrs -argpromotion -sroa -domtree -early-cse -lazy-value-info
-jump-threading -correlated-propagation -simplifycfg -domtree -instcombine
-tailcallelim -simplifycfg -reassociate -domtree -loops -loop-simplify -lcssa
-loop-rotate -licm -loop-unswitch -instcombine -scalar-evolution
-loop-simplify -lcssa -indvars -loop-idiom -loop-deletion -function_tti
-loop-unroll -memdep -mldst-motion -domtree -memdep -gvn -memdep -memcpyopt
-sccp -domtree -instcombine -lazy-value-info -jump-threading
-correlated-propagation -domtree -memdep -dse -adce -simplifycfg -domtree
-instcombine -barrier -domtree -loops -loop-simplify -lcssa -branch-prob
-block-freq -scalar-evolution -loop-vectorize -instcombine -scalar-evolution
-slp-vectorizer -simplifycfg -domtree -instcombine -loops -loop-simplify
-lcssa -scalar-evolution -function_tti -loop-unroll
-alignment-from-assumptions -strip-dead-prototypes -globaldce -constmerge
-verify -verify-di

A lot of passes are used to prepare optimizations or clean the

IR. (e.g. detection of
n∑

i=1
i is made by finding specific pattern)
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GCC and LLVM

GCC LLVM

Performance = (+) =

Popular high ↗ (deb)

Old 28 years 12 years

Licensing GPLv3
University of Illinois/NCSA
Open Source License (no

copyleft) (and Tools)

Modular (−)? built for

Documentation (−)? +

Community ? Huge and active !

Contributions (2012) 16 commits/day,
470 devs, 7.3 Mlines

(2014) 34 commits/day,
2.6 Mlines 9 / 37
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LLVM Intermediate Representation

LLVM-IR is a Typed Assembly Language (TAL) and a
Static Single Assignment (SSA) based representation.
This provides :
An IR is source-language-independent, then
optimizations and analysis should work on every
languages (properly translated to this IR).
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Bounding Complexity

First idea of safe recursion from S. Bellantoni and S. Cook :
repeated iteration is a source of exponential growth

The study of Non Size Increasing was introduced by
M. Hofmann : it is not harmful to iterate function which does not
increase the size of its data

We want to detect and to certify that a program computes (or
can compute) within a constant amount of space
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NSI and Imperative programs

Hofmann detects non size increasing programs by adding
a special type ♦ which can be seen as the type of pointers
to free memory in Imperative Programs.

Example (insertion without ♦)

insert( y, []) -> cons( y, [])
insert( y, cons( x, xs)) ->

if x<y
then cons( x, (insert( y, xs)))
else cons( y, cons( x, xs))
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NSI and Imperative programs

Hofmann detects non size increasing programs by adding
a special type ♦ which can be seen as the type of pointers
to free memory in Imperative Programs.

Example (insertion with ♦)

insert(d, y, []) -> cons(d, y, [])
insert(d, y, cons(d’, x, xs)) ->

if x<y
then cons(d’, x, (insert(d, y, xs)))
else cons(d, y, cons(d’, x, xs))

simply, the constructor consumes one diamond d then
exponentiation is not possible anymore
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CFG view

insert(d, y, []) -> cons(d,
y, [])

insert(d, y, cons(d’, x,
xs)) ->

if x<y
then cons(d’, x,

(insert(d, y,
xs)))

else cons(d, y,
cons(d’, x, xs))

Insert represented as CFG
(Control Flow Graph) :

0

1 2

3

45

67

end

l = []

cons()

l 6= []

tail()

x < yx ≥ y

cons()cons()

cons()
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Analogy with Space-RCG

Add a weight (corresponding
to the space used by the
program) to the CFG and
we obtain the following RCG
(Resource Control Graph) :

0

1 2

3

45

67

end

l = []

+1

l 6= []

-1

x < yx ≥ y

+1+1

+1
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Building RCG

In our case we want to build a RCG and find the heaviest path
regarding to allocation memory.

LLVM tools already provide the CFG 1. . .
We can compute the weight of each Basic Block by
counting number of allocation on. . .
we can calculate the heaviest path and detect positive
loops with the Bellman-Ford’s Algorithm

1. Recall : A CFG starts with one entry-block and has several exit-blocks,
that builds the structured programming concept
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Is the program NSI ?

This analysis just provide an answer to the question “Is the
program/function NSI ?”.
We consider all positives loops as occurred a
non-determined number of time.
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Conclusion

We built a static analyzer in almost 200 lines of code
thanks to the modularity of the compiler.
It can be seen as two passes : the first one build a RCG
(reusable) and the second detect positive loops.
available on github here
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From ICC techniques to compiler optimization ?

From an idea of Lars Kristiansen, about language theory
and proof on semantic equivalence after an optimization
Interesting techniques of data flow analysis in
“mwp-bounds” and in termination analysis using
“size-change graphs”
could help to trace and gather dependencies between
variables : build a dependency graph
What if we try to do so for compilers optimizations ?
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Motivations

Learn about variables dependencies around loops
Learn about loop optimizations, especially loop-invariant
detection and hoisting
Provide another point of view and maybe a new
optimization : “Quasi-invariant block code motion”
In a way to assist programmers
Seems to not be implemented in compilers. . . (not in
LLVM, maybe in GCC. . . )
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Quasi-Invariants

A quasi-invariant is a
variable which does not
change after a certain
number of loop
execution
A degree of invariance
is the number of time
we need to compute the
loop until the variable is
stable
It could be very long for
a human. . .

while(i<100){
z=y*y; //2
use(z);
y=x+x; //1
use(y);
i=i+1;

}
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Matrix

Definition
This Data Flow Graph can be represented as a matrix N × N
with N = |var(C)|, we will note C the corresponding matrix to C.

x0

x1

x2

y0

y1

y2

dependence

1

propagation

0

reinitialization

∅

C :=[x0 = x0 + 1; x2 = 0];

C =

1 ∅ ∅
∅ 0 ∅
∅ ∅ ∅



FIGURE – Matrix of dependence

23 / 37



Compilers
NSI Programs

Quasi-invariant block code motion

In theory
In practice

Chunks

Command Composition
See one block as one command
Hoist an entire block (could be a loop !)

24 / 37



Compilers
NSI Programs

Quasi-invariant block code motion

In theory
In practice

Multipath and Composition example

Example of the following sequence :
C1 :=[x0 = x0 + x1; x3 = x2 + 2];
C2 :=[x1 = x2; x3 = x3 ∗ 2];

x0
x1
x2
x3

z0
z1
z2
z3

y0
y1
y2
y3

C1 C2

C1 =


1 ∅ ∅ ∅
1 0 ∅ ∅
∅ ∅ 0 1
∅ ∅ ∅ ∅

C2 =


0 ∅ ∅ ∅
∅ ∅ ∅ ∅
∅ 1 0 ∅
∅ ∅ ∅ 1


(a) Multipaths

x0
x1
x2
x3

y0
y1
y2
y3

[C1;C2]

C1 • C2 =


1 ∅ ∅ ∅
1 ∅ ∅ ∅
∅ 1 0 1
∅ ∅ ∅ ∅


(b) Composition
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Condition example

Example of the following sequence : C := if E then C1; with
E :=x3 ≥ 0
C1 :=[x0 = x0 + x1; x3 = x2 + 2];

x0
x1
x2
x3

y0
y1
y2
y3

E C1

C1 =


1 ∅ ∅ ∅
1 0 ∅ ∅
∅ ∅ 0 1
∅ ∅ ∅ ∅

E =


∅
∅
∅
1



x0
x1
x2
x3

y0
y1
y2
y3

[if E then C1]

(C1)
E =


1 ∅ ∅ ∅
1 0 ∅ ∅
∅ ∅ 0 1
1 ∅ ∅ 1


FIGURE – Condition
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Loop while example

Example of the following sequence (C1 is the composition
presented previously) : C := while E do C1; with E :=x3 ≥ 0
C1 :=[x0 = x0 + x1; x3 = x2 + 2; x1 = x2; x3 = x3 ∗ 2];

x0

x1

x2

x3

y0

y1

y2

y3

C1

C1 =


1 ∅ ∅ ∅
1 ∅ ∅ ∅
∅ 1 0 1
∅ ∅ ∅ ∅



x0

x1

x2

x3

y0

y1

y2

y3

C21

C2
1 = C2

1 =


1 ∅ ∅ ∅
1 ∅ ∅ ∅
1 1 0 1
∅ ∅ ∅ ∅



x0

x1

x2

x3

y0

y1

y2

y3

C31

C3
1 = C∗1 =


1 ∅ ∅ ∅
1 ∅ ∅ ∅
1 1 0 1
∅ ∅ ∅ ∅


FIGURE – Finding fix point of dependence (simple example)
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Loop while

Let C be a command such as : C := while E do C1;.

first occurrence of C1 will influence the second one and so
on
we consider the number of iteration undecidable
Let’s define C∗ = limit(Ck ).
Ci,j =

⊕
k (Ei ⊕ (C∗1)k ,j) or we can simplify the notation as

C = (C∗1)E
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Matrix Algebra

The Matrix representing a DFG is composed of elements in
E = {∅,0,1}. The elements in E are ordered as follows :
∅ < 0 < 1. And we can introduce two operations noted ⊕ and ⊗
defined as below :

⊕max ∅ 0 1
∅ ∅ 0 1
0 0 0 1
1 1 1 1

⊗+ ∅ 0 1
∅ ∅ ∅ ∅
0 ∅ 0 1
1 ∅ 1 1

⊕ could be seen as a max and ⊗ as a + if we consider ∅ as
−∞.
Then the composition of matrices is computed as :
Ci,j =

⊕
k (Ai,k ⊗ Bk ,j) we can write C = A • B.
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Mutual independence of chunks

Definition
If C2 independent of C1 and C1 independent of C2 then C2 and
C1 are mutually independents :

C1 � C2

Example of the following sequence :
C1 :=[x0 = x0 + x1;
C2 :=[x3 = x2 + x3 ∗ 2];

x0
x1
x2
x3

z0
z1
z2
z3

y0
y1
y2
y3

C1 C2

x0
x1
x2
x3

y0
y1
y2
y3

[C1;C2]

FIGURE – Composition of mutually independent chunks of commands

In this example, C1 � C2 but [C1;C2] is not self-independent.
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Moving Independent Chunks

Lemma
Swapping commands (or chunks of commands) : If C1 � C2
then

C1;C2 ≡ C2;C1

Lemma
Moving mutual independent commands out of while : If
C1 � C2 and C1 � C1 then

while E do [C1;C2] ≡ [if E then C1;while E do C2]
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Figure out the invariance degree

Let suppose we have computed the list of dependencies for all
commands. How to compute the degree of one command ?

1 Initialize every degrees to 0
2 Initialize the current command degree cd to∞
3 IF there is no dependence for the current chunk return 1
4 ELSE for each dependence compute the degree dd of the

command
1 IF cd <= dd and the current command dominates this

dependence THEN cd = dd + 1
ELSE cd = dd
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A toy for testing

to validate, we implemented on a toy parser in python
around 400 lines
if you have some in mind ?
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Last example

srand(time(NULL));
int n=rand()%100;
int j=0;
while(j<100){

fact=1;
i=1;
while (i<n) {

fact=fact*i;
i=i+1;

}
j=j+1;
use(fact);

}

srand(time(NULL));
int n = rand() % 100;
int j = 0;
if (j < 100)
{
fact = 1;
i = 1;
while (i < n)
{
fact = fact * i;
i = i + 1;

}
j = j + 1;
use(fact);

}
while (j < 100)
{
j = j + 1;
use(fact);

}
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Revelations !

I discovered a paper few weeks ago. . .
“A Loop Optimization Technique Based on
Quasi-Invariance” by Litong Song, Yoshihiko Futamura,
Robert Glück, Zhenjiang Hu - 2000
We still have new concepts : Chunks, Compositions and
type of dependencies
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Questions !

Asked to the french community of compilation :
Do you think it’s relevant to write a pass on it ?
Do you think it’s relevant to write a paper on it ?
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CV

Conferences
Workshop DICE2016 Eindhoven (NSI programs)
French Community Of Compilation Aussois (Quasi-invariant
block motion QIBM)

Papers
DICE2016 (NSI programs)
draft for CC2017 (deadline 1st Nov) on (QIBM) or
EuroLLVM2017

Talks
DIKU Copenhagen (Compiler and IR introductions)
ELICA Bologna (QIBM)

Courses
Summer school OPLSS2015 Eugene (2w)
Summer school + project CEMRACS2016 Luminy (6w)
Master Course (Complexity and Computation) University of
Copenhagen (4m) Validated
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AMADIO (R.), COUPET-GRIMAL (S.), ZILIO (S. Dal) and
JAKUBIEC (L.). –
A functional scenario for bytecode verification of resource
bounds. In : Computer Science Logic, 12th International
Workshop, CSL’04. pp. 265–279. –
Springer.

BAILLOT (P.) and TERUI (K.). –
Light types for polynomial time computation in lambda
calculus. Information and Computation, vol. 201 (1), 2009,
pp. 41–62.

BELLANTONI (S.) and COOK (S.). –
A new recursion-theoretic characterization of the poly-time
functions. Computational Complexity, vol. 2, 1992, pp.
97–110.

BONFANTE (G.), MARION (J.-Y.) and MOYEN (J.-Y.). –
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Quasi-interpretations a way to control resources.
Theoretical Computer Science, vol. 412 (25), 2011, pp.
2776 – 2796.

GIRARD (J.-Y.). –
Linear Logic. Theoretical Computer Science, vol. 50, 1987,
pp. 1–102.

HOFMANN (M.). –
Linear types and Non-Size Increasing polynomial time
computation. In : Proceedings of the Fourteenth IEEE
Symposium on Logic in Computer Science (LICS’99), pp.
464–473.

LEE (C. S.), JONES (N. D.) and BEN-AMRAM (A. M.). –
The Size-Change Principle for Program Termination. pp.
81–92. –
ACM press.
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