
In theory
In practice

Invariance degree and composition of
commands for loop peeling

Optimization implemented on a toy parser

Thomas Rubiano

LIPN
Université Paris 13

From an idea of L. Kristiansen
supervised by J. Y. Moyen

in collaboration with T. Seiller

1 / 33

In theory
In practice

From ICC community ?

Complexity analysis into two parts : termination and data
size
Analysis of termination using “size-change graphs”
data size analysis around loops : “mwp-bounds”
acceptable growth rates ?

Interesting techniques to trace and gather dependencies
between variables. . . What if we try to do so for optimizations ?

2 / 33

In theory
In practice

Motivations

Learn about variables dependencies around loops
Learn about loop optimizations, especially loop-invariant
detection and hoisting
Provide another point of view and maybe a new
optimization : “Quasi-invariant block code motion”
In a way to Assist Programmers
Automate “obvious” optimizations
Seems to not be implemented in compilers. . . (not in
LLVM, maybe in GCC. . .)

3 / 33

In theory
In practice

Introduction
Relations and DFG
The Search for Independence

Basic Loop transformations

Loop unrolling
Loop unswitching
Loop interchange
Loop fusion
Loop fission
Loop skewing

4 / 33

In theory
In practice

Introduction
Relations and DFG
The Search for Independence

Basics with invariance detection in loop

a = b OP c is a loop-
invariant computation if each
variable is :

constant, or
has all definitions
outside the loop, or
has exactly one
definition, and that is a
loop-invariant
Search until there is no
more invariant. . .

int x=rand()%100;
while(i<100){

y=x+x; //1
use(y);
i=i+1;

}

5 / 33

In theory
In practice

Introduction
Relations and DFG
The Search for Independence

Quasi-Invariants

A quasi-invariant is a
variable which does not
change after a certain
number of loop
execution.
A degree of invariance
is the number of time
we need to compute the
loop until the variable is
stable
It could be very long for
a human. . .

while(i<100){
z=y*y; //2
use(z);
y=x+x; //1
use(y);
i=i+1;

}

6 / 33

In theory
In practice

Introduction
Relations and DFG
The Search for Independence

Definition

Definition
Let C be a command or a chunk .
A Data Flow Graph or DFG is a bipartite graph which bounds
variables regarding to C with labeled-arc set A.

In(C) = {x |∃y x C−→ y}

Out(C) = {y |∃x x C−→ y}
A ⊆ In(C)× {∅,0,1} × Out(C)

7 / 33

In theory
In practice

Introduction
Relations and DFG
The Search for Independence

Types of relations

x0

x1

x2

y0

y1

y2

dependence

1

propagation

0

reinitialization

∅

C := [x0 = x0 + 1;

x1 = x1;

x2 = 0;]

FIGURE – Types of dependence

8 / 33

In theory
In practice

Introduction
Relations and DFG
The Search for Independence

Matrix

Definition
This Data Flow Graph can be represented as a matrix N × N
with N = |var(C)|, we will note C the corresponding matrix to C.

x0

x1

x2

y0

y1

y2

dependence

1

propagation

0

reinitialization

∅

C =

1 ∅ ∅
∅ 0 ∅
∅ ∅ ∅

FIGURE – Matrix of dependence

9 / 33

In theory
In practice

Introduction
Relations and DFG
The Search for Independence

Chunks

Command Composition
See one block as one command
Hoist an entire block (could be a loop !)

10 / 33

In theory
In practice

Introduction
Relations and DFG
The Search for Independence

Multipath and Composition

Definition
A sequence of commands noted [C1;C2; . . .] can be viewed as
a concatenated Data Flow Graph or Multipath.

11 / 33

In theory
In practice

Introduction
Relations and DFG
The Search for Independence

Multipath and Composition example

Example of the following sequence :
C1 :=[x0 = x0 + x1; x3 = x2 + 2];
C2 :=[x1 = x2; x3 = x3 ∗ 2];

x0
x1
x2
x3

z0
z1
z2
z3

y0
y1
y2
y3

C1 C2

C1 =

1 ∅ ∅ ∅
1 0 ∅ ∅
∅ ∅ 0 1
∅ ∅ ∅ ∅

C2 =

0 ∅ ∅ ∅
∅ ∅ ∅ ∅
∅ 1 0 ∅
∅ ∅ ∅ 1

(a) Multipaths

x0
x1
x2
x3

y0
y1
y2
y3

[C1;C2]

MC1 ;C2 =

1 ∅ ∅ ∅
1 ∅ ∅ ∅
∅ 1 0 1
∅ ∅ ∅ ∅

(b) Composition

12 / 33

In theory
In practice

Introduction
Relations and DFG
The Search for Independence

Matrix Algebra

The Matrix representing a DFG is composed of elements in
E = {∅,0,1}. The elements in E are ordered as follows :
∅ < 0 < 1. And we can introduce two operations noted ⊕ and ⊗
defined as below :

⊕max ∅ 0 1
∅ ∅ 0 1
0 0 0 1
1 1 1 1

⊗+ ∅ 0 1
∅ ∅ ∅ ∅
0 ∅ 0 1
1 ∅ 1 1

⊕ could be seen as a max and ⊗ as a + if we consider ∅ as
−∞.
Then the composition of matrices is computed as :
Ci,j =

⊕
k (Ai,k ⊗ Bk ,j) we can write C = A • B.

13 / 33

In theory
In practice

Introduction
Relations and DFG
The Search for Independence

Condition

C := if E then C1;

all variables defining E will create a dependence with all
modified variables in C1.
E is the vector of all variables present with a 1 if
Ei ∈ Var(E)

Ci,j =
⊕

k (Ei ⊕ C1k,j) also noted (C)E

14 / 33

In theory
In practice

Introduction
Relations and DFG
The Search for Independence

Condition example

Example of the following sequence : C := if E then C1; with
E :=x3 ≥ 0
C1 :=[x0 = x0 + x1; x3 = x2 + 2];

x0
x1
x2
x3

y0
y1
y2
y3

E C1

C1 =

1 ∅ ∅ ∅
1 0 ∅ ∅
∅ ∅ 0 1
∅ ∅ ∅ ∅

E =

∅
∅
∅
1

x0
x1
x2
x3

y0
y1
y2
y3

[if E then C1]

(C1)
E =

1 ∅ ∅ ∅
1 0 ∅ ∅
∅ ∅ 0 1
1 ∅ ∅ 1

FIGURE – Condition

15 / 33

In theory
In practice

Introduction
Relations and DFG
The Search for Independence

Loop while

Let C be a command such as : C := while E do C1;.
first occurrence of C1 will influence the second one and so
on.
we consider the number of iteration undecidable then we

treat all the cases with a max (or sum) we write Ck =
k∑

n=1
Cn

the number of relations is finite (the number of variables is
finite) and the sum rises strictly, then it exists a fix point
after a certain k such as Ck+1 = Ck . Let’s define
C∗ = Fix(Ck).
Furthermore, E influences each occurrence of C1 (as
previously). We represent E as a vector as previously, then
the composition should be expressed as :
Ci,j =

⊕
k (Ei ⊕ (C∗1)k ,j) or we can simplify the notation as

C = (C∗1)E
16 / 33

In theory
In practice

Introduction
Relations and DFG
The Search for Independence

Loop while example

Example of the following sequence (C1 is the composition
presented previously) : C := while E do C1; with E :=x3 ≥ 0
C1 :=[x0 = x0 + x1; x3 = x2 + 2; x1 = x2; x3 = x3 ∗ 2];

x0

x1

x2

x3

y0

y1

y2

y3

C1

C1 =

1 ∅ ∅ ∅
1 ∅ ∅ ∅
∅ 1 0 1
∅ ∅ ∅ ∅

x0

x1

x2

x3

y0

y1

y2

y3

C21

C2
1 = C2

1 =

1 ∅ ∅ ∅
1 ∅ ∅ ∅
1 1 0 1
∅ ∅ ∅ ∅

x0

x1

x2

x3

y0

y1

y2

y3

C31

C3
1 = C∗1 =

1 ∅ ∅ ∅
1 ∅ ∅ ∅
1 1 0 1
∅ ∅ ∅ ∅

FIGURE – Finding fix point of dependence (simple example)

17 / 33

In theory
In practice

Introduction
Relations and DFG
The Search for Independence

Loop while example

Then we just need to add the condition correction.

x0

x1

x2

x3

y0

y1

y2

y3

E C∗1

C∗1 =

1 ∅ ∅ ∅
1 ∅ ∅ ∅
1 1 0 1
∅ ∅ ∅ ∅

E =

∅
∅
∅
1

x0

x1

x2

x3

y0

y1

y2

y3

[if E then C∗1]

(C∗1)
E =

1 ∅ ∅ ∅
1 ∅ ∅ ∅
1 1 0 1
1 1 ∅ 1

FIGURE – Condition of the loop (simple example)

18 / 33

In theory
In practice

Introduction
Relations and DFG
The Search for Independence

Independences of chunks

Definition
Independence of commands (or chunks of commands). If
Out(C1) ∩ In(C2) = ∅ then C1 is independent to C2.

19 / 33

In theory
In practice

Introduction
Relations and DFG
The Search for Independence

Independences of chunks example

Example of the following sequence :
C1 :=[x0 = x0 + x1;
C2 :=[x1 = x2; x3 = x3 ∗ 2];

x0
x1
x2
x3

z0
z1
z2
z3

y0
y1
y2
y3

C1 C2

C1 =

1 ∅ ∅ ∅
1 0 ∅ ∅
∅ ∅ 0 ∅
∅ ∅ ∅ 0

C2 =

0 ∅ ∅ ∅
∅ ∅ ∅ ∅
∅ 1 0 ∅
∅ ∅ ∅ 1

x0
x1
x2
x3

y0
y1
y2
y3

[C1;C2]

C1 • C2 =

1 ∅ ∅ ∅
1 ∅ ∅ ∅
∅ 1 0 ∅
∅ ∅ ∅ 1

FIGURE – Composition of independent chunks of commands

20 / 33

In theory
In practice

Introduction
Relations and DFG
The Search for Independence

Independences of chunks example

In this example, C1 is independent of C2 but the inverse is not
true.

x0
x1
x2
x3

z0
z1
z2
z3

y0
y1
y2
y3

C2 C1

C2 =

0 ∅ ∅ ∅
∅ ∅ ∅ ∅
∅ 1 0 ∅
∅ ∅ ∅ 1

C1 =

1 ∅ ∅ ∅
1 0 ∅ ∅
∅ ∅ 0 ∅
∅ ∅ ∅ 0

x0
x1
x2
x3

y0
y1
y2
y3

[C2;C1]

C2 • C1 =

1 ∅ ∅ ∅
∅ ∅ ∅ ∅
1 1 0 ∅
∅ ∅ ∅ 1

FIGURE – Composition of dependent chunks of commands

Here C1 • C2 6= C2 • C1.

21 / 33

In theory
In practice

Introduction
Relations and DFG
The Search for Independence

Self-Independence

Definition
If C1 is independent to itself, we say C1 is self-independent

Lemma
Specialization for while : If C1 is self-independent then

while E do C1 ≡ if E then C1

22 / 33

In theory
In practice

Introduction
Relations and DFG
The Search for Independence

Mutual independence of chunks

Definition
If C2 independent of C1 and C1 independent of C2 then C2 and
C1 are mutually independents :

C1 � C2

Example of the following sequence :
C1 :=[x0 = x0 + x1;
C2 :=[x3 = x2 + x3 ∗ 2];

x0
x1
x2
x3

z0
z1
z2
z3

y0
y1
y2
y3

C1 C2

x0
x1
x2
x3

y0
y1
y2
y3

[C1;C2]

FIGURE – Composition of mutually independent chunks of commands

In this example, C1 � C2 but [C1;C2] is not self-independent.
23 / 33

In theory
In practice

Introduction
Relations and DFG
The Search for Independence

Moving Independent Chunks

Lemma
Swapping commands (or chunks of commands) : If C1 � C2
then

C1;C2 ≡ C2;C1

Lemma
Moving mutual independent commands out of while : If
C1 � C2 and C1 � C1 then

while E do [C1;C2] ≡ [if E then C1;while E do C2]

24 / 33

In theory
In practice

Let’s peel !
Implementation

Peeling loop ! A new concept ?

Peeling = removing instructions out of the loop while
unrolling
Suppose we need more “pre-headers”
Is it always semantically correct ?
What are the conditions ?

25 / 33

In theory
In practice

Let’s peel !
Implementation

Peeling example

while(i<100){
z=y*y; //2
use(z);
y=x+x; //1
use(y);
i=i+1;

}

if (i < 100) //1
{
z = y * y;
use(z);
y = x + x;
use(y);
i=i+1;

}
if (i < 100) //2
{
z = y * y;
use(z);
use(y);
i=i+1;

}
while (i < 100)
{

use(z);
use(y);
i=i+1;

}

26 / 33

In theory
In practice

Let’s peel !
Implementation

Figure out the invariance degree

Statically easy !
Using dependence graph
and dominance graph

Let suppose we have computed the list of dependencies for all
commands. How to compute the degree of one command ?

1 Initialize every degrees to 0
2 Initialize the current command degree cd to∞
3 IF there is no dependencies for the current chunk return 1
4 ELSE for each dependencies compute the degree dd of

the command
1 IF cd <= dd and the current command dominates this

dependence THEN cd = dd + 1
ELSE cd = dd

27 / 33

In theory
In practice

Let’s peel !
Implementation

Hoisting and Renaming

Hoist : create a if statement for each degree before the
loop and insert every commands of the loop which has a
higher or equal degree than the current
We have to rename variables which are modified by the
removed command and appear before it.

28 / 33

In theory
In practice

Let’s peel !
Implementation

Hoisting and Renaming example

while(x<100){
b=b+1; //2
use(b);
x=x+1;
y=0; //1
while(y<100){ //1

b=a+y;
c=b+a;
y=y*y;
y=y+1;

}
use(b);

}

if (x < 100) //1
{
B = b + 1;
use(B);
x = x + 1;
y = 0;
while (y < 100)
{
b = a + y;
c = b + a;
y = y * y;
y = y + 1;

}
use(b);

}
if (x < 100) //2
{
B = b + 1;
use(B);
x = x + 1;
use(b);

}
while (x < 100)
{

use(B);
x = x + 1;
use(b);

}

29 / 33

In theory
In practice

Let’s peel !
Implementation

A toy for testing

to validate, we implemented on a toy parser in python
around 400 lines
tested on several examples
if you have some in mind ?

30 / 33

In theory
In practice

Let’s peel !
Implementation

Last example

srand(time(NULL));
int n=rand()%100;
int j=0;
while(j<100){

fact=1;
i=1;
while (i<n) {

fact=fact*i;
i=i+1;

}
j=j+1;
use(fact);

}

srand(time(NULL));
int n = rand() % 100;
int j = 0;
if (j < 100)
{
fact = 1;
i = 1;
while (i < n)
{
fact = fact * i;
i = i + 1;

}
j = j + 1;
use(fact);

}
while (j < 100)
{
j = j + 1;
use(fact);

}

31 / 33

In theory
In practice

Let’s peel !
Implementation

Revelations !

I discovered a paper few days ago. . .
“A Loop Optimization Technique Based on
Quasi-Invariance” by Litong Song, Yoshihiko Futamura,
Robert Glück, Zhenjiang Hu - 2000
Why did I miss it ?
But maybe we still have a new concept ? Chunks or
Compositions

32 / 33

In theory
In practice

Let’s peel !
Implementation

Questions !

Which level ? Is it better to do it at the IR level ?
Do you think it’s relevant to do it in real compilers ?

33 / 33

	In theory
	Introduction
	Relations and DFG
	The Search for Independence

	In practice
	Let's peel!
	Implementation

