Invariance degree and composition of commands for loop peeling Optimization implemented on a toy parser

Thomas Rubiano

LIPN Université Paris 13

From an idea of L. Kristiansen supervised by J. Y. Moyen in collaboration with T. Seiller

From ICC community ?

- Complexity analysis into two parts : termination and data size
- Analysis of termination using "size-change graphs"
- data size analysis around loops : "mwp-bounds" acceptable growth rates ?

Interesting techniques to trace and gather dependencies between variables... What if we try to do so for optimizations?

Motivations

- Learn about variables dependencies around loops
- Learn about loop optimizations, especially loop-invariant detection and hoisting
- Provide another point of view and maybe a new optimization : "Quasi-invariant block code motion"
- In a way to Assist Programmers
- Automate "obvious" optimizations
- Seems to not be implemented in compilers... (not in LLVM, maybe in GCC...)

Introduction Relations and DFG The Search for Independence

Basic Loop transformations

- Loop unrolling
- Loop unswitching
- Loop interchange
- Loop fusion
- Loop fission
- Loop skewing

Introduction Relations and DFG The Search for Independence

Basics with invariance detection in loop

a = b OP c is a loopinvariant computation if each variable is :

- constant, or
- has all definitions outside the loop, or
- has exactly one definition, and that is a loop-invariant
- Search until there is no more invariant...

```
int x=rand()%100;
while(i<100){
    y=x+x; //1
    use(y);
    i=i+1;
}</pre>
```


Introduction Relations and DFG The Search for Independence

Quasi-Invariants

- A quasi-invariant is a variable which does not change after a certain number of loop execution.
- A degree of invariance is the number of time we need to compute the loop until the variable is stable
- It could be very long for a human...

```
while(i<100){
    z=y*y; //2
    use(z);
    y=x+x; //1
    use(y);
    i=i+1;
}</pre>
```


Introduction Relations and DFG The Search for Independence

Definition

Definition

Let $\ensuremath{\mathbb{C}}$ be a command or a chunk .

A Data Flow Graph or DFG is a bipartite graph which bounds variables regarding to c with labeled-arc set A.

•
$$\operatorname{In}(C) = \{x | \exists y \ x \xrightarrow{C} y\}$$

• Out(C) =
$$\{y | \exists x \ x \xrightarrow{C} y\}$$

• $\mathcal{A} \subseteq \text{In}(C) \times \{\emptyset, 0, 1\} \times \text{Out}(C)$

Introduction Relations and DFG The Search for Independence

design and started as a second

Types of relations

$$C := [x_0 = x_0 + 1; \qquad X_0 \xrightarrow{\text{dependence}} Y_0$$

$$x_1 = x_1;$$
 $x_1 - \cdots - y_1$

$$x_2 = 0;]$$
 X_2 reinitialization y_2

FIGURE – Types of dependence

Introduction Relations and DFG The Search for Independence

Matrix

Definition

This Data Flow Graph can be represented as a matrix $N \times N$ with N = |var(C)|, we will note C the corresponding matrix to C.

Introduction Relations and DFG The Search for Independence

Chunks

- Command Composition
- See one block as one command
- Hoist an entire block (could be a loop !)

Introduction Relations and DFG The Search for Independence

Multipath and Composition

Definition

A sequence of commands noted $[C_1; C_2; ...]$ can be viewed as a concatenated Data Flow Graph or Multipath.

Introduction Relations and DFG The Search for Independence

Multipath and Composition example

Example of the following sequence : $C_1 := [x_0 = x_0 + x_1; x_3 = x_2 + 2];$ $C_2 := [x_1 = x_2; x_3 = x_3 * 2];$

Introduction Relations and DFG The Search for Independence

Matrix Algebra

The Matrix representing a *DFG* is composed of elements in $\mathcal{E} = \{\emptyset, 0, 1\}$. The elements in \mathcal{E} are ordered as follows : $\emptyset < 0 < 1$. And we can introduce two operations noted \oplus and \otimes defined as below :

\oplus max	Ø	0	1	\otimes_+	Ø	0	1
Ø	Ø	0	1	Ø	Ø	Ø	Ø
0	0	0	1	0	Ø	0	1
1	1	1	1	1	Ø	1	1

 \oplus could be seen as a max and \otimes as a + if we consider \emptyset as $-\infty.$

Then the composition of matrices is computed as : $C_{i,j} = \bigoplus_k (A_{i,k} \otimes B_{k,j})$ we can write $C = A \bullet B$.

Introduction Relations and DFG The Search for Independence

Condition

- $C := if E then C_1;$
 - all variables defining E will create a dependence with all modified variables in C1.
 - *E* is the vector of all variables present with a 1 if *E_i* ∈ *Var*(E)
- $\mathcal{C}_{i,j} = \bigoplus_k (\mathcal{E}_i \oplus \mathcal{C}_{1_{k,j}})$ also noted $(\mathcal{C})^{\scriptscriptstyle ext{E}}$

Introduction Relations and DFG The Search for Independence

Condition example

Example of the following sequence : $C := if E then C_1$; with $E := x_3 \ge 0$ $C_1 := [x_0 = x_0 + x_1; x_3 = x_2 + 2]$;

FIGURE – Condition

Introduction Relations and DFG The Search for Independence

Loop while

Let C be a command such as : $C := while E do C_1$;.

- first occurrence of C1 will influence the second one and so on.
- we consider the number of iteration undecidable then we treat all the cases with a max (or sum) we write $C^k = \sum_{k=1}^{k} C^n$
- the number of relations is finite (the number of variables is finite) and the sum rises strictly, then it exists a fix point after a certain k such as $C^{k+1} = C^k$. Let's define $C^* = Fix(C^k)$.
- Furthermore, E influences each occurrence of C1 (as previously). We represent E as a vector as previously, then the composition should be expressed as :

 $C_{i,j} = \bigoplus_k (E_i \oplus (\mathcal{C}_1^*)_{k,j})$ or we can simplify the notation as $C = (\mathcal{C}_1^*)^{\mathbb{E}}$

Introduction Relations and DFG The Search for Independence

Loop while example

Example of the following sequence (C₁ is the composition presented previously) : C := while E do C₁; with E := $x_3 \ge 0$ C₁ :=[$x_0 = x_0 + x_1$; $x_3 = x_2 + 2$; $x_1 = x_2$; $x_3 = x_3 * 2$];

FIGURE - Finding fix point of dependence (simple example)

Introduction Relations and DFG The Search for Independence

Loop while example

Then we just need to add the condition correction.

FIGURE – Condition of the loop (simple example)

Introduction Relations and DFG The Search for Independence

Independences of chunks

Definition

Independence of commands (or chunks of commands). If $Out(C_1) \cap In(C_2) = \emptyset$ then C_1 is independent to C_2 .

Relations and DFG The Search for Independence

Independences of chunks example

Example of the following sequence :

$$C_1 := [x_0 = x_0 + x_1; C_2 := [x_1 = x_2; x_3 = x_3 * 2];$$

FIGURE – Composition of independent chunks of commands

Introduction Relations and DFG The Search for Independence

Independences of chunks example

In this example, ${\tt C}_1$ is independent of ${\tt C}_2$ but the inverse is not true.

FIGURE – Composition of dependent chunks of commands

Here
$$C_1 \bullet C_2 \neq C_2 \bullet C_1$$
.

Introduction Relations and DFG The Search for Independence

Self-Independence

Definition

If C_1 is independent to itself, we say C_1 is self-independent

Lemma

Specialization for while : If C_1 is self-independent then while E do $C_1 \equiv \text{if E then } C_1$

Introduction Relations and DFG The Search for Independence

Mutual independence of chunks

Definition

If C_2 independent of C_1 and C_1 independent of C_2 then C_2 and C_1 are mutually independents :

 $C_1 \asymp C_2$

Example of the following sequence : $C_1 := [x_0 = x_0 + x_1;$ $C_2 := [x_3 = x_2 + x_3 * 2];$

FIGURE – Composition of mutually independent chunks of commands

In this example, $C_1 \simeq C_2$ but $[C_1; C_2]$ is not self-independent.

Introduction Relations and DFG The Search for Independence

Moving Independent Chunks

Lemma

Swapping commands (or chunks of commands) : If ${\tt C}_1 \asymp {\tt C}_2$ then

 $C_1;C_2\equiv C_2;C_1$

Lemma

Moving mutual independent commands out of while : If $C_1 \simeq C_2$ and $C_1 \simeq C_1$ then while E do $[C_1; C_2] \equiv [if E then C_1; while E do C_2]$

Let's peel ! Implementation

Peeling loop ! A new concept ?

- Peeling = removing instructions out of the loop while unrolling
- Suppose we need more "pre-headers"
- Is it always semantically correct?
- What are the conditions?

Let's peel ! Implementation

Peeling example

Let's peel ! Implementation

Figure out the invariance degree

- Statically easy !
- Using dependence graph
- and dominance graph

Let suppose we have computed the list of dependencies for all commands. How to compute the degree of one command?

- Initialize every degrees to 0
- 2 Initialize the current command degree ${
 m cd}$ to ∞
- IF there is no dependencies for the current chunk return 1
- ELSE for each dependencies compute the degree dd of the command
 - IF cd <= dd and the current command dominates this dependence THEN cd = dd + 1
 ELSE cd = dd

Let's peel ! Implementation

Hoisting and Renaming

- Hoist : create a if statement for each degree before the loop and insert every commands of the loop which has a higher or equal degree than the current
- We have to rename variables which are modified by the removed command and appear before it.

Let's peel ! Implementation

Hoisting and Renaming example


```
if (x < 100) //1
 B = b + 1;
 use (B);
 x = x + 1;
 v = 0;
 while (y < 100)
  b = a + v;
   c = b + a;
   v = v * v;
   v = v + 1;
 use(b);
if (x < 100) //2
 B = b + 1;
 use (B);
 x = x + 1;
 use(b);
while (x < 100)
 use (B);
 x = x + 1;
 use(b);
```

P

Let's peel ! Implementation

A toy for testing

- to validate, we implemented on a toy parser in python
- around 400 lines
- tested on several examples
- if you have some in mind?

Let's peel ! Implementation

Last example

```
srand(time(NULL));
int n=rand()%100;
int j=0;
while(j<100){
    fact=1;
    i=1;
    while (i<n) {
        fact=fact*i;
        i=i+1;
    }
    j=j+1;
    USe(fact);
}
```

```
srand(time(NULL));
int n = rand() % 100;
int j = 0;
if (j < 100)
 fact = 1;
 i = 1;
 while (i < n)
   fact = fact * i;
   i = i + 1;
 j = j + 1;
 use(fact);
while (j < 100)
 j = j + 1;
 use(fact);
```


Let's peel ! Implementation

Revelations!

- I discovered a paper few days ago...
 "A Loop Optimization Technique Based on Quasi-Invariance" by Litong Song, Yoshihiko Futamura, Robert Glück, Zhenjiang Hu - 2000
- Why did I miss it?
- But maybe we still have a new concept? Chunks or Compositions

Let's peel ! Implementation

- Which level? Is it better to do it at the IR level?
- Do you think it's relevant to do it in real compilers?

