Invariance degree and composition of commands for loop peeling

Optimization implemented on a toy parser

Thomas Rubiano
LIPN
Université Paris 13

From an idea of L. Kristiansen
supervised by J. Y. Moyen
in collaboration with T. Seiller

From ICC community?

- Complexity analysis into two parts : termination and data size
- Analysis of termination using "size-change graphs"
- data size analysis around loops : "mwp-bounds" acceptable growth rates?

Interesting techniques to trace and gather dependencies between variables... What if we try to do so for optimizations?

Motivations

- Learn about variables dependencies around loops
- Learn about loop optimizations, especially loop-invariant detection and hoisting
- Provide another point of view and maybe a new optimization : "Quasi-invariant block code motion"
- In a way to Assist Programmers
- Automate "obvious" optimizations
- Seems to not be implemented in compilers... (not in LLVM, maybe in GCC. ..)

Basic Loop transformations

- Loop unrolling
- Loop unswitching
- Loop interchange
- Loop fusion
- Loop fission
- Loop skewing

Basics with invariance detection in loop

$\mathrm{a}=\mathrm{b}$ OP c is a loopinvariant computation if each variable is :

- constant, or
- has all definitions outside the loop, or
- has exactly one definition, and that is a loop-invariant
- Search until there is no more invariant...

```
int x=rand()%100;
```

int x=rand()%100;

```
int x=rand()%100;
while(i<100) {
while(i<100) {
while(i<100) {
y=x+x; //1
y=x+x; //1
y=x+x; //1
    use (y);
    use (y);
    use (y);
    i=i+1;
    i=i+1;
    i=i+1;
}
```

}

```
}
```


Quasi-Invariants

- A quasi-invariant is a variable which does not change after a certain number of loop execution.
- A degree of invariance is the number of time we need to compute the loop until the variable is stable
- It could be very long for a human...

```
while(i<100) {
    z=y*y; //2
    use(z);
    y=x+x; //1
    use (y);
    i=i+1;
}
```


Definition

Definition

Let c be a command or a chunk.
A Data Flow Graph or DFG is a bipartite graph which bounds variables regarding to c with labeled-arc set \mathcal{A}.

- $\operatorname{In}(\mathrm{C})=\{x \mid \exists y x \xrightarrow{c} y\}$
- $\operatorname{Out}(\mathrm{C})=\{y \mid \exists x x \xrightarrow{\mathrm{C}} y\}$
- $\mathcal{A} \subseteq \operatorname{In}(\mathrm{C}) \times\{\emptyset, 0,1\} \times \operatorname{Out}(\mathrm{C})$

Types of relations

$c:=\left[x_{0}=x_{0}+1 ;\right.$
$x_{1}=x_{1} ;$
propagation
$x_{1}-\cdots y_{1}$
$\left.x_{2}=0 ;\right]$

reinitialization
\emptyset

Figure - Types of dependence

Matrix

Definition

This Data Flow Graph can be represented as a matrix $N \times N$ with $N=|\operatorname{var}(\mathrm{C})|$, we will note C the corresponding matrix to C .

$$
C=\left[\begin{array}{lll}
1 & \emptyset & \emptyset \\
\emptyset & 0 & \emptyset \\
\emptyset & \emptyset & \emptyset
\end{array}\right] \quad x_{0} \xrightarrow[1]{\text { dependence }} y_{0}
$$

Figure - Matrix of dependence

Chunks

- Command Composition
- See one block as one command
- Hoist an entire block (could be a loop !)

Multipath and Composition

Definition

A sequence of commands noted $\left[\mathrm{C}_{1} ; \mathrm{C}_{2} ; \ldots\right]$ can be viewed as a concatenated Data Flow Graph or Multipath.

Multipath and Composition example

Example of the following sequence :

$\mathrm{C}_{1}:=\left[x_{0}=x_{0}+x_{1} ; x_{3}=x_{2}+2\right]$;
$\mathrm{C}_{2}:=\left[x_{1}=x_{2} ; x_{3}=x_{3} * 2\right]$;

$$
\begin{aligned}
& \mathrm{C}_{1} \\
& \mathrm{C}_{2} \\
& {\left[\mathrm{C}_{1} ; \mathrm{C}_{2}\right]} \\
& C_{1}=\left[\begin{array}{llll}
1 & \emptyset & \emptyset & \emptyset \\
1 & 0 & \emptyset & \emptyset \\
\emptyset & \emptyset & 0 & 1 \\
\emptyset & \emptyset & \emptyset & \emptyset
\end{array}\right] C_{2}=\left[\begin{array}{llll}
0 & \emptyset & \emptyset & \emptyset \\
\emptyset & \emptyset & \emptyset & \emptyset \\
\emptyset & 1 & 0 & \emptyset \\
\emptyset & \emptyset & \emptyset & 1
\end{array}\right] \\
& \text { (a) Multipaths } \\
& M_{C_{1} ; C_{2}}=\left[\begin{array}{cccc}
1 & \emptyset & \emptyset & \emptyset \\
1 & \emptyset & \emptyset & \emptyset \\
\emptyset & 1 & 0 & 1 \\
\emptyset & \emptyset & \emptyset & \emptyset
\end{array}\right] \\
& \text { (b) Composition }
\end{aligned}
$$

Matrix Algebra

The Matrix representing a DFG is composed of elements in $\mathcal{E}=\{\emptyset, 0,1\}$. The elements in \mathcal{E} are ordered as follows :
$\emptyset<0<1$. And we can introduce two operations noted \oplus and \otimes defined as below :

$\oplus \max$	\emptyset	0	1
\emptyset	\emptyset	0	1
0	0	0	1
1	1	1	1

\otimes_{+}	\emptyset	0	1
\emptyset	\emptyset	\emptyset	\emptyset
0	\emptyset	0	1
1	\emptyset	1	1

\oplus could be seen as a max and \otimes as a + if we consider \emptyset as $-\infty$.
Then the composition of matrices is computed as :
$C_{i, j}=\bigoplus_{k}\left(A_{i, k} \otimes B_{k, j}\right)$ we can write $C=A \bullet B$.

Condition

C:=if Ethen C_{1};

- all variables defining E will create a dependence with all modified variables in C_{1}.
- E is the vector of all variables present with a 1 if $E_{i} \in \operatorname{Var}(\mathrm{E})$
$C_{i, j}=\bigoplus_{k}\left(E_{i} \oplus C_{1_{k, j}}\right)$ also noted $(C)^{E}$

Condition example

Example of the following sequence : $\mathrm{C}:=$ if E then C_{1}; with
$\mathrm{E}:=x_{3} \geq 0$
$\mathrm{C}_{1}:=\left[x_{0}=x_{0}+x_{1} ; x_{3}=x_{2}+2\right] ;$
E

$$
E=\left[\begin{array}{l}
\emptyset \\
\emptyset \\
\emptyset \\
1
\end{array}\right] \quad C_{1}=\left[\begin{array}{llll}
1 & \emptyset & \emptyset & \emptyset \\
1 & 0 & \emptyset & \emptyset \\
\emptyset & \emptyset & 0 & 1 \\
\emptyset & \emptyset & \emptyset & \emptyset
\end{array}\right] \quad\left(C_{1}\right)^{E}=\left[\begin{array}{llll}
1 & \emptyset & \emptyset & \emptyset \\
1 & 0 & \emptyset & \emptyset \\
\emptyset & \emptyset & 0 & 1 \\
1 & \emptyset & \emptyset & 1
\end{array}\right]
$$

FIGure - Condition

Loop while

Let C be a command such as : $\mathrm{C}:=$ while E do C_{1};

- first occurrence of C_{1} will influence the second one and so on.
- we consider the number of iteration undecidable then we treat all the cases with a max (or sum) we write $\mathcal{C}^{k}=\sum_{n=1}^{k} C^{n}$
- the number of relations is finite (the number of variables is finite) and the sum rises strictly, then it exists a fix point after a certain k such as $\mathcal{C}^{k+1}=\mathcal{C}^{k}$. Let's define $\mathcal{C}^{*}=\operatorname{Fix}\left(\mathcal{C}^{k}\right)$.
- Furthermore, E influences each occurrence of C_{1} (as previously). We represent E as a vector as previously, then the composition should be expressed as:
$\mathcal{C}_{i, j}=\bigoplus_{k}\left(E_{i} \oplus\left(\mathcal{C}_{1}^{*}\right)_{k, j}\right)$ or we can simplify the notation as
$C=\left(\mathcal{C}_{1}^{*}\right)^{\mathrm{E}}$

Loop while example

Example of the following sequence (C_{1} is the composition presented previously) : $\mathrm{C}:=$ while E do C_{1}; with $\mathrm{E}:=x_{3} \geq 0$ $\mathrm{C}_{1}:=\left[x_{0}=x_{0}+x_{1} ; x_{3}=x_{2}+2 ; x_{1}=x_{2} ; x_{3}=x_{3} * 2\right] ;$

$C_{1}^{2}=\mathcal{C}_{1}^{2}=\left[\begin{array}{llll}1 & \emptyset & \emptyset & \emptyset \\ 1 & \emptyset & \emptyset & \emptyset \\ 1 & 1 & 0 & 1 \\ \emptyset & \emptyset & \emptyset & \emptyset\end{array}\right] \quad C_{1}^{3}=\mathcal{C}_{1}^{*}=\left[\begin{array}{cccc}1 & \emptyset & \emptyset & \emptyset \\ 1 & \emptyset & \emptyset & \emptyset \\ 1 & 1 & 0 & 1 \\ \emptyset & \emptyset & \emptyset & \emptyset\end{array}\right]$
Figure - Finding fix point of dependence (simple example)

Loop while example

Then we just need to add the condition correction.

FIGURE - Condition of the loop (simple example)

Independences of chunks

Definition

Independence of commands (or chunks of commands). If
$\operatorname{Out}\left(\mathrm{C}_{1}\right) \cap \operatorname{In}\left(\mathrm{C}_{2}\right)=\emptyset$ then C_{1} is independent to C_{2}.

Independences of chunks example

Example of the following sequence :
$\mathrm{C}_{1}:=\left[x_{0}=x_{0}+x_{1}\right.$;
$\mathrm{C}_{2}:=\left[x_{1}=x_{2} ; x_{3}=x_{3} * 2\right]$;

$$
\begin{aligned}
& \begin{array}{lll}
\mathrm{C}_{1} & \mathrm{C}_{2} & {\left[\mathrm{C}_{1} ; \mathrm{C}_{2}\right]}
\end{array} \\
& C_{1}=\left[\begin{array}{llll}
1 & \emptyset & \emptyset & \emptyset \\
1 & 0 & \emptyset & \emptyset \\
\emptyset & \emptyset & 0 & \emptyset \\
\emptyset & \emptyset & \emptyset & 0
\end{array}\right] C_{2}=\left[\begin{array}{llll}
0 & \emptyset & \emptyset & \emptyset \\
\emptyset & \emptyset & \emptyset & \emptyset \\
\emptyset & 1 & 0 & \emptyset \\
\emptyset & \emptyset & \emptyset & 1
\end{array}\right] \cdot C_{2}=\left[\begin{array}{llll}
1 & \emptyset & \emptyset & \emptyset \\
1 & \emptyset & \emptyset & \emptyset \\
\emptyset & 1 & 0 & \emptyset \\
\emptyset & \emptyset & \emptyset & 1
\end{array}\right]
\end{aligned}
$$

FIGURE - Composition of independent chunks of commands

Independences of chunks example

In this example, C_{1} is independent of C_{2} but the inverse is not true.

$$
\begin{aligned}
& \mathrm{C}_{2} \\
& X_{0}-\cdots-\cdots Z_{0} \\
& x_{1} \longrightarrow Z_{1} \xrightarrow[-\infty-\infty]{ } y_{1} \\
& x_{2} \rightarrow---\rightarrow z_{2}-----\rightarrow y_{2} \\
& x_{3} \longrightarrow z_{3}--\cdots-y_{3} \\
& \text { [} \left.\mathrm{C}_{2} ; \mathrm{C}_{1}\right] \\
& \text { C1 } \\
& C_{2}=\left[\begin{array}{llll}
0 & \emptyset & \emptyset & \emptyset \\
\emptyset & \emptyset & \emptyset & \emptyset \\
\emptyset & 1 & 0 & \emptyset \\
\emptyset & \emptyset & \emptyset & 1
\end{array}\right]=\left[\begin{array}{llll}
1 & \emptyset & \emptyset & \emptyset \\
1 & 0 & \emptyset & \emptyset \\
\emptyset & \emptyset & 0 & \emptyset \\
\emptyset & \emptyset & \emptyset & 0
\end{array}\right] C_{2} \bullet C_{1}=\left[\begin{array}{llll}
1 & \emptyset & \emptyset & \emptyset \\
\emptyset & \emptyset & \emptyset & \emptyset \\
1 & 1 & 0 & \emptyset \\
\emptyset & \emptyset & \emptyset & 1
\end{array}\right]
\end{aligned}
$$

FIgure - Composition of dependent chunks of commands

Here $C_{1} \bullet C_{2} \neq C_{2} \bullet C_{1}$.

Self-Independence

Definition

If C_{1} is independent to itself, we say C_{1} is self-independent

Lemma

Specialization for while : If C_{1} is self-independent then

$$
\text { while E do } \mathrm{C}_{1} \equiv \text { if Ethen } \mathrm{C}_{1}
$$

Mutual independence of chunks

Definition

If C_{2} independent of C_{1} and C_{1} independent of C_{2} then C_{2} and C_{1} are mutually independents :

$$
\mathrm{C}_{1} \asymp \mathrm{C}_{2}
$$

Example of the following sequence :
$\mathrm{C}_{1}:=\left[x_{0}=x_{0}+x_{1}\right.$;
$\mathrm{C}_{2}:=\left[x_{3}=x_{2}+x_{3} * 2\right] ;$
C_{1}
C_{2}

$$
\left[\mathrm{C}_{1} ; \mathrm{C}_{2}\right]
$$

$x_{0} \longrightarrow z_{0}-----\rightarrow y_{0}$
$x_{1} \rightarrow---\rightarrow z_{1}-----\rightarrow y_{1}$
$X_{2}-----\rightarrow Z_{2}=\cdots-\cdots y_{2}$
$x_{3}------Z_{3} \xrightarrow{\longrightarrow} y_{3}$

$$
x_{0} \longrightarrow y_{0}
$$

$$
x_{1}----\rightarrow y_{1}
$$

$$
x_{2}=-\cdots-y_{2}
$$

$$
x_{3} \longrightarrow y_{3}
$$

FIGURE - Composition of mutually independent chunks of commands

In this example, $\mathrm{C}_{1} \asymp \mathrm{C}_{2}$ but $\left[\mathrm{C}_{1} ; \mathrm{C}_{2}\right]$ is not self-independent.

Moving Independent Chunks

Lemma

Swapping commands (or chunks of commands) : If $\mathrm{C}_{1} \asymp \mathrm{C}_{2}$ then

$$
\mathrm{C}_{1} ; \mathrm{C}_{2} \equiv \mathrm{C}_{2} ; \mathrm{C}_{1}
$$

Lemma

Moving mutual independent commands out of while : If $\mathrm{C}_{1} \asymp \mathrm{C}_{2}$ and $\mathrm{C}_{1} \asymp \mathrm{C}_{1}$ then while E do $\left[\mathrm{C}_{1} ; \mathrm{C}_{2}\right] \equiv\left[\right.$ if E then C_{1}; while E do C_{2}]

Peeling loop! A new concept ?

- Peeling $=$ removing instructions out of the loop while unrolling
- Suppose we need more "pre-headers"
- Is it always semantically correct?
- What are the conditions?

In theory
In practice

Peeling example

```
while(i<100){
    z=y*y; //2
    use (z);
    y=x+x; //1
    use (y);
    i=i+1;
}
```

```
if (i < 100) //1
{
    z = y * y;
    use (z);
    y = x + x;
    use (y) ;
    i=i+1;
}
if (i < 100) //2
{
    z = y * y;
    use (z);
    use (y);
    i=i+1;
}
while (i < 100)
{
    use (z);
    use (y);
    i=i+1;
}
```


Figure out the invariance degree

- Statically easy!
- Using dependence graph
- and dominance graph

Let suppose we have computed the list of dependencies for all commands. How to compute the degree of one command?
(1) Initialize every degrees to 0
(2) Initialize the current command degree cd to ∞
(3) IF there is no dependencies for the current chunk return 1
(4) ELSE for each dependencies compute the degree dd of the command
(1) IF cd <= dd and the current command dominates this dependence then $c d=d d+1$ ELSE cd = dd

Hoisting and Renaming

- Hoist : create a if statement for each degree before the loop and insert every commands of the loop which has a higher or equal degree than the current
- We have to rename variables which are modified by the removed command and appear before it.

Hoisting and Renaming example

```
while(x<100) {
    b=b+1; //2
    use (b) ;
    x=x+1;
    y=0; //1
    while(y<100) { //1
        b=a+y;
        c=b+a;
        y=y*y;
        y=y+1;
    }
    use (b);
}
```

```
if (x < 100) //1
{
    B= b + 1;
    use (B);
    x = x + 1;
    y = 0;
    while (y < 100)
    {
        b = a + y;
        c = b + a;
        y = y * y;
        y = y + 1;
    }
    use (b) ;
}
if (x < 100) //2
{
    B= b + 1;
    use (B);
    x = x + 1;
    use (b);
}
while (x < 100)
    use (B);
    x = x + 1;
    use (b);
}
```


A toy for testing

- to validate, we implemented on a toy parser in python
- around 400 lines
- tested on several examples
- if you have some in mind?

Last example

```
srand(time(NULL));
int n=rand()%100;
int j=0;
while(j<100) {
    fact=1;
    i=1;
    while (i<n) {
        fact=fact*i;
        i=i+1;
    }
    j=j+1;
    use (fact);
}
```

```
srand(time(NULL));
int n = rand() % 100;
int j = 0;
if (j < 100)
{
        fact = 1;
    i = 1;
    while (i < n)
    {
        fact = fact * i;
        i = i + 1;
    }
    j = j + 1;
    use (fact);
}
while (j < 100)
{
    j = j + 1;
    use(fact);
}
```


Revelations!

- I discovered a paper few days ago... "A Loop Optimization Technique Based on
Quasi-Invariance" by Litong Song, Yoshihiko Futamura, Robert Glück, Zhenjiang Hu-2000
- Why did I miss it?
- But maybe we still have a new concept? Chunks or Compositions

Questions!

- Which level? Is it better to do it at the IR level?
- Do you think it's relevant to do it in real compilers?

