UNITEX 2.1

USER MANUAL

Université Paris-Est Marne-la-Vallée

http://www-igm.univ-mlv.fr/~unitex
unitex@univ-miv.fr

Sébastien Paumier

English translation of previous version by the local grammar group at the
CIS, Ludwig-Maximilians-Universitdt, Munich - Oct 2003
(Wolfgang Flury, Franz Guenthner, Friederike Malchok, Clemens Marschner, Sebastian
Nagel, Johannes Stiehler)
http://www.cis.uni-muenchen.de/

http://www-igm.univ-mlv.fr/~unitex
http://www.cis.uni-muenchen.de/

Contents

Introduction 11
What's new fromversion 1.27?2 e 12
Content L e 12

1 Installation of Unitex 15
1.1 Licenses o . i i e e e e 15
1.2 Javaruntimeenvironment L. 15
1.3 Installationon Windows 16
14 Installation on Linuxand MacOSX 16
1.5 Firstuse e e e e 17
1.6 Addingnewlanguages o 17
1.7 Uninstalling Unitex 18

2 Loading a text 19
21 Selectingalanguage o 19
22 Textformats e 19
23 Editingtextfiles L 22
24 Openingatext e 22
2.5 Preprocessingatext. L o L o 23

2.5.1 Normalization of separators. 25
2.5.2 Splittingintosentences 25
2.5.3 Normalization of non-ambiguousforms 27
2,54 Splittingatextintotokens L o L oL 29
25,5 Applying dictionaries o o L oL 30
2.5.6 Analysis of compound words in Dutch, German, Norwegian and Rus-
3 = 1 o O 32
2.6 Openingataggedtext 32
3 Dictionaries 35
3.1 The DELA dictionaries i v i i i i e e e e e 35
3.1.1 TheDELAFformat i it 35
3.1.2 TheDELASFormat. 38
3.1.3 Dictionary Contents 39
3.2 Checking dictionary format 41
33 Sorting e 42

CONTENTS

3.4 Automaticinflection 44
3.4.1 Inflectionofsimplewords 44
3.4.2 Inflection of compound words 47
3.4.3 Inflection of semiticlanguages 47
35 Compression. e 49
3.6 Applyingdictionaries. L L o L 50
3.6.1 Priorities e e e e e e 50
3.6.2 Application rules for dictionaries 51
3.6.3 Dictionarygraphs 51
3.6.4 Morphological dictionary graphs 53
3.7 Bibliography 53
Searching with regular expressions 57
41 Definition e e e e e 57
42 Tokens e e e e 57
43 Lexicalmasks e 58
431 Specialsymbols Lo o 58
4.3.2 References to information in the dictionaries 59
4.3.3 Grammatical and semanticconstraints 59
434 Inflectional constraints e 60
43.5 Negationofalexicalmask 60
44 Concatenation e e 62
45 Union o i e e e e e e e e 62
4.6 Kleenestar e e e 63
47 Morphological filters L 64
4.8 Search e e e e 65
48.1 Configurationofthesearch 65
482 Presentationoftheresults 66
Local grammars 71
51 Thelocal grammar formalism 71
511 Algebraicgrammars 0. 71
5.1.2 Extended algebraic grammars 72
52 Editinggraphs 72
52.1 Creatingagraph 72
522 Sub-Graphs 75
52.3 Manipulatingboxes o o oL 78
524 Transducers e e e e e 79
525 UsingVariables 80
526 Copyinglists 80
527 Special Symbols o 82
52.8 ToolbarCommands. i 82
53 Displayoptions 83
53.1 Sorting thelinesofabox. 83
532 ZOOM . . v v i i e e e e e e e e e e e e 83

CONTENTS 5

533 Antialiasing 84

534 Boxalignment. 86

5.3.5 Display options, fontsand colors 87

54 Exportinggraphs L 89
54.1 Inserting a graphintoadocument 89

542 PrintingaGraph 91

6 Advanced use of graphs 93
6.1 Typesofgraphs 93
6.1.1 Inflectiontransducers 93

6.1.2 DPreprocessinggraphs. 94

6.1.3 Graphs for normalizing the text automaton 95

6.14 Syntacticgraphs o o o 96

6.1.5 ELAGgrammars 96

6.1.6 Parameterized graphs 97

6.2 Compilationofagrammar L. 97
6.2.1 Compilationofagraph 97

6.2.2 Approximation with a finite state transducer 97

6.2.3 Constraintsongrammars 98

6.24 Errordetection L o o 100

6.3 Contexts e 101
6.3.1 Rightcontexts o 102

632 Leftcontexts. 104

6.4 The morphologicalmode 108
641 Why? ... e 108

642 Therules. 108

6.4.3 Morphological dictionaries 109

6.44 Dictionary entry variables 110

6.5 Exploring grammarpaths 111
6.6 Graphecollections 113
6.7 Rules for applying transducers 114
6.7.1 Insertion to the left of the matched pattern 114

6.7.2 Application while advancing through thetext 115

6.7.3 Priority of the leftmostmatch 115

6.7.4 Priority of the longestmatch 116

6.7.5 Transducer outputs with variables 116

6.8 Applying graphstotexts o oo oo 118
6.8.1 Configurationofthesearch 118

6.82 Concordance e 119

6.8.3 Modificationof thetext 120

6.84 Extractingoccurrences L. 121

6.8.5 Comparing concordances 122

6
7

10

CONTENTS

Text automaton 125

7.1 Displaying textautomaton Lo L oL 125

72 Construction L 126

721 Construction rules for textautomata 126

7.2.2 Normalization of ambiguousforms 128

7.2.3 Normalization of clitical pronouns in Portuguese 129

724 Keepingthebestpaths 131

7.3 Resolving Lexical Ambiguities with ELAG 134

7.3.1 Grammars For Resolving Ambiguities 134

73.2 Compiling ELAG Grammars 135

7.3.3 Resolving Ambiguities L. 137

734 Grammarcollections Lo oo 139

7.3.5 Window For ELAG Processing 139

7.3.6 Descriptionofthetagsets 140

7.3.7 Grammar Optimization 146

74 Manipulation of textautomata oL oL 147

74.1 Displaying sentence automata 147

74.2 Modifying the text automaton0 .. 148

743 Display configuration 149

7.5 Converting the text automaton into linear text 149

Lexicon-grammar 151

8.1 Lexicon-grammartables 151

8.2 Conversionofatableintographs 152

8.2.1 Principle of parameterized graphs 152

822 Formatofthetable 152

8.2.3 Parameterizedgraphs o oL 153

8.2.4 Automatic generationof graphs 0 L. 154

Text alignment 159

91 Loadingtexts 159

9.2 Aligningtexts e 161

93 Patternmatching L oo 163

Compound word inflection 167

10.1 Multi-Word Units 167

10.1.1 Formal Description of the Inflectional Behavior of Multi-word Units . 168
10.1.2 Lexicalized vs. Grammar-Based Approach to Morphological Descrip-

HOM . . e 169

10.2 Formalism for the Computational Morphology of MWUs 170

10.2.1 Morphological Features of the Language 170

10.2.2 Decompositionofa MWU into Units. 172

10.2.3 Inflection paradigmofaMWU 173

10.3 Integrationin Unitex 178

10.3.1 Complete ExampleinEnglish 179

CONTENTS

10.3.2 Complete ExampleinFrench
10.3.3 Complete Examplein Serbian

11 Use of external programs
11.1 CheckDic e e e e e
112 Compress. oo
11.3 Concord e e e e
11.4 ConcorDiff e
11.5 Convert o e e e e e e
11.6 Dico o e e e e e e e e e e
11.7 Elag o o e
11.8 ElagComp e
11.9 Evamb e
11.10ExplodeFst2 e
TT.11EXxtract o e e e e e e e e e e e
11.12Flatten o e e e e e e
11A3Fst2Grf . . . o e e e e
T1.14Fst2List e e e
T1A5FSt2TXE . . . o o o e e e e
11.16Fst2Unambig
11.17Gr2Fst2 . . . o e e e e e e
11.18ImplodeFst2
11.19Locate e e e e
11.20MergeTextAutomaton L o
11.2IMultiFlex e e e e
11.22Normalize e e e e
11.23PolyLex o o e
11.24ReconStrucan v . v o v o e
11.25Reg2Grf. o o e
11.26S0rtTXt . . . o o e e e e e e e
11.27Table2Grf e e e
11.28TagsetNormFst2 o
11.29TEI2TXE o o e e e e e e e e e e e
11.30Tokenize o e e e e e
T1.31TX2FSt2 . . o o e e e e
11.32XMLIZEr . . . o e e e e e e e e e e

12 File formats
12.1 Unicode Little-Endianencoding
12.2 Alphabetfiles
1221 Alphabet
12.2.2 Sorted alphabet L L o
123 Graphs e
1231 Format.grf. L
1232 Format fst2 L

8 CONTENTS

124 Texts . . . o o e e e e e e e e e e 222
1241 axtfiles. e 222
1242 sntFiles e 222
1243 Filetext.cod 222
12.4.4 Thetokens.txtfile 222
12.4.5 The tok_by_alph.txt and tok_by_freq.txtfiles 222
12.4.6 Theenterposfile 223

125 Text Automaton e e e e e 223
12.5.1 Thetextfst2file e 223
12.5.2 The cursentence.grffile 224
12.5.3 ThesentenceN.grffile 224
12.5.4 The cursentence.txtfile. 224

12.6 Concordances i e e e e e e 224
12.6.1 Theconcord.indfile, 224
12.6.2 Theconcord.txtfile 225
12.6.3 The concord.htmlfile. 225
12.6.4 Thediffhtmlfile 226

12.7 Text dictionaries o i i e e e e 227
12.7.1 dlfanddlc 227
12.7.2 €Ir . . o e e e e e e e e e e e e e 227
1273 tagsind 227

12.8 Dictionaries i e e e e e e e e e e e e e e 228
12.8.1 The.binfiles. e 228
12.8.2 The.nffiles e 228
12.8.3 Dictionary informationfile 230
12.84 The CHECK_DIC.TXTfile 230

12.9 ELAGiles o e e e 232
12.9.1 tagsetdeffile 232
12.9.2 Istfiles e 232
1293 elgfiles 232
1294 rulfiles e 232

12.10Configuration files L L o 233
12101 The Configfile o 233
12.10.2 The system_dic.deffile 235
12.10.3 The user_dic.deffile 235
12104 The user.cfgfile L o 236

12.11Various other files 236
12.11.1 The dlf.n, dleneterrnfiles 236
12.11.2The stat_dic.nfile 236
12113 Thestatsnfile e 236
12.114The concordnfile. 237
12.11.5 Normalizationrulefile 237
12.11.6 Forbidden word file 237

Appendix A - GNU General Public License 239

CONTENTS 9
Appendix B - GNU Lesser General Public License 247

Appendix C - Lesser General Public License For Linguistic Resources 257

10

CONTENTS

Introduction

Unitex is a collection of programs developped for the analysis of texts in natural language
by using linguistic resources and tools. These resources consist of electronic dictionaries,
grammars and lexicon-grammar tables, initially developed for French by Maurice Gross
and his students at the Laboratoire d’Automatique Documentaire et Linguistique (LADL).
Similar resources have been developed for other languages in the context of the RELEX
laboratory network.

The electronic dictionaries specify the simple and compound words of a language together
with their lemmas and a set of grammatical (semantic and inflectional) codes. The avail-
ability of these dictionaries is a major advantage compared to the usual utilities for pattern
searching as the information they contain can be used for searching and matching, thus de-
scribing large classes of words using very simple patterns. The dictionaries are presented
in the DELA formalism and were constructed by teams of linguists for several languages
(French, English, Greek, Italian, Spanish, German, Thai, Korean, Polish, Norwegian, Por-
tuguese, etc.)

The grammars used here are representations of linguistic phenomena on the basis of recur-
sive transition networks (RTN), a formalism closely related to finite state automata. Nu-
merous studies have shown the adequacy of automata for linguistic problems at all descrip-
tive levels from morphology and syntax to phonetic issues. Grammars created with Unitex
carry this approach further by using a formalism even more powerful than automata. These
grammars are represented as graphs that the user can easily create and update.

Lexicon-grammar tables are matrices describing properties of some words. Many such ta-
bles have been constructed for all simple verbs in French as a way of describing their rele-
vant syntactic properties. Experience has shown that every word has a quasi-unique behav-
ior, and these tables are a way to present the grammar of every element in the lexicon, hence
the name lexicon-grammar for this linguistic theory. Unitex offers a way to automatically
build grammars from lexicon-grammar tables.

Unitex can be viewed as a tool in which one can put linguistic resources and use them. Its
technical characteristics are its portability, modularity, the possibility of dealing with lan-
guages that use special writing systems (e.g. many Asian languages), and its openness,
thanks to its open source distribution. Its linguistic characteristics are the ones that have
motivated the elaboration of these resources: precision, completeness, and the taking into

11

12 CONTENTS

account of frozen expressions, most notably those which concern the enumeration of com-
pound words.

What's new from version 1.2 ?

Here are some interesting new features:
o left contexts
e morphological mode in Locate
e brand new version of Convert

e replacement of Inflect by MultiFlex that can inflect compound words and that
can handle consonant skeletons for semitic languages

e introduction of the text alignment tool XAlign
e no size limit for text file display

e SVG export of graphs

From a computational point of view, a special effort has been made to clean and comment
the source code of Unitex programs in order to facilitate the integration of new components.
Moreover, the development of Unitex is now made with a SVN server, which makes collab-
orative work much more easier.

Content
Chapter 1 describes how to install and run Unitex.
Chapter 2 presents the different steps in the analysis of a text.

Chapter 3 describes the formalism of the DELA electronic dictionaries and the different
operations that can be applied to them.

Chapters 4 and 5 present different means for making text searches more effective. Chapter
5 describes in detail how to use the graph editor.

Chapter 6 is concerned with the different possible applications of grammars. The particu-
larities of each type of grammar are presented.

Chapter 7 introduces the concept of text automaton and describes the properties of this no-
tion. This chapter also describes operations on this object, in particular, how to disambiguate
lexical items with the ELAG program.

CONTENTS 13

Chapter 8 contains an introduction to lexicon-grammar tables, followed by a description of
the method of constructing grammars based on these tables.

Chapter 9 describes the text alignment module, based on the XAlign tool.

Chapter 10 describes the compound word inflection module, as a complement of the simple
word inflection mechanism presented in chapter 3.

Chapter 11 contains a detailed description of the external programs that make up the Unitex
system.

Chapter 12 contains descriptions of all file formats used in the system.

The reader will find in appendix the GPL and LGPL licenses under which the Unitex source
code is released, as well as the LGPLLR license which applies for the linguistic data dis-
tributed with Unitex.

14

CONTENTS

Chapter 1

Installation of Unitex

Unitex is a multi-platform system that runs on Windows as well as on Linux or MacOS. This
chapter describes how to install and how to launch Unitex on any of these systems. It also
presents the procedures used to add new languages and to uninstall Unitex.

1.1 Licenses

Unitex is a free software. This means that the sources of the programs are distributed with
the software, and that anyone can modify and redistribute them. The code of the Unitex
programs is under the LGPL licence ([33]), except for the TRE library for dealing with reg-
ular expressions from Ville Laurikari ([50]), which is under GPL licence ([32]). The LGPL
Licence is more permissive than the GPL licence, because it makes it possible to use LGPL
code in nonfree software. From the point of view of the user, there is no difference, because
in both cases, the software can freely be used and distributed.

All the data that go with Unitex are distributed under the LGPLLR license ([40]).

Full text versions of GPL, LGPL and LGPLLR can be found in the appendices of this manual.

1.2 Java runtime environment

Unitex consists of a graphical interface written in Java and external programs written in
C/C*+. This mixture of programming languages is responsible for a fast and portable appli-
cation that runs on different operating systems.

Before you can use the graphical interface, you first have to install the runtime environment,
usually called Java virtual machine or JRE (Java Runtime Environment).

For the graphical mode, Unitex needs Java version 1.6 (or newer). If you have an older
version of Java, Unitex will stop after you have chosen the working language.

You can download the virtual machine for your operating system for free from the Sun
Microsystems web site ([54]) at the following address: http://java.sun.com

15

http://java.sun.com

16 CHAPTER 1. INSTALLATION OF UNITEX

If you are working under Linux or MacOS, or if you are using a Windows version with
personal user accounts, you have to ask your system administrator to install Java.
1.3 Installation on Windows

If Unitex is to be installed on a multi-user Windows machine, it is recommended that the
systems administrator performs the installation. If you are the only user on your machine,
you can perform the installation yourself.

Decompress the file unitex_2.0.zip (You can download this file from the following ad-
dress: http://www-igm.univ-mlv.fr/~unitex) into a directory Unitex that should
preferably be created within the Program Files folder.

After decompressing the file, the Unitex directory contains several subdirectories one of
which is called App. This directory contains a file called Unitex.jar . This file is the Java
executable that launches the graphical interface. You can double click on this icon to start
the program. To facilitate launching Unitex, you may want to add a shortcut to this file on
the desktop.

1.4 Installation on Linux and Mac OS X

In order to install Unitex on Linux, it is recommended to have system administrator per-
missions. Decompress the file Unitex2.0.zip in a directory named Unitex , by using the
following command:

unzip Unitex2.0.zip -d Unitex

Within the directory Unitex/Src/C++/build , start the compilation of Unitex with the
command:

make install

or with the following if you have a 64 bits computer:
make install 64BITS=yes

You can then create an alias in the following way:

alias unitex="cd /..../Unitex/App/ ; java -jar Unitex.jar

http://www-igm.univ-mlv.fr/~unitex

1.5. FIRST USE 17
1.5 First use

If you are working on Windows, the program will ask you to choose a personal working
directory, which you can change later in "Info>Preferences...>Directories". To create a direc-
tory, click on the icon showing a file (see figure 1.3).

If you are using Linux or MacOS, the program will automatically create a /unitex directory
in your $HOMHKlirectory. This directory allows you to save your personal data. For each
language that you will be using, the program will copy the root directory of that language
to your personal directory, except the dictionaries. You can then modify your copy of the
files without risking to damage the system files.

Welcome paumier!

To use Unitex, you must choose a private
directony to store your data {that you
can change later if you want).

Click on OK to choose your directony.

Figure 1.1: First use under Windows

K "Welcome

Welcome paumier!

Your private Unitex directory where you can
store your own data is:

/Jhomej/thesards/ paumier/unitex

=

Figure 1.2: First use under Linux

1.6 Adding new languages

There are two different ways to add languages. If you want to add a language that is to be
accessible by all users, you have to copy the corresponding directory to the Unitex system

18 CHAPTER 1. INSTALLATION OF UNITEX

Choose your private directory : il

Look In: |3 Mes documents - E

Adobe] Mes vidéos
] Downloads] Updaters
3 Ma musigue] visual Studio 2005
] Mes eBooks
] Mes fichiers regus

3] Mes images
] Mes sites Weh

File Hame: CADocuments and Settingsipaumienites documents

Files of Type: |All Files -

Open Cancel

Figure 1.3: Creating the personal work directory

directory, for which you will need to have the access rights (this might mean that you need
to ask your system administrator to do it). On the other hand, if the language is only used
by a single user, he can also copy the directory to his working directory. He can work with
this language without this language being shown to other users.

1.7 Uninstalling Unitex

No matter which operating system you are working with, it is sufficient to delete the Unitex
directory to completely delete all the program files. Under Windows you may have to delete
the shortcut to Unitex.jar if you have created one on your desktop. The same has to be
done on Linux, if you have created an alias.

Chapter 2

Loading a text

One of the main functionalities of Unitex is to search a text for expressions. To do that, texts
have to undergo a set of preprocessing steps that normalize non-ambiguous forms and split
the text in sentences. Once these operations are performed, the electronic dictionaries are
applied to the texts. Then one can search more effectively in the texts by using grammars.

This chapter describes the different steps for text preprocessing.

2.1 Selecting a language

When starting Unitex, the program asks you to choose the language in which you want to
work (see figure 2.1). The languages displayed are the ones that are present in the Unitex
system directory and those that are installed in your personal working directory. If you use
a language for the first time, Unitex copies the system directory for this language to your
personal directory, except for the dictionaries in order to save disk space.

WARNING: If you already have a personal directory for a given language, Unitex won't
try to copy system data into it. So, if an update has modified a resource file other than a
dictionary, you will have to copy by yourself this file, or to delete your personal directory
for this language, and let Unitex rebuild it properly.

Choosing the language allows Unitex to find certain files, for example the alphabet file. You
can change the language at any time by choosing "Change Language..." in the "Text" menu.
If you change the language, the program will close all windows related to the current text,
if there are any. The active language is indicated in the title bar of the graphical interface.

2.2 Text formats

Unitex works with Unicode texts. Unicode is a standard that describes a universal character
code. Each character is given a unique number, which allows for representing texts without
having to take into account the proprietary codes on different machines and/or operating

19

20 CHAPTER 2. LOADING A TEXT
unite x|
IE' User: paumier

Choose the language you want

to work on:

English ~
English 1=
Finnish

Frenrch =

Figure 2.1: Language selection when starting Unitex

systems. Unitex uses a two-byte representation of the Unicode 3.0 standard, called Unicode
Little-Endian (for more details, see [16]).

Texts that come with Unitex are already in Unicode format. If you try to open a text that is
not in Unicode, the program proposes to convert it (see figure 2.2). This conversion is based
on the current language: if you are working in French, Unitex proposes to convert your text !
assuming that it is coded using a French code page. By default, Unitex proposes to either
replace the original text or to rename the original file by inserting .old at the beginning
of its extension. For example, if one has an ASCII file named balzac.txt , the conversion
process will create a copy of this ASCII file named balzac.old.txt , and will replace the
contents of balzac.txt with its equivalent in Unicode.

B x|

? Doy Unitex'EnglishiCorpusiskepticism.tx=t

is not a Unicode Little-Endian one. Do you want
to transcode it from ENGLISH to Unicode Little-Endian #
i Replace

i) Rename source with suffiz ".old'

Transcode Transcode all lgnore Ignore all

Figure 2.2: Automatic conversion of a non-Unicode text

If the encoding suggested by default is not correct or if you want to rename the file differ-
ently than with the suffix .old , you must use the "Transcode Files" command in the "File
Edition" menu. This command allows you to choose source and target encodings of the
documents to be converted (see figure 2.3). By default, the selected source encoding is that

!Unitex also proposes to automatically convert graphs and dictionaries that are not in Unicode Little-Endian.

2.2. TEXT FORMATS 21

which corresponds to the current language and the destination encoding is Unicode Little-
Endian. You can modify these choices by selecting any source and target encodings. Thus,
if you wish, you can convert your data into other encodings, as for example UTF-8 in order
for instance to create web pages. The button "Add Files" enables you to select the files to
be converted. The button "Remove Files" makes it possible to remove a list of files erro-
neously selected. The button "Transcode" will start the conversion of all the selected files. If
an error occurs with a file is processed (for example, a file which is already in Unicode), the
conversion continues with the next file.

l Transcode Files :]
ding: Destinat ding:

Bl::_r;f: encoding — e |L|I lJmn encoding _) Replace
BIG-ENDIAN =|LATIN13 " | ' Rename source with prefix
CYRILLIC ' Rename source with suffix
CZECH —=| _ Hame destination with prefix
EHGLISH =
FRENCH @ Name destination with suffix
GERMAN Prefixisufiiz:
GREEK —
P w LITTLE-EMDIAN - |-utf1a
Selected files:

Add Files

;i Unitex'English'Corpus'nowveltxt

i i o . Remove Files
D'y Unitex'English'Corpus'wiki-monoide-en.tx=t

Transcode

Cancel

Figure 2.3: Transcoding files

To obtain a text in the right format, you can also use a text processor like the free software
from OpenOffice.org ([57]) or Microsoft Word, and save your document with the format
"Unicode text". In OpenOffice Writer, you have to choose the "Coded Text (*.txt)" format
and then select the "Unicode" encoding in the configuration window as shown on figure 2.4.

Options de filtre ASCII x|
Proprigtés | = I
Jeu de carackéres
annuler |
Saut de paragraphe & CR&LF " cr " LF
Aide |

Figure 2.4: Saving in Unicode with OpenOffice Writer

By default, the encoding proposed on a PC is always Unicode Little-Endian. The texts thus

22 CHAPTER 2. LOADING A TEXT

obtained do not contain any formatting information anymore (fonts, colors , etc.) and are
ready to be used with Unitex.

2.3 Editing text files

You also have the possibility of using the text editor integrated into Unitex, accessible via
the "Open..." command in the "File Edition" menu". This editor offers search and replace
functionalities for the texts and dictionaries handled by Unitex. To use it, click on the "Find"
icon. You will then see a window divided into three parts. The "Find" part corresponds to
the usual search operations. If you open a text split into sentences, you can base your search
on sentence numbers in the "Find Sentence" part. Lastly, the "Search Dictionary" part, visible
in figure 2.5, enables you to carry out operations concerning the electronic dictionaries. In
particular, you can search by specifying if it concerns inflected forms, lemmas, grammatical
and semantic and/or inflectional codes. Thus, if you want to search for all the verbs which
have the semantic feature t, which indicates transitivity, you just have to search for t by
clicking on "Grammatical code". You will get the matching entries without confusion with
all the other occurrences of the letter t .

B x|

(Find r Find Sentence |/ Dictionary Search |

Find what: i | Find Mext
Replace: | | Replace Mext
Occurrences: 0 Replace
Options Count oCCUrrences
i) Search from begining [v]| Grammatical code [| Canonical form Replace Al

i) Search up [] Inflected form [] Flexional code Close

@ Search down

Figure 2.5: Searching an electronic dictionary for the semantic feature t

2.4 Opening a text

Unitex deals with two types of text files. The files with the extension .snt are text files pre-
processed by Unitex which are ready to be manipulated by the different system functions.
The files ending with .txt are raw files. To use a text, open the .txt file by clicking on
"Open..." in the "Text" menu. Choose the file type "Raw Unicode Texts" and select your text.

2.5. PREPROCESSING A TEXT 23

Unitex 2.0 - current language is English
Iext| DELA FSGraph Lexicon-Grammar XAlign Edit File Edition Windows Info

Open...
Open Tagged Text...

Change Language...

Compile Elag Grammars

Quit Unitex

Figure 2.6: Text Menu

2.5 Preprocessing a text

After a text is selected, Unitex offers to preprocess it. Text preprocessing consists of perform-
ing the following operations: normalization of separators, splitting into sentences, normal-
ization of non-ambiguous forms, tokenization and application of dictionaries. If you choose
not to preprocess the text, it will nevertheless be normalized and tokenized, since these op-
erations are necessary for all further Unitex operations. It is always possible to carry out the
preprocessing later by clicking on "Preprocess Text..." in the "Text" menu.

If you choose to preprocess the text, Unitex proposes to parameterize it as in the window
shown in figure 2.8. The option "Apply FST2 in MERGE mode" is used to split the text into
sentences. The option "Apply FST2 in REPLACE mode" is used to make replacements in
the text, especially for the normalization of non-ambiguous forms. With the option "Ap-
ply All default Dictionaries" you can apply dictionaries in the DELA format (Dictionnaires
Electroniques du LADL). The option "Analyze unknown words as free compound words" is
used in Norwegian for correctly analyzing compound words constructed via concatenation
of simple forms. Finally, the option "Construct Text Automaton" is used to build the text
automaton. This option is deactivated by default, because it consumes a large amount of
memory and disk space if the text is too large. The construction of the text automaton is
described in chapter 7.

NOTE: If you click on "Cancel but tokenize text", the program will carry out the normaliza-

24 CHAPTER 2. LOADING A TEXT

Look In: |3 Corpus - E
Ent E‘| novel.snt E‘| test-franz.txt.bak
L=t E‘| nowel.taxt E‘| test_tagges.snt
pa.xml E‘| novel.txt.hak E‘| test_tagges.txt
pa_xalign.snt E‘| skepticism.txt E‘| toto.snt
p5_=align.txt E‘| test-franz.snt E‘| uima_0.snt
[} test-franz.txt [} vima_n.txt
4| | I | | ¥
File Hame: |5keptici5m.b{t| |
Files of Type: |All Files -
Open Cancel
Figure 2.7: Opening a Unicode text
Preprocessing & Lexical parsing ll
Preprocessing

Apphy graph in MERGE mode:

EnglishiGraphsiPreprocessingiSentencelSentence.orf]| Set..

Apply graph in REPLACE m...

el EnglishGraphsiPreprocessingiReplace\Replace.qrf]| %Set..

Tokenizing

The text is automatically tokenized. This operation is language-dependant,
s0 that Unitex can handle languages with special spacing rules.
Lexical Parsing

1
Apply All default Dictionaries GO

[] Analyse unknown words as free compound words (this option

Cancel but tokenize text
is available only for Dutch, German, Horwegian & RBussian)

[] Construct Text Automaton

Cancel and close text

Figure 2.8: Preprocessing Window

tion of separators and split the text into tokens. Click on "Cancel and close text" to cancel
the operation.

2.5. PREPROCESSING A TEXT 25

2,51 Normalization of separators

The standard separators are the space, the tab and the newline characters. There can be
several separators following each other, but since this isn’t useful for linguistic analyses,
separators are normalized according to the following rules:

e a sequence of separators that contains at least one newline is replaced by a single new-
line

e all other sequences of separators are replaced by a single space.

The distinction between space and newline is maintained at this point because the presence
of newlines may have an effect on the process of splitting the text into sentences. The result
of the normalization of a text named my_text.txt is a file in the same directory as the
Ixt file and is named my_text.snt

NOTE: When the text is preprocessed using the graphical interface, a directory named
my_text_snt is created immediately after normalization. This directory, called text direc-
tory, contains all the data associated with this text.

2.5.2 Splitting into sentences

Splitting texts into sentences is an important preprocessing step since this helps in determin-
ing the units for linguistic processing. The splitting is used by the text automaton construc-
tion program. In contrast to what one might think, detecting sentence boundaries is not a
trivial problem. Consider the following text:

The family has urgently called Dr. Martin.

The full stop that follows Dr is followed by a word beginning with a capital letter. Thus it
may be considered as the end of the sentence, which would be wrong. To avoid the kind
of problems caused by the ambiguous use of punctuation, grammars are used to describe
the different contexts for the end of a sentence. Figure 2.9 shows an example grammar for
sentence splitting (for French sentences).

When a path of the grammar recognizes a sequence in the text and when this path produces
the sentence delimiter symbol {S} , this symbol is inserted into the text.

The path shown at the top of figure 2.9 recognizes the sequence consisting of a question
mark and a word beginning with a capital letter and inserts the symbol {S} between the
question mark and the following word. The following text:

What time is it? Eight o clock.
will be converted to:
What time is it ?{S} Eight o’ clock.

A grammar for end-of-sentence detection may use the following special symbols:

26 CHAPTER 2. LOADING A TEXT

e <E>: empty word, or epsilon. Recognizes the empty sequence;

e <MOT> : recognizes any sequence of letters;

e <MIN> : recognizes any sequence of letters in lower case;

e <MAJ> : recognizes any sequence of letters in upper case;

e <PRE>: recognizes any sequence of letters that begins with an upper case letter;
e <NB>: recognizes any sequence of digits (1234 is recognized but not 1 234);

e <PNC> : recognizes the punctuation symbols ; , ! ? : and the inverted exclama-
tion points and question marks in Spanish and some Asian punctuation letters;

e <">:recognizes a newline;

: prohibits the presence of a space.

Placement des marques de séparation de phrases {S}

Cas général } 1y
Ponctuation {s} D* parentheses

crochets

<MAJ>
=<PRE=

<MIX>
<NB=>

Ponctuation suivie de cas particuliers
sigles, noms, symholes ...

Sigles, prénoms, anthroponymes

/ﬂp\

Mots composés ou suivis d'une lettre majuscule, symboles

|cas3 }

Abréviations

Cas particuliers

Graphe réalisé par

Nathalie Friburger (LI-Tours)
Amne Dister (Univ. de Liéges)
Denis Maurel (LI-Tours)

Figure 2.9: Sentence splitting grammar for French

By default, the space is optional between two boxes. If you want to prohibit the presence
of the space you have to use the special character #. At the opposite, if you want to force

2.5. PREPROCESSING A TEXT 27

the presence of the space, you must use the sequence . Lower and upper case letters are
defined by an alphabet file (see chapter 12). For more details on grammars, see chapter 5.
For more information about sentence boundary detection, see [21]. The grammar used here
is named Sentence.fst2 and can be found in the following directory:

/(user home directory)/(language)/Graphs/Preprocessing/Sentence

This grammar is applied to a text with the Fst2Txt program in MERGE mode. This has
the effect that the output produced by the grammar, in this case the symbol {S} , is inserted
into the text. This program takes a .snt file and modifies it.

2.5.3 Normalization of non-ambiguous forms

Certain forms present in texts can be normalized (for example, the English sequence "I'm"
is equivalent to "I am"). You may want to replace these forms according to your own needs.
However, you have to be careful that the forms normalized are unambiguous or that the
removal of ambiguity has no undesirable consequences.

For instance, if you want to normalize "O’clock" to "on the clock", it would be a bad idea to
replace "O™" by "on the ", because a sentence like:

John O’Connor said: "it’s 8 O’clock”
would be replaced by the following incorrect sentence:
John on the Connor said: "it’s 8 on the clock”

Thus, one needs to be very careful when using the normalization grammar. One needs to
pay attention to spaces as well. For example, if one replaces "'re" by "are", the sentence:

You're stronger than him.
will be replaced by:

Youare stronger than him.

"s

To avoid this problem, one should explicitly insert a space, i.e. replace "’re" by " are".

The accepted symbols for the normalization grammar are the same as the ones allowed for
the sentence splitting grammar. The normalization grammar is called Replace.fst2 ~ and
can be found in the following directory:

/(home directory)/(active language)/Graphs/Preprocessing/Replace

As in the case of sentence splitting, this grammar is applied using the Fst2Txt program,
but in REPLACE mode, which means that input sequences recognized by the grammar are
replaced by the output sequences that are produced. Figure 2.10 shows a grammar that
normalizes verbal contractions in English.

28

CHAPTER 2. LOADING A TEXT

Figure 2.10: Normalization of English verbal contractions

2.5. PREPROCESSING A TEXT 29
2.5.4 Splitting a text into tokens

Some languages, in particular Asian languages, use separators that are different from the
ones used in western languages. Spaces can be forbidden, optional, or mandatory. In order
to better cope with these particularities, Unitex splits texts in a language dependent way.
Thus, languages like English are treated as follows:

A token can be:
e the sentence delimiter {S} ;

e the stop marker {STOP}. This token is a special one that can NEVER be matched in
any way by a grammar. It can be used to bound elements in a corpus. For instance, if
a corpus is made of news separated by {STOP}, it will be impossible that a grammar
matches a sequence that overlaps the end of a news and the beginning of the following
news;

e a lexical tag {aujourd’hui,. ADV} ;
¢ a contiguous sequence of letters (the letters are defined in the language alphabet file);

e one (and only one) non-letter character, i.e. all characters not defined in the alphabet
file of the current language; if it is a newline, it is replaced by a space.

For other languages, tokenization is done on a character by character basis, except for the
sentence delimiter {S} , the {STOP} marker and lexical tags. This simple tokenization is
fundamental for the use of Unitex, but limits the optimization of search operations for pat-
terns.

Regardless of the tokenization mode, newlines in a text are replaced by spaces. Tokenization
is done by the Tokenize program. This program creates several files that are saved in the
text directory:

e tokens.txt contains the list of tokens in the order in which they are found in the
text;

text.cod contains an integer array; every integer corresponds to the index of a token
in the file tokens.txt ;

tok_by_freq.txt contains the list of tokens sorted by frequency;

tok_by_alph.txt contains the list of tokens in alphabetical order;

stats.n contains some statistics about the text.

Tokenizing the text:

A cat is a cat.

30 CHAPTER 2. LOADING A TEXT
returns the following list of tokens: A SPACE catisa .
You will observe that tokenization is case sensitive (A and a are two distinct tokens), and

that each token is listed only once. Numbering these tokens from 0 to 5, the text can be
represented by a sequence of numbers (integers) as described in the following table:

Token number O(1] 2 |1|3[1|4|1]| 2|5
Corresponding || A cat is a cat
token

Table 2.1: Representation of the text A cat is a cat.

For more details, see chapter 12.

Token list -

By Frequence By Char Order

82311
5435
5772
3500
3161
Z554
2454
2374
2343
Z2301
157G
1340
117&
goE
ToE
=1
Tl
T4
T4
TaG
714
5683

Figure 2.11: Tokens of an English text sorted by frequency

2.5.5 Applying dictionaries

Applying dictionaries consists of building the subset of dictionaries consisting only of forms
that are present in the text. Thus, the result of applying a English dictionary to the text Igor’s
father in law is ill produces a dictionary of the following simple words:

2.5. PREPROCESSING A TEXT 31

father,.N+Hum:s
father,.V:W:P1s:P2s:P1p:P2p:P3p
ill,.A

ill,.,ADV

ill,.N:s

in,.A

in,.N:s

in,.PART

in,.PREP

is,be.V:P3s

is,i.N:p

law,.N:s
law,.V:W:P1s:P2s:P1p:P2p:P3p
s,.N:s

as well as a dictionary of compound words consisting of a single entry:

father in law,.N+NPN+Hum+z1l:s

Since the sequence Igor is neither a simple English word nor a part of a compound word, it
is treated as an unknown word. The application of dictionaries is done through the program
Dico . The three files produced (dIf for simple words, dic for compound words and err
for unknown words) are placed in the text directory. The dIf and dlc files are called text
dictionaries.

As soon as the dictionary look-up is finished, Unitex displays the sorted lists of simple,
compound and unknown words found in a new window. Figure 2.12 shows the result for
an English text.

It is also possible to apply dictionaries without preprocessing the text. In order to do this,
click on "Apply Lexical Resources..." in the "Text" menu. Unitex then opens a window (see
figure 2.13) in which you can select the list of dictionaries to apply.

The list "User resources" lists all dictionaries present in the directory

(current language)/Dela of the user. The dictionaries installed in the system are listed
in the scroll list named "System resources". Use the <Ctrl+click> combination to select sev-
eral dictionaries. System dictionaries will be applied prior to user dictionaries. Within the
system or user list, you can fix the order of dictionaries using the up and down arrows, as
shown on figure 2.13. The button "Set Default" allows you to define the current selection
of dictionaries as the default. This default selection will then be used during preprocessing
if you activate the option "Apply All default Dictionaries". If you right-click on a dictio-
nary name, the associated documentation, if any, will be displayed in the lower frame of the
window.

32 CHAPTER 2. LOADING A TEXT

Word Lists in D:My Unitex English\Corpus ivanhoe_snt - s g
DLF: 13284 simple-word lexical entries ERR: 412 unknown simple words
a, .DET+Dind:s = Jibdalla ||
a,.l:=s 1= Abhednego f
Laron, .HN+FE+Hum ac idum
ahandoned, . L adale
ahandoned, abandon. V:E:Il=s: Adelaide
ahate, .V:W:Pls:F2=s:FPlp:Fap Adsurn
abhated,abhate.ViE: Ils:I2s:1 hlfred
abbey, .N+Conc:s hlicia
abbot, MN+Hum: s bllan
abbots, abbot . N+Hum: p - aller
0] |,|_ altereth
Ambrose
DLC: 274 compound lexical entries Ao
abhsolute necessity, .N+iN+z]*| |Aindalusia
act of wioclence, NHNFPH4z1:3= andTermagaunt
agnus castus, N+EN4NE+Conc Anjou
all arcund, .i4+Di4+=1 Anthony
all comers, N+XEN+=z1l:p Ariwold
all in, .bL+=1 hrollyon
Anglo-3axon, .N+ET+Hum+=z1:= appeareth
Lnglo-Saxons, inglo-3axon. - Arcite
as usual, . i+asi+=1 arguest
as was, .L+asV+=1 | |AriosSto |
]]] v] |

Figure 2.12: Result after applying dictionaries to an English text

2.5.6 Analysis of compound words in Dutch, German, Norwegian and Russian

In certain languages like Norwegian, German and others, it is possible to form new com-
pound words by concatenating together other words. For example, the word aftenblad mean-
ing evening journal is obtained by combining the words aften (evening) et blad (journal). The
PolyLex program parses the list of unknown words after the application of dictionaries
and tries to analyze each of these words as a compound word. If a word has at least one
analysis as a compound word, it is removed from the list of unknown words and the lines
produced for this word are appended to the simple word text dictionary.

2.6 Opening a tagged text

A tagged text is a text containing words with lexical tags enclosed in round brackets:

I do not like the {square bracket,.N} sign! {S}

2.6. OPENING A TAGGED TEXT 33

Lexical Resources

Select the dictionaries to be applied. You can sort them one by one
using the arrows. Note that system dictionaries are given to the Dico
program hefore the user ones.

User resources System resources

CR.fst2 ! & | |pnumsst2 = A
NPr+.fst2 v Prolex-Topommmes.hin ¥
Suffizes+.fst2 profession.hin

Papes.fst2 1 MNPr+.fst2 §
Elements.fst2 Suffixes+.fst?

concord.hin prenom-s.hin

[Dnum.fst2 |] motsGramf-.hin i
DELA.bin Extrait-DelquefM2.bin |
Prx\-Lidia.hin Elements.fst2

dico-lidia.bin ajouts80jours.bin

num.fst2 dela-fr-public.bin |
(AT <] [[T»] |

ight-click a dictionary to get information about it : o
Graphe dictionnaire reconnaissant les chiffres romains sl

Ce dictionnaire reconnait les chiffres romains en majuscules
depuis 1 jusgu'a 4999, Son avantage par rapport su dictionnaire
Ramiurm bin est gquil ne prend pas camme chiffres romains L, C, D,
b et MM dans les contextes suivants:

[4]

Clear Default Set Default Apphy

Figure 2.13: Parameterizing the application of dictionaries

Such tags can be used to avoid ambiguities. In the previous example, it will be impossible
to match square bracket as the combination of two simple words.

However, the presence of these tags can alter the application of preprocessing graphs. To
avoid complications, you can use the "Open Tagged Text..." command in the "Text" menu.
With it, you can open a tagged text and skip the application of preprocessing graphs, as
shown on Figure 2.14.

34

CHAPTER 2. LOADING A TEXT

Preprocessing & Lexical parsing

Preprocessing

Sentence and Replace graphs should not be applied on tagged texts.
Tokenizing

The text is automatically tokenized. This operation is language-dependant,
s0 that Unitex can handle languages with special spacing rules.
Lexical Parsing

1
Apply &l default Dictionaries el

[] Analyse unknown words as free compound words (this option

Cancel but tokenize text
is available only for Dutch, German, Horwegian & Bussian)

[Construct Text Automaton Cancel and close text

Figure 2.14: Preprocessing a tagged text

Chapter 3

Dictionaries

3.1 The DELA dictionaries

The electronic dictionaries distributed with Unitex use the DELA syntax (Dictionnaires Elec-
troniques du LADL, LADL electronic dictionaries). This syntax describes the simple and
compound lexical entries of a language with their grammatical, semantic and inflectional
information. We distinguish two kinds of electronic dictionaries. The one that is used
most often is the dictionary of inflected forms DELAF (DELA de formes Fléchies, DELA
of inflected forms) or DELACEF (DELA de formes Composées Fléchies, DELA of compound
inflected forms) in the case of compound forms. The second type is a dictionary of non-
inflected forms called DELAS (DELA de formes simples, simple forms DELA) or DELAC
(DELA de formes composées, compound forms DELA).

Unitex programs make no distinction between simple and compound form dictionaries.
We will use the terms DELAF and DELAS to distinguish the inflected and non-inflected
dictionaries, no matter they contain simple word, compound words or both.

3.1.1 The DELAF format
Entry syntax

An entry of a DELAF is a line of text terminated by a newline that conforms to the following
syntax:

apples,apple.N+conc:p/this is an example
The different elements of this line are:

e apples is the inflected form of the entry; it is mandatory;

35

36

CHAPTER 3. DICTIONARIES

e apple isthe canonical form (lemma) of the entry. For nouns and adjectives (in French),

it is usually the masculine singular form; for verbs, it is the infinitive. This information
may be left out as in the following example:

apple,.N+Conc:s

This means that the canonical form is the same as the inflected form. The canonical
form is separated from the inflected form by a comma.

N+Conc is the sequence of grammatical and semantic information. In our example, N
designates a noun, and Conc indicates that this noun designates a concrete object (see
table 3.2).

Each entry must have at least one grammatical or semantic code, separated from the
canonical form by a period. If there are more codes, these are separated by the +
character.

:p is an inflectional code which indicates that the noun is plural. Inflectional codes
are used to describe gender, number, declination, and conjugation. This information
is optional. An inflectional code is made up of one or more characters that represent
one information each. Inflectional codes have to be separated by the : character, for
instance in an entry like the following:

hang,.V:W:P1s:P2s:P1p:P2p:P3p

The : character is interpreted in OR semantics. Thus, :W:P1s:P2s:P1p:P2p:P3p
means "infinitive", or "1st person singular present"”, or "2nd person singular present”,
etc. (see table 3.3) Since each character represents one information, it is not necessary

to use the same character more than once. In this way, encoding the past participle
using the code :PP would be exactly equivalent to using :P alone;

/this is an example is a comment. Comments are optional and are introduced
by the/ character. These comments are left out when the dictionaries are compressed.

IMPORTANT REMARK: It is possible to use the full stop and the comma within a dictionary
entry. In order to do this they have to be escaped using the \ character:

1\,000,0ne thousand.NUMBER
United Nations,U\.N\..ACRONYM

WARNING: Each character is taken into account within a dictionary line. For example, if
you insert spaces, they are considered to be a part of the information. In the following line:

3.1. THE DELA DICTIONARIES 37
hath,have.V:P3s /old form of 'has’

The space that precedes the / character will be considered to be part of a 4-character inflec-
tional code.

It is possible to insert comments into a DELAF or DELAS dictionary by starting the line with

a / character. Example:

/ 'English’ designates a pool spin
English,.N+z3:s
Compound words with spaces or dashes

Certain compound words like acorn-shell can be written using spaces or dashes. In order
to avoid duplicating the entries, it is possible to use the = character. At the time when the
dictionary is compressed, the Compress program checks for each line if the inflected or
canonical form contains a non-escaped = character. If this is the case, the program replaces
this by two entries: one where the = character is replaced by a space, and one where it is
replaced by a dash. Thus, the following entry:

acorn=shells,acorn=shell.N:p
is replaced by the following entries:

acorn shells,acorn shell.N:p
acorn-shells,acorn-shell.N:p

NOTE: If you want to keep an entry that includes the = character, escape it using \ as in the
following example:

E\=mc2,.FORMULA

This replacement is done when the dictionary is compressed. In the compressed dictionary,
the escaped = characters are replaced by simple =. As such, if a dictionary containing the
following lines is compressed:

E\=mc2,.FORMULA
acorn=shell,.N:s

and if the dictionary is applied to the following text:
Formulas like E=mc2 have nothing to do with acorn-shells.

you will get the following lines in the dictionary of compound words of the text:

E=mc2,.FORMULA

acorn-shells,.N:p

38 CHAPTER 3. DICTIONARIES

Entry Factorization

Several entries containing the same inflected and canonical forms can be combined into a
single one if they also share the same grammatical and semantic codes. Among other things
this allows us to combine identical conjugations for a verb:

bottle,.V:W:P1s:P2s:P1p:P2p:P3p

If the grammatical and semantic information differ, one has to create distinct entries:

bottle,.N+Conc:s
bottle,.V:W:P1s:P2s:P1p:P2p:P3p

Some entries that have the same grammatical and semantic entries can have different mean-
ings, as it is the case for the French word poéle that describes a stove or a type of sheet in the
masculine sense and a kitchen instrument in the feminine sense. You can thus distinguish
the entries in this case:

poéle,.N+z1:fs/ poéle a frire
poéle,.N+z1:ms/ voile, linceul; appareil de chauffage

NOTE: In practice, this distinction has the only consequence that the number of entries in
the dictionary increases.

For the different programs that make up Unitex these entries are equivalent to:

poéle,.N+z1l:fs:ms

Whether this distinction is made is thus left to the maintainers of the dictionaries.

3.1.2 The DELAS Format

The DELAS format is very similar to the one used in the DELAF. The only difference is
that there is only a canonical form followed by grammatical and/or semantic codes. The
canonical form is separated from the different codes by a comma. There is an example:

horse,N4+Anl

The first grammatical or semantic code will be interpreted by the inflection program as the
name of the grammar used to inflect the entry. The entry of the example above indicates that
the word horse has to be inflected using the grammar named N4. It is possible to add inflec-
tional codes to the entries, but the nature of the inflection operation limits the usefulness of
this possibility. For more details see below in section 3.4.

3.1. THE DELA DICTIONARIES 39

3.1.3 Dictionary Contents

The dictionaries provided with Unitex contain descriptions of simple and compound words.
These descriptions indicate the grammatical category of each entry, optionally their inflec-
tional codes, and various semantic information. The following tables give an overview of
some of the different codes used in the Unitex dictionaries. These codes are the same for
almost all languages, though some of them are special for certain languages (i.e. code for

neuter nouns, etc.).

Code | Description Examples
A adjective fabulous, broken-down
ADV | adverb actually, years ago
CONJC| coordinating conjunction | but
CONJS| subordinating conjunction | because
DET | determiner each
INTJ | interjection eureka
N noun evidence, group theory
PREP | preposition without
PRO | pronoun you
\ verb overeat, plug-and-play
Table 3.1: Frequent grammatical codes
Code Description Example
z1 general language joke
z2 specialized language floppy disk
z3 very specialized language | serialization
Abst abstract patricide
Anl animal horse
AniCaoll collective animal flock
Conc concrete chair
ConccColl collective concrete rubble
Hum human teacher
HumCaoll collective human parliament
t transitive verb kill
[intransitive verb agree

Table 3.2: Some semantic codes

NOTE: The descriptions of tense in table 3.3 correspond to French. Nontheless, the majority
of these definitions can be found in other languages (infinitive, present, past participle, etc.).

In spite of a common base in the majority of languages, the dictionaries contain encoding

40 CHAPTER 3. DICTIONARIES

particularities that are specific for each language. Thus, as the declination codes vary a lot
between different languages, they are not described here. For a complete description of all
codes used within a dictionary, we recommend that you contact the author of the dictionary
directly.

Code | Description
masculine

feminin

neuter

singular

plural

1st, 2nd, 3rd person
present indicative
imperfect indicative
present subjunctive
imperfect subjunctive
present imperative
present conditional
simple past indicative
infinitive

present participle
past participle

future indicative

=
w

T X| Q| S|« 0| <|d|n —|T|NpT |05 =™ 3

Table 3.3: Common inflectional codes

However, these codes are not exclusive. A user can introduce his own codes and create his
own dictionaries. For example, for educational purposes one could use a marker "faux-ami"
(false friend) in a French dictionary:

blesser,.V+faux-ami/injure
casque,.N+faux-ami/helmet
journée,.N+faux-ami/day

It is equally possible to use dictionaries to add extra information. Thus, you can use the
inflected form of an entry to describe an abbreviation and the canonical form to provide the
complete form:

DNA,DeoxyriboNucleic Acid. ACRONYM
LADL,Laboratoire d’Automatique Documentaire et Linguistique. ACRONYM
UN,United Nations. ACRONYM

3.2. CHECKING DICTIONARY FORMAT 41
3.2 Checking dictionary format

When dictionaries become large, it becomes tiresome to check them by hand. Unitex con-
tains the program CheckDic that automatically checks the format of DELAF and DELAS
dictionaries.

This program verifies the syntax of the entries. For each malformed entry the program out-
puts the line number, the content of the line and an error message. Results are saved in
the file CHECK_DIC.TXT which is displayed when the verification is finished. In addition
to eventual error messages, the file also contains the list of all characters used in the in-
flectional and canonical forms, the list of grammatical and semantic codes, and the list of
inflectional codes that appear in the dictionary. The character list makes it possible to verify
that the characters used in the dictionary are consistent with those in the alphabet file of the
language. Each character is followed by its value in hexadecimal notation.

The code lists can be used to check that there are no typing errors in the codes of the dictio-
nary.

The CheckDic program works with non-compressed dictionaries, i.e. the files in text for-
mat. The general convention is to use the .dic extension for these dictionaries. In order to
check the format of a dictionary, you first open it by choosing "Open..." in the "DELA" menu.

E Unitex 2.0 - current language is English

Text | DELA | FSGraph Lexicon-Grammar XAlign Edit File Edition Windows Info

Open...

Append Suffizes to Stems...

Figure 3.1: "DELA" Menu

Let’s load the dictionary as in figure 3.2. Then, click on "Check Format..." in the "DELA"
menu. A window like in figure 3.3 is opened. You must select the type of dictionary you
want to check. After checking the dictionary in Figure 3.2, results are presented as shown in
Figure 3.4.

The first error is caused by a missing period. The second, by the fact that no comma was
found after the end of an inflected form. The third error indicates that the program didn’t
find any grammatical or semantic codes.

42 CHAPTER 3. DICTIONARIES

D:lvy Unitex'English'Dela‘agreeabhy.dic §§

agresably, LDV

agreed. INTJ

agreed,agree . V+i:K:Il=s: 12z 132 I1p: I2p: IS
ah, .

aid, .l:=

al

Figure 3.2: Dictionary example

Check Dictionary Format

Dictionary Type:
Check Dictiohany

i DELAS/DELAC
i®) DELAFDELACF Cancel

Figure 3.3: Checking a dictionary

3.3 Sorting

Unitex uses the dictionaries without having to worry about the order of the entries. When
displaying them it is sometimes preferable to sort the dictionaries. The sorting depends on
a number of criteria, first of all on the language of the text. Therefore the sorting of a Thai
dictionary is done according to an order different from the alphabetical order. So different
in fact that Unitex uses a sorting procedure developed specifically for Thai (see chapter 11).

For European languages the sorting is usually done according to the lexicographical order,
although there are some variants. Certain languages like French treat some characters as
equivalent. For example, the difference between the characters e and € is ignored if one
wants to compare the words manger et mangés because the contexts r and s allow to
decide the order. The difference is only taken into account when the contexts are identical,
as they are when comparing péche and peche .

To allow for such effect, the SortTxt program uses a file which defines the equivalence of
characters. This file is named Alphabet_sort.txt and can be found in the user directory
for the current language. By default the first lines of this file for French look like this:

AAAAadaa
Bb
CGCce

3.3. SORTING

Check Results

Line 1: unexpected end of line
agreeab ly, LDV

Line 2Z: unexpected end of line

agreed. INTJ

Line 4: ewpty grammatical or semantic code
ah, .

File: D:%My Unitex’EnglishhDela)agreeably.dic
Type: DELLAF

5 lines read

Z Simple entries for Z distinct lenmas

0 compound entry for 0 distinct lermma

a (00681}
d [o064)
& (O0G5)
o (0067)
i (00&3)
r {(007Z)

(] Il | [»

Figure 3.4: Results of checking

43

44 CHAPTER 3. DICTIONARIES

Dd
EEEEEeéeéé

Characters in the same line are considered equivalent if the context permits. If two equiv-
alent characters must be compared, they are sorted in the order they appear in from left to
right. As can be seen from the extract above, there is no difference between lower and upper
case. Accents and the cédille character are ignored as well.

To sort a dictionary, open it and then click on "Sort Dictionary" in the "DELA" menu. By
default, the program always looks for the file Alphabet_sort.txt . If that file doesn’t
exist, the sorting is done according to the character indices in the Unicode encoding. By
modifying that file, you can define your own sorting order.

NOTE: After applying the dictionaries to a text, the files dif ,dlc and err are automatically
sorted using this program.

3.4 Automatic inflection

3.4.1 Inflection of simple words

As described in section 3.1.2, a line in a DELAS consists of a canonical form and a sequence
of grammatical or semantic codes:

aviatrix,N4+Hum
matrix,N4+Math
radix,N4

The first code is used to determine the grammatical code of the entry as well as the name of
the grammar used to inflect the canonical form. There are two possible forms:

e V32: grammar name=V32.fst2 , grammatical code=V (longest letter prefix)

e N(NC_XXX): grammar name=NC_XXX.fst2 , grammatical code=N

These inflectional grammars will automatically be compiled if needed. In the example
above, all entries will be inflected by a grammar named N4.

In order to inflect a dictionary, click on "Inflect..." in the "DELA" menu. The window in
tigure 3.5 allows you to specify the directory in which inflectional grammars are found. By
default, the subdirectory Inflection of the directory for the current language is used.

3.4. AUTOMATIC INFLECTION 45

Inflection
Directory where inflectional FST2 are stored:

|D21h.l1'5-' nitexAEnglishinflection | Set...

Cancel Inflect Dictionany

Figure 3.5: Configuration of automatic inflection

matyix

matrices

Figure 3.6: Inflectional grammar N4

Figure 3.6 shows an example of an inflectional grammar. The paths describe the suffixes to
add or to remove to get to an inflected form from a canonical form, and the outputs (text in
bold under the boxes) are the inflectional codes to add to a dictionary entry.

In our example, two paths are possible. The first does not modify the canonical form and
adds the inflectional code :s . The second deletes a letter with the L operator, then adds the
ux suffix and adds the inflectional code :mp. Five operators are possible:

o L (left) removes a letter from the entry

e R (right) restores a letter to the entry. In French, many verbs of the first group are
conjugated in the present singular of the third person form by removing the r of the
infinitive and changing the 4" letter from the end to &: peler — péle , acheter —
achete , gérer — gere , etc. Instead of describing an inflectional suffix for each verb
(LLLLele , LLLLete et LLLLére), the R operator can be used to describe it in one
way: LLLLeRR.

e C(copy) duplicates a letter in the entry and moves everything on its right by one posi-
tion. In cases like permitted or hopped , we see a duplication of the final consonant
of the verb. To avoid writing an inflectional graph for every possible final consonant,
one can use the Coperator to duplicate any final consonant.

46 CHAPTER 3. DICTIONARIES

o D (delete) deletes a letter, shifting anything located on the right of this letter. For in-
stance, if you want to inflect the Romanian word european into europeni , you must
use the sequence LDRi. L will move the cursor on the a, D will delete the a, shifting
the n on the left, and then Ri will restore the n and add an i .

e U (unaccent) removes the accent of the current character, if any. For instance the se-
quence LLUX applied to the word mangés produces the inflected form mangex, since
Uhas turn the 'é¢’ into a e.

In the example below, the inflection of choose is shown. The sequence LLDRRndescribes
the form chosen :

e Step 0: the canonical form is copied on the stack, and the cursor is set behind the last
letter:

[c][hfofo]s[e] |

e Step 1: the cursor is moved one position to the left:

LLDRRnN

!
[c|[hfofofs]e

[

e Step 2: the cursor is moved one position to the left again:

LLDRRnN

(c|hfofo]s[e] |

e Step 3: one character is deleted; everything to the right of the cursor is shifted one
position to the left:

LLDRRnN

(clhfofs]e[[|

e Step 4: the cursor is moved to the right:

3.4. AUTOMATIC INFLECTION 47

e Step 6: the character n is pushed on the stack:

LLDRRnN

(cf[hfofs]e[n] |

When all operations have been fulfilled, the inflected form consists of all letters before the
cursor (here chosen).

The inflection program explores all paths of the inflectional grammar and tries all possible
forms. In order to avoid having to replace the names of inflectional grammars by the real
grammatical codes in the dictionary used, the program replaces these names by the longest
prefixes made of letters if you have selected the "Remove class numbers" button. Thus, N4
is replaced by N. By choosing the inflectional grammar names carefully, one can construct a
ready to use dictionary.

Let’s have a look at the dictionary we get after the DELAS inflection in our example:

3.4.2 Inflection of compound words

See chapter 10.

3.4.3 Inflection of semitic languages

Semitic languages like Arabic or Hebrew are not inflected in the same way than other kinds
of languages, since their morphology obey a different logic. In fact, in such languages,
words are inflected according to consonant skeletons. A lemma is made of consonants, and
the inflection process is supposed to enrich this skeleton with vowels. Moreover, as some
agglutinative phenomena can occur, the content of a semitic inflection grammar is interpre-
tated in a special way.

48

D:iMy Unitex EnglishiDelaidelasflx.dic =

CHAPTER 3. DICTIONARIES

gviatrices,aviacrix.N+Hum:p
gviatrix,aviatrix.N+Hum: s
matrices, matrix. . N+Math:p
matrix, matrix.N+Math:=
radices,radix.l:no
radix,radix.N:=s

1] Il |

Figure 3.7: Result of automatic inflection

First, let us see what a semitic entry is supposed to be:

ktb,$Vv31-123

The $ sign before the grammatical code indicates that this is a semitic entry, and the lemma
(here ktb) is the consonant skeleton. Figure 3.8 shows the toy grammar V31-123.grf that

illustrates how the semitic inflection process works.

b b b val oZo3u |} b b
{ .,V :aP3ms } {

)0

,.SFX }

Figure 3.8: A toy semitic inflection grammar

Such a grammar obey the following rules:

1. All standard inflection operators can be used (L, R, etc).

2. A digit stands for a consonant of the skeleton (1 for the first, 2 for the second, etc). In
our example, 1, 2 and 3 will respectively stand for k, t and b.

3. The output of a path must be made of sequences of the form {,. XXX} . Each { symbol
must appear alone in a box. The current content of the stack will be dumped between
{ and ,.XXX} each time an output containing } will be found. In our example, the

output will be {yakotobu,.V:aP3ms}{da,.SFX}

4. The DELAF output is of the following form:
yakotobuda,ktb.V:{yakotobu,.V:aP3ms}{da,.SFX}

The inflected form corresponds to the concatenation of all the inflection productions,
the lemma is the consonant skeleton, and the inflected forms is replaced by the output

of the grammar.

3.5. COMPRESSION 49

NOTE: for the moment, such a dictionary cannot be exploited by Unitex programs, but
further versions will take this kind of dictionary into account for the construction of the text
automaton.

3.5 Compression

Unitex applies compressed dictionaries to the text. The compression reduces the size of the
dictionaries and speeds up the lookup. This operation is done by the Compress program.
This program takes a dictionary in text form as input (for example my_dico.dic) and
produces two files:

e my_dico.bin contains the minimal automaton of the inflected forms of the dictio-
naries;

e my_dico.inf contains the codes extracted from the original dictionary.

The minimal automaton in the my_dico.bin file is a representation of inflected forms in
which all common prefixes and suffixes are factorized. For example, the minimal automaton
of the words me te , se, mg ta et sa can be represented by the graph shown in Figure 3.9.

Figure 3.9: Representation of a minimal automaton

To compress a dictionary, open it and click on "Compress into FST" in the "DELA" menu.
The compression is independent from the language and from the content of the dictionary.
The messages produced by the program are displayed in a window that is not closed auto-
matically. You can see the size of the resulting .bin file, the number of lines read and the
number of inflectional codes created. Figure 3.10 shows the result of the compression of a
dictionary of simple words.

The resulting files are compressed to about 95% for dictionaries containing simple words
and 50% for those with compound words.

50 CHAPTER 3. DICTIONARIES

essages with a colored background are generated by the interface, not by the external programs.

Compressing...

Minimizing...

Minimization done.

Binary file: 111437 Inftes

13976 lines read

2179 INF entries created

11358 states, 16340 transitions

oK Cancel

Figure 3.10: Results of a compression

3.6 Applying dictionaries

Dictionaries can be applied (1) after pre-processing or (2) by explicitly clicking on "Apply
Lexical Resources" in the "Text" menu (see section 3.6).

Unitex can manipulate compressed dictionaries (.bin) and dictionary graphs (.fst2). We
will now describe the rules for applying dictionaries in detail. Dictionary graphs will be
described in section 3.6.3.

3.6.1 Priorities

The priority rule says that if a word in a text is found in a dictionary, this word will not be
taken into account by dictionaries with lower priority.

This allows for eliminating a part of ambiguity when applying dictionaries. For example,
the French word par has a nominal interpretation in the golf domain. If you don’t want to use
this meaning, it is sufficient to create a filter dictionary containing only the entry par,.PREP
and to apply this with highest priority. This way, even if simple word dictionaries contain
different entries, they will be ignored given the priority rule.

There are three priority levels. The dictionaries whose names without extension end with -

have the highest priority; those that end with + have the lowest one. All other dictionaries
are applied with medium priority. The order in which dictionaries with the same priority
are applied does not matter. On the command line, the command:

Dico ex.snt alph.txt ctr+.bin cities-.bin rivers.bin regions-.bin

will apply the dictionaries in the following order (ex.snt is the text to which the dictionar-
ies are applied, and alph.txt is the alphabet file used):

3.6. APPLYING DICTIONARIES 51
1. cities-.bin
2. regions-.bin
3. rivers.bin

4. ctr+.bin

3.6.2 Application rules for dictionaries

Besides the priority rule, the application of dictionaries respects upper case letters and
spaces. The upper case rule is as follows:

o if there is an upper case letter in the dictionary, then an upper case letter has to be in
the text;

o if a lower case letter is in the dictionary, there can be either an upper or lower case
letter in the text.

Thus, the entry peter,.N:fs will match the words peter , Peter et PETER while
Peter,.N+firstName only recognizes Peter and PETER Lower and upper case letters
are defined in the alphabet file passed to the Dico program as a parameter.

Respecting white space is a very simple rule: For each sequence in the text to be recognized
by a dictionary entry, it has to have exactly the same number of spaces. For example, if the
dictionary contains aujourd’hui,. ADV , the sequence Aujourd’ hui will not be recog-
nized because of the space that follows the apostrophe.

3.6.3 Dictionary graphs

The Dico program can also apply dictionary graphs. Dictionary graphs conform to the
following rule: if applied by Locate in MERGE mode, they must produce output sequences
that are valid DELAF lines.

Figure 3.11 shows a graph that recognizes chemical elements. We can observe a first ad-
vantage of graphs over usual dictionaries: we can force case with double quotes. Thus,
this graph will correctly match Fe but not FE, while this restriction cannot be specified in a
normal DELAF.

Another advantage of dictionary graphs is that they can use results given by previous dic-
tionaries. Thus, it is possible to apply the standard dictionary, and then tag as proper names
all the unknown words that begin with an uppercase letter, thanks to the graph NPr+ shown
in figure 3.12. The + in the graph name gives to it a low priority, so that it will be applied
after the standard dictionary. This graph works with words that are still unknown after the
application of the standard dictionary. Square brackets stand for a context definition. For
more information about contexts, see section 6.3.

CHAPTER 3. DICTIONARIES

52

___U.__.J._: ___U._E: __CL_H_: :mm: _r._.”“___ __.V._m: ___l._L_U__ ___L_L_{__ __—.l_.ﬂ_: ___0_7____ ___].___ :m.ﬂ_: ___l._l_l__ :U.,d._.__
__ﬂ_/: __Cl_l_l: __n_m: ___U._I: :}D: __O_I_l: __—U._m“___ ___.l_m__ ___l._L_m: __Cl_.ﬂ___ :UZ: __-_.ﬂ___ :mh“_: :ml___/

W e s TR R

e T =TT U T O Y P o O L T A o O =T O AT =1 P W= 2= ¥ 9 T I s P =+ I
el ol wOdln| sl oGen| Al | oBHW| WP addn | ol oSO | s8] G| FBLG wH] WP el WBEG [0S0
@i ali| w@La| w8Sa| WUSa| wlle| WPO| BV | wPdu | WU | WM | 2L | WOWG | W8N WdZ| wAd B S| WG,
| wW8a| @S0 WSYL| @O0 WBD | WUZ4 | WO WG| W00 | h@du [WU | O] wA] WL W3S = WBDu | M
il alDi| o8| wede| d8H| N BN | BN
WENa | ude| wOu| Nl wOu| w8 W28 Wl
WH. b=

Figure 3.11: Dictionary graph of chemical elements

3.7. BIBLIOGRAPHY 53

—— [|)@

~NPr

Figure 3.12: Dictionary graph that tags unknown words beginning with an uppercase letter
as proper names

Since dictionary graphs are applied using the engine of Locate , they have exactly the same
properties than syntactic graphs. So, you can use morphological filters and/or morpho-
logical mode. For instance, the graph shown on Figure 3.13 use morphological filters to
recognize roman numerals. Note that it also uses contexts in order to avoid recognizing
uppercase letters in some contexts.

By default, dictionary graphs are applied in MERGE mode. If you want to apply them in
REPLACE mode, you must suffix graph names with -r . This can be combined with the +
and - priority marks:

bagpipe-r.fst2 McAdam-r-.fst2 phtirius-r+.fst2

3.6.4 Morphological dictionary graphs

In addition to dictionary graphs that produce new entries in the text dictionaries, you can
design morphological dictionary graphs. The output of such graphs will be used as special
input for the construction of the text automaton. We call them “morphological dictionary
graphs”, because their main utility is to introduce new morphological analysis in the text au-
tomaton, using the morphological mode (see section 6.4). This functionality will be helpful
for agglutinative languages like Korean.

The rule is simple: any output of a dictionary graph that begins with a slash will be added to
the file tags.ind , located in the text directory. This file is used by the Txt2Fst2 program
in order to add interpretations into the text automaton. Let us consider the grammar shown
on Figure 3.14 that matches words made of the prefix un followed by an adjective. If we
apply this grammar as a dictionary graph, we obtain new paths in the text automaton, as
shown on Figure 3.15.

3.7 Bibliography

Table 3.4 gives some references for electronic dictionaries with simple and compound words.
For more details, see the references page on the Unitex website:
http://www-igm.univ-mlv.fr/~unitex

http://www-igm.univ-mlv.fr/~unitex

CHAPTER 3. DICTIONARIES

54

,.,n&mQH_HHE_HHp_H__,,_a_aH_HHH_HH_EGM_ummﬁ_uaﬂ_Uﬁ:HﬁUOQUQEmoao_oooD_oom_om_D_Do_ooo_oo_ouanE_EEE_EE_s?vvTr \A L

Ga6F-000T

<<$a GIATAILAlAlATTIIID oxboorbor T boood G aloooahadlaalalasiaoslaolahs= _| Am

666001

([<<seGamalianalalamd Oxboocbor i i xboadabon> |— |ﬁ|

66701

<< CGIIIAIIAILAIAATTIIID

a1

Figure 3.13: Dictionary graph of roman numerals

3.7. BIBLIOGRAPHY 55

— <—Pfemp—h—T<=) > S)

/ { JPFXH x $xLEMMAS$x.CODES$}

Figure 3.14: Example of morphological dictionary graph

r
FST-Text : o @ XM
2344 sentences It is unlucky to travel tqhere Tour pgth is crossed by
a monk, & hare, or a howling dog, until wou have eaten
Sentence # 1.TUU:_ vour next meal.”™ "Away!" said Cedric, impatiently;
Reset Sentence Graph

Rebuild FST-Text

close elag frame

Explode —

Implode

Apply Elag Rule |V:P3s

Figure 3.15: Path added by a morphological dictionary graph

Language Simple words | Compound words
English [43], [56] [15], [63]
French [19], [20], [48] | [20], [35], [65], [37]
Modern Greek | [2], [17], [45] [46], [47]
Italian [27], [28] [69]
Spanish [8] [7]

Table 3.4: Some bibliographical references for electronic dictionaries

56

CHAPTER 3. DICTIONARIES

Chapter 4

Searching with regular expressions

This chapter describes how to search a text for simple patterns by using regular expressions.

4.1 Definition

The goal of this chapter is not to give an introduction on formal languages but to show how
to use regular expressions in Unitex in order to search for simple patterns. Readers who are
interested in a more formal presentation can consult the many works that discuss regular
expression patterns.

A regular expression can be:

e a token (book) or a lexical mask (<smoke.V>);
e the concatenation of two regular expressions (he smokes);
e the union of two regular expressions (Pierre+Paul);

o the Kleene star of a regular expression (bye*).

4.2 Tokens

In a regular expression, a token is defined as in 2.5.4 (page 29). Note that the symbols
dot, plus, star, less than, opening and closing parentheses and double quotes have a special
meaning. It is therefore necessary to precede them with an escape character \ if you want
to search for them. Here are some examples of valid tokens:

cat
\.
<N:ms>

{S}

57

58 CHAPTER 4. SEARCHING WITH REGULAR EXPRESSIONS

By default, Unitex is set up to let lower case patterns also find upper-case matches. It is pos-
sibe to enforce case-sensitive matching using quotation marks. Thus, "peter" recognizes
only the form peter and not Peter or PETER

NOTE: in order to make a space obligatory, it needs to be enclosed in quotation marks.

4.3 Lexical masks

A lexical mask is a search query that matches tokens or sequences of tokens.

4.3.1 Special symbols

There are two kinds of lexical masks. The first category contains all symbols that have been
introduced in section 2.5.2 except for the symbol <PNC> which matches punctuation signs,
and <>, which matches a line feed. Since all line feeds have been replaced by spaces this
symbol cannot longer be useful when searching for lexical masks. These symbols, also called
meta-symbols, are the following:

e <E>: the empty word or epsilon. Matches the empty string;

e <TOKEN>: matches any token, except the space; used by default for morphological
filters

e <MOT> matches any token that consists of letters;

e <MIN>: matches any lower-case token;

e <MAJ>: matches any upper-case token;

e <PRE>: matches any token that consists of letters and starts with a capital letter;
e <DIC> : matches any word that is present in the dictionaries of the text;

e <SDIC> : matches any simple word in the text dictionaries;

e <CDIC>: matches any composed word in the dictionaries of the text;

e <NB>: matches any contiguous sequence of digit (1234 is matched but not 1 234);

: prohibits the presence of space.

NOTE: as described in section 2.5.4, NO meta can be used to match the {STOP} marker, not
even <TOKEN>

4.3. LEXICAL MASKS 59

4.3.2 References to information in the dictionaries

The second kind of lexical masks refers to the information in the text dictionaries. The four
possible forms are:

e <be>: matches all the entries that have be as canonical form;
e <be.V> : matches all entries having be as canonical form and the grammatical code V;
e <V>: matches all entries having the grammatical code V;

e {am,be.V} or <am,be.V> : matches all the entries having amas inflected form, be
as canonical form and the grammatical code V. This kind of lexical mask is only of in-
terest if applied to the text automaton where all the ambiguity of the words is explicit.

While executing a search on the text, that lexical mask matches the same as the simple
token am

4.3.3 Grammatical and semantic constraints

The references to dictionary information (be, V) in these examples are basic. It is possible to
express more complex lexical masks by using several grammatical or semantic codes sepa-
rated by the character +. An entry of the dictionary is then only found if it has all the codes
that are present in the mask. The mask <N+z1> thus recognizes the entries:

broderies,broderie.N+z1:fp
capitales européennes,capitale européenne.N+NA+Conc+HumColl+z1:fp

but not:

Descartes,René Descartes.N+Hum+NPropre:ms
habitué,.A+z1:ms

It is possible to exclude codes by preceding them with the character - instead of +. In order
to be recognized, an entry has to contain all the codes required by the lexical mask and none
of the prohibited ones. The mask <A-z3> thus recognizes all the adjectives that do not have
the code z3 (cf. table 3.2). If you want to refer to a code containing the character - you have
to escape this character by preceding it with a \ . Thus, the mask <N+faux\-ami> could
recognize all entries of the dictionaries containing the codes Nand faux-ami

The order in which the codes appear in the mask is not important. The three following
patterns are equivalent:

<N-Hum+z1>
<z1+N-Hum>
<-Hum+z1+N>

NOTE: it is not possible to use a lexical mask that only has prohibited codes. <-N> and
<-A-z1> are thus incorrect masks. However, you can express such constraints using con-
texts (see section 6.3).

60 CHAPTER 4. SEARCHING WITH REGULAR EXPRESSIONS

4.3.4 Inflectional constraints

It is also possible to specify constraints about the inflectional codes. These constraints have
to be preceded by at least one grammatical or semantic code. They are represented as in-
flectional codes present in the dictionaries. Here are some examples of lexical masks using
inflectional constraints:

e <A:m> recognizes a masculine adjective;
e <A:mp:f> recognizes a masculine plural or a feminine adjective;

e <V:2:3> recognizes a verb in the 2nd or 3rd person; that excludes all tenses that have
neither a 2nd or 3rd person (infinitive, past participle and present participle) as well
as the tenses that are conjugated in the first person.

In order to let a dictionary entry E be recognized by mask M, it is necessary that at least one
inflectional code of E contains all the characters of an inflectional code of M. Consider the
following example:

E=pretext,.V:W:P1s:P2s:P1p:P2p:P3p
M=<V:P3s:P3>

No inflectional code of E contains the characters P, 3 and s at the same time. However, the
code P3p of E does contain both characters P and 3. The code P3 is included in at least one
code of £, mask M thus recognizes entry E. The order of the characters inside an inflectional
code is without importance.

4.3.5 Negation of a lexical mask

It is possible to negate a lexical mask by placing the character ! immediately after the char-
acter <. Negation is possible with the masks <MOT> <MIN>, <MAJ>, <PRE> <DIC> as well
as with the masks that carry grammatical, semantic of inflectional codes (i.e. <!V-z3:P3>).
The masks # and " " are the negation of each other. The mask <IMOT> recognizes all
tokens that do not consist of letters except for the sentence separator {S} and the {STOP}
marker. Negation has no effect on <NB>, <SDIC>, <CDIC> and <TOKEN=>

The negation is interpreted in a special way in the lexical masks <!DIC> , <IMIN> , <IMAJ>
and <!PRE>. Instead of recognizing all forms that are not recognized by the mask without
negation, these masks find only forms that are sequences of letters. Thus, the mask <!DIC>
allows you to find all unknown words in a text. These unknown forms are mostly proper
names, neologisms and spelling errors.

The negation of a dictionary mask like <V:G> will match any word, except for those that are
matched by this mask. For instance, <!V:G> will not match the word being , even if there
are homonymic non-verbal entries in the dictionaries:

4.3. LEXICAL MASKS 61

being,.A
being,.N+Abst:s
being,.N+Hum:s

Concordance: DMy Unitex English'Corpus'ranhoe_snticoncord.html :
T Tr L i=A = w3 ¥
istresses of the oppressed. {3} If Prior Avmer rode hard in the chase, or remained long at the b
emained long at the bangquet,---1if Prior Avmer was seen, at the early peep of dawm, to enter the
whatsoever to atone for them. {5'Prior Avmer, therefore, and his character, were well knowm to
heisance, and received his "henedicite, mes filz,” in return. {3} But the singqular appearance of
arice, and receiwved his "benedicite, mes £il=," in return. {3} But the sinqular appearance of his
v could scarcely attend to the Prior of Jorwvaulx' question, when he demanded if they knew of an
raising his woice, and using the lingua Franca, or mixed language, in which the Horman and 3axo
st servants of Mother Church!™ repeated Wamba fo himself,---but, fool as he was, taking care no
iding would carry them to the Priory of Brinwworth, where their gquality could not but secure th
ch would bring them to the hermitage of Copmanburst, where a pious anchoret would make thewm sha
d not dizzied thine understanding, thou mpightst kwnow Clericus clericum non decimat:{5} that is
thine understanding, thou mnightst know Clericus clericum non decimat:{3} that is to say, we ch
derstanding, thou mightst know Clericus clericum non decimat; {3} that iz to say, we churchmen 4
thou mightst know Clericus clericum non decimat:{3} that is to say, we churchmen do not exhaust
ointed serwvants." "It is true,” replied Wawmha, "that I, being but an ass, am, newvertheless, hon
o---How call'd sou your Franklin, Prior Avmer?™ "Cedric,” answered the Prior:{5} "Cedric the 5a
all'd you your Franklin, Prior Avymer?”™ "Cedric,” answered the Prior:{%} "Cedric the Jaxon. ---T
wer:" "Cedric,” answered the Prior;{3} "Cedric the ZJaxon. ---Tell ne, good fellow, are we near
road will be uneasy to £find,” answered Gurth, who broke =ilence for the first time, "and the £ [

< L]

| »

Figure 4.1: Result of the search for <!DIC>

Here are some examples of lexical masks with the different types of constraints:

e <A-Hum:fs> :anon-human adjective in the feminine singular;
o <lire.V:P:F> : the verb lire in the present or future tense;

e <suis,suivre.V> : the word suis as inflected form of the verb suivre (as opposed to
the form of the verb étre);

e <facteur.N-Hum> : all nominal entries that have facteur as canonical form and that
do not have the semantic code Hum

e <IADV> : all words that are not adverbs;

e <IMOT>: all tokens that are not made of letters (cf. figure 4.2). This mask does not
recognize the sentence separator {S} and the special tag {STOP} .

62 CHAPTER 4. SEARCHING WITH REGULAR EXPRESSIONS
o @ X

ngland which is watered by the riwver Dor, there extended in ancient times a large forest, cowver
extended in ancient times a large forest, covering the greater part of the beautiful hills and
field and the pleasant town of Doncaster. {3} The remains of this extensive wood are still to be
be seen at the noble seats of Wentworth, of Warncliffe Park, and around Rotherham. {3} Here han
e zseats of Wentworth, of Warncliffe Park, and around Rotherhawm. {3} Here haunted of yore the fahb
of Warncliffe Park, and around Rotherham,. {3} Here haunted of yore the fabulous Dragon of Wantle
d of yore the fabulous Dragon of Wantley: {3} here were fought nmany of the most desperate battle
ttles during the Ciwil Wars of the Foses:{3} and here also flourished in ancient times those ba
ent times those bands of gallant outlaws, whose deeds hawe been rendered so popular in English
been rendered zo popular in English song. {3} Such being our chief scene, the date of our story
lish song. {3} Zuch being our chief scene, the date of our story refers to a period towards the
owards the end of the reign of Richard I., when his return from his long captivity had become a
wards the end of the reign of Richard I., when his return from his long captiwity had become an
<] [+

Concordance: D:iMy Unitex EnglishiCorpus'ivanhoe_snticoncord.html :

[l »

[4]

Figure 4.2: Result of a search for the pattern <IMOT>

4.4 Concatenation

There are three ways to concatenate regular expressions. The first consists in using the
concatenation operator which is represented by the dot. Thus, the expression:

<DET>.<N>

recognizes a determiner followed by a noun. The space can also be used for concatenation,
as well as the empty string. The following expressions:

the <A> cat
the<A>cat

recognizes the token the, followed by an adjective and the token cat. The parenthesis are
used as delimiters of a regular expression. All of the following expressions are equivalent:

the <A> cat
(the <A>)cat
the.<A>cat
(the).<A> cat
(the.(<A>)) (cat)

4.5 Union

The union of regular expressions is expressed by typing the character + between them. The
expression

(I+you+he+she+it+we+they)<Vv>

4.6. KLEENE STAR 63

recognizes a pronoun followed by a verb. If an element in an expression is optional, it is
sufficient to use the union of this element and the empty word epsilon. Examples:

the (little+<E>) cat recognizes the sequences the cat and the little cat
(<E>+Anglo-).(French+Indian) recognizes French, Indian, Anglo-French and Anglo-
Indian

4.6 Kleene star

The Kleene star, represented by the character *, allows you to recognize zero, one or several
occurrences of an expression. The star must be placed on the right hand side of the element
in question. The expression:

this is very* cold

recognizes this is cold, this is very cold, this is very very cold, etc. The star has a higher priority
than the other operators. You have to use brackets in order to apply the star to a complex
expression. The expression:

0,(0+1+2+3+4+5+6+7+8+9)*
recognizes a zero followed by a comma and by a possibly empty sequence of digits.

WARNING: It is prohibited to search for the empty word with a regular expression. If you
try to search for (0+1+2+3+4+5+6+7+8+9)* , the program will raise an error as shown in
tigure 4.3.

SE
essages with a colored background are generated by the interface, not by the external programs.

Expression converted.
Compiling graph regexp
Recursion detection started
Resolving <E* conditions
Recursion detection completed

ERROR: the main graph regexp recognizes <E>

OK Cancel

Figure 4.3: Error message when searching for the empty string

64 CHAPTER 4. SEARCHING WITH REGULAR EXPRESSIONS
4.7 Morphological filters

It is possible to apply morphological filters to the lexemes found. For that, it is necessary to
immediately follow the lexeme found by a filter in double angle brackets:

lexical mask<<morphological pattern>>

The morphological filters are expressed as regular expressions in POSIX format (see [50] for
the detailed syntax). Here are some examples of elementary filters:

e <<S$s>>: contains SS

e <<"a>>: begins with a

o <<ez$>>:ends with ez

e <<a.s>> : contains a followed by any character, followed by s

e <<a.*s>> : contains a followed by a sequence of any character, followed by s
e <<ss|tt>> : contains SS or tt

e <<[aeiouy]>> :contains a non accentuated vowel

e <<[aeiouy}{3,5}>> : contains a sequence of non-accentuated vowels whose length
is between 3 and 5

e <<ge?>>: contains € followed by an optional e

e <<ss[*e]?>> : contains SS followed by an optional character which is not e

It is possible to combine these elementary filters to form more complex filters:

e <<[ailble$>> :endswith able orible
e <</(anti|pro)-?>> : begins with anti or pro , followed by an optional dash

o <</\([rst][aeiouy]){2,}$>> : a word formed by 2 or more sequences beginning
withr,s ort followed by a non-accentuated vowel

o <<N([M)|I[re])>> : does not begin with | unless the second letter is an e, in other
words, any word except the ones starting with le . Such constraints are better de-
scribed using contexts (see section 6.3).

By default, a morphological filter alone is regarded as applying it to the lexical mask <TOKEN>
that means any token except space and {STOP}. On the other hand, when a filter follows a
lexical mask immediately, it applies to what was recognized by the lexical mask. Here are
some examples of such combinations:

4.8. SEARCH 65

o <V:K><<i$>> : Past participle ending with i

e <CDIC><<->>: A compound word containing a dash

e <CDIC><< .* >> :acompound word containing at least two spaces

o <A:fs><<”pro>> : afeminine singular adjective beginning with pro

o <DET><<M["u]|(u[*n])|(un.+))>> : a (French) determiner different from un
e <IDIC><<es$>> :aword which is not in the dictionary and which ends with es

e <V:S:T><<uiss>> :averb in the past or present subjunctive, and containing uiss

NOTE: By default, morphological filters are subject to the same variations of case as lexical
masks. Thus, the filter <<"é>> will recognize all the words starting with €, but also those
which start with E or E. To force the matcher to respect case, add _f_ immediately after the
filter, e.g.: <A>S<<Né>> f .

4.8 Search

4.8.1 Configuration of the search

In order to search for an expression, first open a text (cf. chapter 2). Then click on "Locate
Pattern..." in the "Text" menu. The window of figure 4.4 appears.

Locate Pattern -
Locate pattern in the form of:

i) Regular ezpression;

im Graph: Set

Index Grammar outputs
i) Shortest matches ® Are not taken into account
® Longest matches ' Merge with input text

i All matches {_) Replace recognized segquences

Search limitation

) Stop after | 200 matches SEARCH
i Index all utterances in text

Figure 4.4: “Locate pattern” window

66 CHAPTER 4. SEARCHING WITH REGULAR EXPRESSIONS

The "Locate pattern in the form of" box allows you to select regular expression or grammar.
Click on "Regular expression".

The "Index" box allows you to select the recognition mode:

e "Shortest matches" : prefers shortest matches in case of nested sequences. For instance,
if your grammar can recognize the sequences a very hot chili and very hot, the first one
will be discarded;

e "Longest matches" : prefers longest matches (a very hot chili in our example). This is
the default;

e "All matches" : outputs all recognized sequences.

The "Search limitation" box is used to limit the number of results to a certain number of
occurrences. By default, the search is limited to the first 200 occurrences.

The options of the "Grammar outputs" box do not concern regular expressions. They are
described in section 6.8.

Enter an expression and click on "Search" in order to start the search. Unitex will transform
the expression into a grammar in the .grf ~ format. This grammar will then be compiled into
a grammar of the .fst2 format that will be used for the search.

4.8.2 Presentation of the results

When the search is finished, the window of figure 4.5 appears showing the number of
matched occurrences, the number of recognized tokens and the ratio between this number
and the total number of tokens in the text.

200 matches
644 recognized units
(0.345% of the text is covered)

Figure 4.5: Search results

After having clicked on "OK" you will see window 4.6 appear, which allows you to configure
the presentation of the matched occurrences. You can also open this window by clicking
on "Display Located Sequences..." in the "Text" menu. The list of occurrences is called a
concordance.

4.8. SEARCH 67

Display indexed sequUences...

Modify text
Resulting .snt file:
Set File GO
Extract units
Set File:
Extract matching units Extract unmatching units

Concordance presentation

[]Use a web browser to view the concordance
(hetter for more than 2000 matches)

Show differences with previous concordance |

Show matching sequences in context

Context length: Stop at: Sort according to:
Left | 40/chars []{S} Center. Left
Right| 75 chars [| {5}

Build concordance

Figure 4.6: Configuration of the presentation of the found occurrences

The "Modify text" box offers the possibility to replace the matched occurrences with the
generated outputs. This possibility will be examined in chapter 6.

The "Extract units" box allows you to create a text file with all the sentences that do or do
not contain matched units. With the button "Set File", you can select the output file. Then
click on "Extract matching units" or "Extract unmatching units" depending on whether you
are interested in sentences with or without matching units.

In the "Show matching sequences in context" box, you can select the length in characters of
the left and right contexts of the occurrences that will be presented in the concordance. If
an occurrence has less characters than its right context, the line will be completed with the
necessary number of characters. If an occurrence has a length greater than that of the right
context, it will be displayed completely.

NOTE: in Thai, the size of the contexts is measured in displayable characters and not in real
characters. This makes it possible to keep the line alignment in the concordance despite the

68 CHAPTER 4. SEARCHING WITH REGULAR EXPRESSIONS

presence of diacritics that combine with other letters instead of being displayed as normal
characters.

You can choose the sort order in the list "Sort According to". The mode "Text Order" displays
the occurrences in the order of their appearance in the text. The other six modes allow you
to sort in columns. The three zones of a line are the left context, the occurrence and the right
context. The occurrences and the right contexts are sorted from left to right. The left contexts
are sorted from right to left. The default mode is "Center, Left Col.". The concordance is
generated in the form of an HTML file.

If a concordance reaches several thousands of occurrences, it is advisable to display it in a
web browser (Firefox [11], Netscape [12], Internet Explorer, etc.) instead. Check "Use a web
browser to view the concordance" (cf. figure 4.6). This option is activated by default if the
number of occurrences is greater than 2000. You can configure which web browser to use by
clicking on "Preferences..." in the menu "Info". Click on the tab "Language & Presentation"
and select the program to use in the field "Html Viewer" (cf. figure 4.7).

If you choose to open the concordance in Unitex, you will see a window as shown on Figure
4.8. Utterances react as hyperlinks. If you click on an occurrence, the text frame is opened
and the corresponding sequence is highlighted. Moreover, if the text automaton is available
and if this window is not iconified, the sentence automaton that contains the occurrence will
be shown.

4.8. SEARCH

I Preferences for English ::

Graph Presentation r Morphological dictionaries |
‘ Directories Ir Language & Presentation |

[] Analyze this language char by char
[] Enable morphological use of space

[] Right to left rendering for corpus and graphs

Text Font:
Courier Mew 10 Set...
Concordance Font:
Courier Mew 12 Set...
Html Viewer:
Set...
| OK | ‘ Cancel |

Figure 4.7: Selection of a web browser for displaying concordances

69

CHAPTER 4. SEARCHING WITH REGULAR EXPRESSIONS

70

[4]

[»

a2 pEY Yorum ‘s=ka ST JO Su0 04 UOLEE=dadXs I35 LULIE &
ST UMop ARN JTEY RIUIEal AT20IBIS YITUYA ‘HEOlo J10UE B
3 METTTIN Jo UAT=I =213 o3 Juanbasqns STdo=od =3eliedas B
om 32h 318 1a¥oel =11 2¥EW o {5} AePURURLH UsL14005 &
I YITYR PUTH 2811 JO0---INJ 1 TH paoe] ‘OB 123[4i80E8 B
Moaoaq Qng (g} famel Uoxes I217] A S20b 21s ‘SAETE UOREC B
A0 3T YITH JEBIQU0S B BUIMIOT “INOTO0D RPRI-HIBR A1End B
02 RTNOD 21 aTHN f20URU2aqUN0d ST I2A0 PURBTNOD AREal B
U0 acp 7723 PUR ‘3T UIYITA WMolJ =501 DB pobuololid =
J 9® deyn paTteaoucd aqol Iaddn STyl {8} WMIog Ierito=d B
I3 J0 UOTITOUE 211 UWoT3TR=2dxa 1Sl I2A27BM UL ALied B
Ag,, ,mausmioluz Jo I2339BW SamMo0o3d 21 UM SWed URNion B
Bl2 Uzaq pRY 12ovl sTgict -zousieadde OT3ZeqUe] 2400 B
0 pUunog ‘STRRPUBRS{SE “HIaQNET] JUITOUR I0 ‘JIT4s UiIpol B
aeiy dea 2y Jo aIed STUR 07 SeM AT {g) "TIESENY UISpOW B
PISU0D 2 AYATW punos 2yl ‘ainisod ames 2173 WT o30ALtd B
1 ITIUTER B AUERW TThJ ‘3T7qe 040§ UE =20 01 ‘TEW ATUEN ¥
T 2pIs=aq sseiafl =213 uodn ART YoTun JIBdE-do3detl DUOl =
aTieos BUTag fIN0T0D0 213 4N {S}a71UeN OT1ceuol DUO] B
fpumoif a3 03 ATIARIU paUoRal YOTUYMR ‘1Qo0To-3003 bUol B
fUTEI] 213 UT p2uaoTTo] OUn =2501(3 JO 3uU0 “TI030ig AR] ¥
Tane=q =211 Jo 3aed 1a3maib =3 Autisacd ‘3E310] =bIET B
ge puR {g}inoTTai JUATIq WATHL RaUTL] ‘RATI0S TEsP POOR &
Iapao =1y 03 I=doxd ss=Ip aToym =13 pue ‘dSEld U=plob B
SI0M 2T 2T0JAG SIATIIR 27 UWam ‘QueTTed Tou=1g AI9L] B
18 2AIYMAST2 PUR RTORTA 217 03 INWINM JO 30104 10929 B
BIq I2ATTIE UIYD PRY 2g (o} tAiadeIp Jo 30314 oldoeqUue] &
dazsp B {g}iTT7T0 Jo pue 20BIN0D JO T0T1d1272 poULlliZd=p B
T1] 07 S£3lMIIa1E TRUOTITRRE anaehl moIq =17 U0 Te0E daap B

PUE f2OUBRUISSUNOD ST 03 SSIUMIIZGS TERUOCT
PAIRRE 21 12oel a1y o (o} "SIn0Too Quad
£ SHoXES-OoTAWY 313 JO 20U33STIXa 311 HI
Jo =503 =TT ‘=2Ieq Ssouy =4l 33T ‘ITE
ITH Pai=2a0d SBN PEIY STH {o) "2I0W pUES
Jo 2abIaBeID 33 UT ST PUER ‘S3AT] 23nIq =21
03UT UhE 23 JO0 FOUINTIUT 23 AJ paIfIIo
WMTY 3ybnel pel UOTIBRNIIE PUER UOTssaJodd
TN “aaucIod ' AUTTquasail ‘xIom tado

Jo S50I0 B ‘3072 23TUML UT fIno SEm 313
g8 paaToaul AUT=2d Jo PIBEET] UTERII=D 313
23¥E] PUER ‘aoumpus] S3ITnbal I USf@ U0
Jo puE ‘STETAIIEW I2333=2d JO SBEN ‘WMIOT U
JO ISUUEN 373 UT ‘SIapTNOYS PUER PRI 21]
Jo Ieaf-peary a1y 1o ‘Heg-ATT=20 2 10 fde
PIUTEMaI MORT=2E 3] S8 PUR {g}{I37[30 IO

1@tiaTIalas PaA0T 2ABID ISPTIANO Wy ‘2Tl
dn futiyoqges 1233 Asuinol sty uebaq oo
butag fadeys ur uotTuedmos =T IO ABL P
A paiasod aian Az1yTed giadns STyl Jo

1ol pEOI 211 U0 DUTTT=24BI3 I0J HUOW JUE
SaMT] JUITIUR UL RIpPUaIXa 31373 ‘uog I=
Aoyl ‘o070 Uo0SWTIO Jo osem 3T {oliubT
ITH 32013 273 18 p2Inoas aTIuem =1 ¢
fI3ag samooaaq g ‘niold S ONE USNSRUo
fuotyteoddo 231 AQ faasb faousulma a1

pamIo ‘apnaThuUcT Jo JuEA S3T YITA pIIs
A peol 2T MoII 3T Hutdsams Jo aanseaT
Tels7TTRn Jo pue =20BIN0D JO UOTIIaxa paud

fapeTh STUY3 J0 2SpTIW 211 UT ‘2ovds Todo a(Qei2plouos wior "ABM ITaT1 2peW A3T1 T[OTUM 03 Jand J

THE PRUUER] 3111 J0 pasodmos ‘23A23T8 1TA J3H0BEL 22010 B
IIUTI Yonm STETISIEW Jo pasodmos qng ‘HUIOR UEIoi=381] &
1 ang futinosass fU0TlomIda® YsTid=snboo Jo TITE UIEdd=o B
13® aMOs Uzaq PeY 21273 oTin uodn fann STdand 1gDTig &

butag farqeuthemt miog gqsaT7dmis a3 Jo
J0 9EBI3 SEA SS2Ip STV {gii¥ued ybTy Jo
fmary futsodsTp Jo0 2pOWM 210 pPUR STRTI=0
J0 PaUTEls Uzaq peY J2¥oel STHic) -=aoue

W pIoaUoUSs aoyuens snd 1o ysiEugEayun A BIUuepIoIun) “

Figure 4.8: Example concordance

Chapter 5

Local grammars

Local grammars are a powerful tool to represent the majority of linguistic phenomena. The
first section presents the formalism in which these grammars are represented. Then we will
see how to construct and present grammars using Unitex.

5.1 The local grammar formalism

5.1.1 Algebraic grammars

Unitex grammars are variants of algebraic grammars, also known as context-free grammars.
An algebraic grammar consists of rewriting rules. Below you see a grammar that matches
any number of a characters:

S —aS
S — e

The symbols to the left of the rules are called non-terminal symbols since they can be replaced.
Symbols that cannot be replaced by other rules are called terminal symbols. The items at
the right side are sequences of non-terminal and terminal symbols. The epsilon symbol
¢ designates the empty word. In the grammar above, S is a non-terminal symbol and a a
terminal (symbol). S can be rewritten as either an a followed by a S or as the empty word.
The operation of rewriting by applying a rule is called derivation. We say that a grammar
generates a word if there exists a sequence of derivations that produces that word. The
non-terminal that is the starting point of the first derivation is called an axiom.

The grammar above also generates the word aa, since we can derive this word according to
the axiom S by applying the following derivations:

Derivation 1: rewriting the axiom to a.S
S —aS

Derivation 2: rewriting S at the right side of a5
S — aS — aaS

71

72 CHAPTER 5. LOCAL GRAMMARS

Derivation 3: rewriting S to €
S — aS — aaS — aa

We call the set of words generated by a grammar the language generated by the grammar.
The languages generated by algebraic grammars are called algebraic languages or context-free
languages.

5.1.2 Extended algebraic grammars

Extended algebraic grammars are algebraic grammars where the members on the right side
of the rule are not just sequences of symbols but regular expressions. Thus, the grammar that
generates a sequence of an arbitrary number of a’s can be written as a grammar consisting
of one rule:

S —a*

These grammars, also called recursive transition networks (RTN) or syntax diagrams, are suited
for a user-friendly graphical representation. Indeed, the right member of a rule can be rep-
resented as a graph whose name is the left member of the rule.

However, Unitex grammars are not exactly extended algebraic grammars, since they con-
tain the notion of transduction. This notion, which is derived from the field of finite state
automata, enables a grammar to produce some output. With an eye towards clarity, we
will use the terms grammar or graph. When a grammar produces outputs, we will use the
term transducer, as an extension of the definition of a transducer in the area of finite state
automata.

5.2 Editing graphs

5.2.1 Creating a graph

In order to create a graph, click on "New" in the "FSGraph" menu. You will then see the
window coming up as in figure 5.2. The symbol in arrow form is the initial state of the
graph. The round symbol with a square is the final state of the graph. The grammar only
recognizes expressions that are described along the paths between initial and final states.

In order to create a box, click inside the window while pressing the Ctrl key. A blue
rectangle will appear that symbolizes the empty box that was created (see figure 5.3). After
creating the box, it is automatically selected.

You see the contents of that box in the text field at the top of the window. The newly created
box contains the <E> symbol that represents the empty word epsilon. Replace this symbol
by the text I+you+he+she+it+we+they and press the Enter key. You see that the box
now contains seven lines (see figure 5.4). The + character serves as a separator. The box is
displayed in the form of red text lines since it is not connected to another one at the moment.
We often use this type of boxes to insert comments into a graph.

5.2. EDITING GRAPHS

Unitex 2.0 - current language is English
Text DELA |FSGraph | Lexicon-Grammar XAlign Edit File Edition Windows Info

Hew
Open... Ctrl-0

Save Ctil-5
Save as...
Save All

Page Setup
Print... Ctrl-F
Print All...

Tools b
Format b
foom b

Close all

Figure 5.1: FSGraph menu

{Unsaved) :

Figure 5.2: Empty graph

73

74 CHAPTER 5. LOCAL GRAMMARS

{Unsaved)

ettt g {E}

[m [»

[4]

Figure 5.3: Creating a box

{Unsaved)

Figure 5.4: Box containing I+you+he+she+it+we+they

5.2. EDITING GRAPHS 75

To connect a box to another one, first click on the source box, then click on the target box. If
there already exists a transition between two boxes, it is deleted. It is also possible to do that
by clicking first on the target box and then on the source box while pressing Shift. In our
example, after connecting the box to the initial and final states of the graph, we get a graph
as in figure 5.5:

{Unsaved)

Figure 5.5: Graph that recognizes English pronouns

NOTE: If you double-click a box, you connect this box to itself (see figure 5.6). To undo this
double-click on the same box a second time, or use the "Undo" button.

Figure 5.6: Box connected to itself

Click on "Save as..." in the "FSGraph" menu to save the graph. By default, Unitex proposes to
save the graph in the sub-directory Graphs in your personal folder. You can see if the graph
was modified after the last saving by checking if the title contains the text (Unsaved) .

5.2.2 Sub-Graphs

In order to call a sub-graph, its name is inserted into a box and preceded by the : character.
If you enter the text:

alpha+:beta+gamma-+:E:\greek\delta.grf

76 CHAPTER 5. LOCAL GRAMMARS

into a box, you get a box similar to the one in figure 5.7:

alpha
D beta
gaimnina

EMgreeldelta gif

Figure 5.7: Graph that calls sub-graphs beta and delta

You can indicate the full name of the graph (E:\greek\delta.grf) or simply the base
name without the path (beta); in this case, the the sub-graph is expected to be in the same
directory as the graph that references it. References to absolute path names should as a rule
be avoided, since such calls are not portable. If you use such an absolute path name, the
graph compiler will emit a warning (see figure 5.8).

essages with a colored background are generated by the interface, not by the external programs.

Compiling graph alpha
Compiling graph heta
Compiling graph E:greek:delta
Recursion detection started
Resohling <E> conditions
Looking for <E> loops

Looking for infinite recursions
Recursion detection completed
Compilation has succeeded

Absolute path name detected (Windows):
E:greek:delta.grf
Absolute path names are not portahle!

OK Cancel

Figure 5.8: Warning about a non portable graph name

For portability you should not use \ or/ as separator in graph path names. Use instead :
which is understood as a system-independent separator. In figure 5.8\ and/ are internally
converted by the graph compiler to : (E::greek:delta.grf)-

Graph repository

When you need to call a grammar X inside a grammar Y, a simple method is to copy all

5.2. EDITING GRAPHS 77

the graphs of X into the directory that contains the graphs of Y. This method raises two
problems:

e the number of graphs in the directory grows quickly;

e two graphs cannot share the same name.

To avoid that, you can store the grammar X in a special directory, called the graph repository.
This directory is a kind of library where you can store graphs, and then call them using ::
instead of : . To use this mechanism, you first need to set the path to the graph repository.
Go into the "Info>Preferences...>Directories" menu, and select your directory in the "Graph
repository" frame (see Figure 5.9). There is one graph repository per language, so feel free
to share or not the same directory for all the languages you work with.

Preferences for English :

Graph Presentation |/ Morphological dictionaries |
Directories |/ Language & Presentation |

Private Unitex directory {where all user's data is to he stored):

Crahiy Linitesx Set...

Graph repositons

Crirepositony

Cancel

Figure 5.9: Setting the path to the graph repository

78 CHAPTER 5. LOCAL GRAMMARS

Let us assume that we have a repository tree as on Figure 5.10. If we want to call the graph
named DETthat is located in sub-directory Johnson , we must use the call
::Det:Johnson:DET (see Figure 5.111).

= I repasitary
[=1) Det
ay 1ohnson
) Smith

Figure 5.10: Graph repository example

—[}—' Det:JohnzonDET t}—@

Figure 5.11: Call to a graph located in the repository

TRICK: If you want to avoid long path names like ::Det:Johnson:DET , you can create a
graph named DETand put it the repository root (here D:\repository\DET.grf). In this
graph, just put a call to ::Det:Johnson:DET . Then, you can just call ::DET in your own
graphs. This has two advantages: 1) you do not have long path names; 2) you can modify
the graphs in your repository with no constrainst on your own graphs, because the only
graph that will have to be modified is the one located at the repository root.

Calls to sub-graphs are represented in the boxes by grey lines, or brown lines in the case of
graphs located in the repository. On Windows, you can open a sub-graph by clicking on the
grey line while pressing the Alt key. On Linux, the combination <Alt+Click> is intercepted
by the system.? In order to open a sub-graph, click on its name by pressing the left and the
right mouse button simultaneously.

5.2.3 Manipulating boxes

You can select several boxes using the mouse. In order to do so, click and drag the mouse
without releasing the button. When you release the button, all boxes touched by the se-
lection rectangle will be selected and are displayed in white on blue ground, as shown on
Figure 5.12.

When boxes are selected, you can move them by clicking and dragging the cursor without
releasing the button. In order to cancel the selection, click on an empty area of the graph. If
you click on a box, all boxes of the selection will be connected to it.

!To avoid confusion, graph calls that refer to the repository are displayed in brown instead of grey.
*If you are working on KDE, you can deactivate <Alt+Click> in kcontrol.

5.2. EDITING GRAPHS 79

b Dlister
L.

Figure 5.12: Selecting several boxes

You can perform a copy-paste with several boxes. Select them and press <Ctrl+C> or click
on "Copy" in the "Edit" menu. The selection is now in the Unitex clipboard. You can then
paste this selection by pressing <Ctrl+V> or by selecting "Paste" in the "Edit" menu.

monday.grf (Unsaved) :

Monday
Tuesday
Wednesday =
Thursday
Friday
Aaturday
Aunday

ox|5| [%|E

Figure 5.13: Copy-Paste of a multiple selection

NOTE: You can paste a multiple selection into a different graph than the one where you
copied it from.

In order to delete boxes, select them, delete the text that they contain (i.e. the text presented
in the text field above the window) and press the Enter key. The initial and final states
cannot be deleted.

5.2.4 Transducers

A transducer is a graph in which outputs can be associated with boxes. To insert an output,
use the special character / . All characters to the right of it will be part of the output. Thus,

80 CHAPTER 5. LOCAL GRAMMARS

the text one+two+three/number results in a box like in figure 5.14.

one
¥ two
three

S

———

nunhber

Figure 5.14: Example of a transducer

The output associated with a box is represented in bold text below it.

5.2.5 Using Variables

It is possible to select parts of a text sequence recognized by a grammar using variables.
To associate a variable varl with parts of a grammar, use the special symbols $varl(and
$varl) to define the beginning and the end of the part to store. Create two boxes contain-
ing one $varl(and the second $varl) . These boxes must not contain anything but the
variable name preceded by $ and followed by a parenthesis. Then link these boxes to the
zone of the grammar to store. In the graph in figure 5.15 you see a sequence of digits before
dollar ordollars . This sequence will be stored in a variable named varl .

— (=)) &)

[VALUE=$varl$ $$]

—

varl varl

Figure 5.15: Using the variable varl

Variable names may contain latin letters (without accents), upper or lower case, numbers,
or the _ (underscore) character. Unitex distinguishes between uppercase and lowercase
characters.

When a variable is defined, you can use it in transducer outputs by surrounding its name
with $. The grammar in figure 5.16 recognizes a date formed by a month and a year, and
produces the same date as an output, but in the order year-month.

If you want to use the character $ in the output of a box, you have to double it, as shown on
figure 5.15.
5.2.6 Copying lists

It can be practical to perform a copy-paste operation on a list of words or expressions from a
text editor to a box in a graph. In order to avoid having to copy every term manually, Unitex

5.2. EDITING GRAPHS 81

January
Febrary
March
Al
May

= (— Ty)— (—=2=)—)) ©

August $vear$ $month
September
Oectober

Movember
December

month month year year

Figure 5.16: Inverting month and year in a date

provides a mean to copy lists. To use this, select the list in your text editor and copy it using
<Ctrl+C> or the copy function integrated in your editor. Then create a box in your graph,
and press <Ctrl+V> or use the "Paste” command in the "Edit" menu to paste it into the box.
A window as in Figure 5.17 opens:

Choose your left and right contexts:

| | item | |

Figure 5.17: Selecting a context for copying a list

This window allows you to define the left and right contexts that will automatically be used
for each term of the list. By default, these contexts are empty. If you use the contexts < and
V> with the following list:

eat
sleep
drink

play
read

you will get the box in figure 5.18:

82 CHAPTER 5. LOCAL GRAMMARS

<eat V>
<sleep V>

_D < drink V= @

“play V=
<read V=

Figure 5.18: Box resulting from copying a list and applying contexts

5.2.7 Special Symbols

The Unitex graph editor interprets the following symbol in a special manner:
" <> #\

Table 5.1 summarizes the meaning of these symbols for Unitex, as well as the ways to rec-
ognize these characters in texts.

Caracter Meaning Escape
! quotation marks mark sequences that must not be in- \"
terpreted by Unitex, and whose case must be taken
verbatim
+ + separates different lines within the boxes "+
: . introduces a call to a subgraph "M oor\
/ | indicates the start of a transduction within a box V
< < indicates the start of a pattern or a meta "<" or\<
> > indicates the end of a pattern or a meta ">" or\>
prohibits the presence of a space "#
\ \ escapes most of the special characters \\

Table 5.1: Encoding of special characters in the graph editor

5.2.8 Toolbar Commands

The toolbar on the left of a graph contains shortcuts for certain commands and allows you to
manipulate boxes of a graph by using some "tools". This toolbar may be moved by clicking
on the "rough" zone. It may also be dissociated from the graph and appear in an separate
window (see figure 5.19). In this case, closing this window puts the toolbar back at its initial
position. Each graph has its own toolbar.

The first two icons are shortcuts for saving and compiling the graph. The following five
correspond to the Copy, Cut, Paste, Redo and Undo operations. The last icon showing a key
is a shortcut to open the window with the graph display options.

5.3. DISPLAY OPTIONS 83
: X
S | e

Figure 5.19: Toolbar

The other six icons correspond to edit commands for boxes. The first one, a white arrow,
corresponds to the boxes” normal edit mode. The 5 others correspond to specific tools. In
order to use a tool, click on the corresponding icon: The mouse cursor changes its form and
mouse clicks are then interpreted in a particular fashion. What follows is a description of
these tools, from left to right:

e creating boxes: creates a box at the empty place where the mouse was clicked;
e deleting boxes: deletes the box that you click on;

e connect boxes to another box: using this utility you select one or more boxes and
connect it or them to another one. In contrast to the normal mode, the connections are
inserted to the box where the mouse button was released on;

e connect boxes to another box in the opposite direction: this utility performs the same
operation as the one described above, but connects the boxes to the one clicked on in
opposite direction;

e open a sub-graph: opens a sub-graph when you click on a grey line within a box.

5.3 Display options
5.3.1 Sorting the lines of a box

You can sort the content of a box by selecting it and clicking on "Sort Node Label" in the
"Tools" submenu of the "FSGraph" menu. This sort operation does not use the SortTxt
program. It uses a basic sort mechanism that sorts the lines of the box according to the order
of the characters in the Unicode encoding.

5.3.2 Zoom

The "Zoom" submenu allows you to choose the zoom scale that is applied to display the
graph.

The "Fit in screen" option stretches or shrinks the graph in order to fit it into the screen. The
"Fit in window" option adjusts the graph so that it is displayed entirely in the window.

84 CHAPTER 5. LOCAL GRAMMARS

Tools b
Format b
Zoom k| T Fit in SCreen
Close all 2 Fit in window
2 60%
2 g0%
® 100%
2 120%
2 140%

Figure 5.20: Zoom sub-menu

5.3.3 Antialiasing

Antialiasing is a shading effect that avoids pixelization effects. You can activate this effect
by clicking on "Antialiasing..." in the "Format" sub-menu. Figure 5.21 shows one graph
displayed normally (the graph on top) and with antialiasing (the graph at the bottom).

This effect slows Unitex down. We recommend not to use it if your machine is not powerful
enough.

5.3. DISPLAY OPTIONS

no_antialiasing.grf (X:BOULOT'Recherchemanuelunitex'resourcesi... §§ nz = |E

[T

I

antialiasing.grf (X:BOULOT'Recherche'manuelunitexresourcesimg) = o @

L

this iz a

antialiasing

dizplayed D Iwith &

4] Il | [¥

Figure 5.21: Antialiasing example

86 CHAPTER 5. LOCAL GRAMMARS
5.3.4 Box alignment

In order to get nice-looking graphs, it is useful to align the boxes, both horizontally and
vertically. To do this, select the boxes to align and click on "Alignment..." in the "Format"
sub-menu of the "FSGraph" menu or press <Ctrl+M>. You will then see the window in
Figure 5.22.

The possibilities for horizontal alignment are:
e Top: boxes are aligned with the top-most box;
e Center: boxes are centered on the same axis;

e Bottom: boxes are aligned with the bottom-most box.

x|
Horizontal Yertical
Top L eft
Center Center
Bottom Right

[] Use Grid, every 30 pixels

0K Cancel

Figure 5.22: Alignment window

The possibilities for vertical alignment are:
e Left: boxes are aligned with the left-most box;
e Center: boxes are centered on the same axis;

e Right: boxes are aligned with the right-most box.

Figure 5.23 shows an example of alignment. The group of boxes to the right is (quite) a copy
of the ones to the left that was aligned.

The option "Use Grid" in the alignment window shows a grid as the background of the
graph. This allows you to approximately align the boxes.

5.3. DISPLAY OPTIONS 87

I

N

igrc)

Figure 5.23: Example of box alignment

grid.grf (X BOULOT Rechercheimanuelunitexiresourcesimig) §§§

%3
L

{ of a graph displayed with |3

E %

B oy

[4]

Figure 5.24: Example of using the grid

5.3.5 Display options, fonts and colors

You can configure the display style of a graph by pressing <Ctrl+R> or by clicking on "Pre-
sentation..." in the "Format" sub-menu of the "FSGraph" menu, which opens the window as
in figure 5.25.

The font parameters are:

e Input: font used within the boxes and in the text area where the contents of the boxes
is edited;

e Output: font used for the attached transducer outputs.

88 CHAPTER 5. LOCAL GRAMMARS

Presentation il

Display Colors

Date Background: Set...

File HName Foreground: - Set...

[] Pathname Auxiliary Nodes: Set...

Frame Selected Nodes: Set...

Rightto Left = Comment Nodes: Set...

Fonts Default

Input Times New Roman 24 oK

Ourtpout Arial Unicode M5 12 cancel

Figure 5.25: Configuring the display options of a graph

The color parameters are:

e Background: the background color;

Foreground: the color used for the text and for the box display;

Auxiliary Nodes: the color used for calls to sub-graphs;

Selected Nodes: the color used for selected boxes;

Comment Nodes: the color used for boxes that are not connected to others.

The other parameters are:
e Date: display of the current date in the lower left corner of the graph;

e File Name: display of the graph name in the lower left corner of the graph;

Pathname: display of the graph name along with its complete path in the lower left
corner of the graph. This option only has an effect if the option "File Name" is selected;

Frame: draw a frame around the graph;

Right to Left: invert the reading direction of the graph (see an example in figure 5.26).

You can reset the parameters to the default ones by clicking on "Default". If you click on
"OK", only the current graph will be modified. In order to modify the preferences for a lan-
guage as a default, click on "Preferences..." in the "Info" menu and choose the tab "Graph

5.4. EXPORTING GRAPHS 89

RightToLeft.grf (X BOULOT'Rechercheimanuelunitexiresourcesimg)

Figure 5.26: Graph with reading direction set to right to left

Representation". The preferences configuration window has an extra option concerning an-
tialiasing (see figure 5.27). This option activates antialiasing by default for all graphs in the
current language. It is advised not to activate this option if your machine is an old slow one.
You can also change the position of the icon bar.

NOTE: the "Right to Left" option is not present on the general graph configuration frame.
The orientation of graphs is set per default for the current language, as defined in the "Text
Presentation" tab (see Figure 4.7, page 69).

5.4 Exporting graphs

5.4.1 Inserting a graph into a document

In order to include a graph into a document, you have to convert it to an image. To do this,
save your graph as a PNG image. Click on "Save as..." in the "FSGraph" menu, and select the
PNG file format. You will get an image ready to be inserted into a document, or to be edited
with an image editor. You should activate antialiasing for the graph that interests you (this
is not obligatory but results in a better image quality).

Another solution consists of making a screenshot:
On Windows:

Press "Print Screen" on your keyboard. This key should be next to the F12 key. Start the
Paint program in the Windows "Utilities" menu. Press <Ctrl+V>. Paint will tell you that

90 CHAPTER 5. LOCAL GRAMMARS

Preferences for English

Graph Presentation rMurphulugical dictionaries |

Directories |/ Language & Presentation |

Display Colors

Date Background: Set...

File Hame Foreground: Set...

[] Pathname Auxiliary Hodes: Set...

Frame Selected Nodes: Set...
Comment Nodes: Set...

Antialiasing

[] Enable antialising for rendering graphs
Icon Bar Position

® West ' Morth (:FEast (South) Mone

Fonts
Input | Batang 10 Reset to Default
Ourtput Arial Unicode MS 12
0K Cancel

Figure 5.27: Default preferences configuration

the image in the clipboard is too large and asks if you want to enlarge the image. Click on
"Yes". You can now edit the screen image. Select the area that interests you. To do so, switch
to the select mode by clicking on the dashed rectangle symbol in the upper left corner of
the window. You can now select the area of the image using the mouse. When you have
selected the zone, press <Ctrl+C>. Your selection is now in the clipboard, you can now just
go to your document and press <Ctrl+V> to paste your image.

On Linux:

Take a screen capture (for example using the program xv). Edit your image at once using a
graphic editor (for example TheGimp), and paste your image in your document in the same
way as in Windows.

5.4. EXPORTING GRAPHS 91
Vector graphics

If you prefer vector graphics, you can save your graph under the SVG file format, which is
editable with softwares like the Open Source one Inkscape ([24]). With this software, you
can obtain PostScript exports ready to use in pretty ETEX documents.

5.4.2 Printing a Graph
You can print a graph by clicking on "Print..." in the "FSGraph" menu or by pressing <Ctrl+P>.

WARNING: You should make sure that the page orientation parameter (portrait or land-
scape) corresponds to the orientation of your graph.

You can setup the printing preferences by clicking on "Page Setup" in the "FSGraph" menu.
You can also print all open graphs by clicking on "Print All...".

92

CHAPTER 5. LOCAL GRAMMARS

Chapter 6

Advanced use of graphs

6.1 Types of graphs

Unitex can handle several types of graphs that correspond to the following uses: automatic
inflection of dictionaries, preprocessing of texts, normalization of text automata, dictionary
graphs, search for patterns, disambiguation and automatic graph generation. These differ-
ent types of graphs are not interpreted in the same way by Unitex. Certain operations, like
transduction, are allowed for some types and forbidden for others. In addition, special sym-
bols are not the same depending on the type of graph. This section presents each type of
graph and shows their peculiarities.

6.1.1 Inflection transducers

An inflection transducer describes the morphological variation that is associated with a
word class by assigning inflectional codes to each variant. The paths of such a transducer
describe the modifications that have to be applied to the canonical forms and the corre-
sponding outputs contain the inflectional information that will be produced.

matyix

matrices

Figure 6.1: Example of an inflectional grammar

The paths may contain operators and letters. The possible operators are represented by the
characters L, R, Cand D. All letters that are not operators are characters. The only allowed

93

94 CHAPTER 6. ADVANCED USE OF GRAPHS

special symbol is the empty word <E>. It is not possible to refer to information in dictionar-
ies in an inflection transducer, but it is possible to reference subgraphs.

Transducer outputs are concatenated in order to produce a string of characters. This string is
then appended to the produced dictionary entry. Outputs with variables do not make sense
in an inflection transducer.

Case of letters is respected: lowercase letters stay lowercase, the same for uppercase let-
ters. Besides, the connection of two boxes is exactly equivalent to the concatenation of their
contents together with the concatenation of their outputs. (cf. figure 6.2).

Figure 6.2: Two equivalent paths in an inflection grammar

Inflection transducers may be compiled before being used by the inflection program. If not,
the inflection program will compile them on the fly.

For more details, see section 3.4.

6.1.2 Preprocessing graphs

Preprocessing graphs are meant to be applied to texts before they are tokenized into lexical
units. These graphs can be used for inserting or replacing sequences in the texts. The two
customary uses of these graphs are normalization of non-ambiguous forms and sentence
boundary recognition.

The interpretation of these graphs in Unitex is very close to that of syntactic graphs used by
the search for patterns. The differences are the following:

e you can use the special symbol <> that recognizes a newline;

e if you work in character by character mode, you can use the special symbol <L> that
recognizes one letter, as defined in the alphabet file;

e it is impossible to refer to information in dictionaries;
e it is impossible to use morphological filters;

e it is impossible to use morphological mode;

6.1. TYPES OF GRAPHS 95

e it is impossible to use contexts.

The figures 2.9 (page 26) and 2.10 (page 28) show examples of preprocessing graphs.

6.1.3 Graphs for normalizing the text automaton

Graphs for normalizing the text automaton allow you to normalize ambiguous forms. They
can describe several labels for the same form. These labels are then inserted into the text
automaton thus making the ambiguity explicit. Figure 6.3 shows an extract of the normal-
ization graph used by default for French.

de
{de,.PREP+Z u, DET+Dind~+zl:ms}
de
{de,.PEEP+zl} {det=; ET+Diiid+z] :fs}
de
{de, PREP+z1} {des,un.DET+Dind+z]: mp:;
q

{de,.PEEP+zl ~DET+Dind+z}-1ns

q

{de,.PREP+z e la,du DET+Dind+z1:fs}

q
{de,. 1} {des;im. DET+Dind+z] :mp:{p}
q

{de,. 1}

q

{de,.DET+Dind+zl:mp:fp}

Figure 6.3: Extract of the normalization graph used for French

The paths describe the forms that have to be normalized. Lower case and upper case vari-
ants are taken into account according to the following principle: uppercase letters in the
graph only recognize uppercase letters in the text automaton; lowercase letters can recog-
nize both lowercase and uppercase letters.

The transducer outputs represent the sequences of labels that will be inserted into the text
automaton. These labels can be dictionary entries or strings of characters. The labels that

96 CHAPTER 6. ADVANCED USE OF GRAPHS

represent dictionary entries have to respect the DELAF format and must be enclosed by the
{ and } symbols. Outputs with variables do not make sense in this kind of graph. You
cannot use morphological filters, morphological mode or contexts.

It is possible to reference subgraphs. It is not possible to reference information in dictionaries
in order to describe the forms to normalize. The only special symbol that is recognized in
this type of graph is the empty word <E>. The graphs for normalizing ambiguous forms
need to be compiled before using them.

6.1.4 Syntactic graphs

Syntactic graphs, often called local grammars, allow you to describe syntactic patterns that
can then be searched in the texts. Of all kinds of graphs these have the greatest expressive
power because they allow you to refer to information in dictionaries.

Lower case/upper case variants may be used according to the principle described above. It
is still possible to enforce respect of case by enclosing an expression in double quotes. The
use of double quotes also allows you to enforce the respect of spaces. In fact, Unitex by
default assumes that a space is possible between two boxes. In order to enforce the presence
of a space you have to enclose it in double quotes. For prohibiting the presence of a space
you have to use the special symbol #.

Syntactic graphs can reference subgraphs (cf. section 5.2.2). They also have outputs includ-
ing outputs with variables. The produced sequences are interpreted as strings of characters
that will be inserted in the concordances or in the text if you want to modify it (cf. sec-
tion 6.8.3).

Syntactic graphs can use contexts (see section 6.3).
Syntactic graphs can use morphological filters (see section 4.7).
Syntactic graphs can use morphological mode (see section 6.4).

The special symbols that are supported by the syntactic graphs are the same as those that
are usable in regular expressions (cf. section 4.3.1).

It is not obligatory to compile syntactic graphs before using them for pattern matching. If a
graph is not compiled the system will compile it automatically.

6.1.5 ELAG grammars

ELAG grammars for disambiguation between lexical symbols in text automata are described
in section 7.3.1, page 134.

6.2. COMPILATION OF A GRAMMAR 97
6.1.6 Parameterized graphs

Parameterized graphs are meta-graphs that allow you to generate a family of graphs using a
lexicon-grammar table. It is possible to construct parameterized graphs for all possible kinds
of graphs. The construction and use of parameterized graphs are explained in chapter 8.

6.2 Compilation of a grammar

6.2.1 Compilation of a graph

Compilation is the operation that converts the .grf format to a format that can be ma-
nipulated more easily by Unitex programs. In order to compile a graph, you must open it
and then click on "Compile FST2" in the "Tools" submenu of the menu "FSGraph". Unitex
then launches the Grf2Fst2 program. You can keep track of its execution in a window (cf.
Figure 6.4).

essages with a colored background are generated by the interface, not by the external programs.

Compiling graph Detd
Compiling graph DetSimple
Recursion detection started
Resolving <E> conditions
Looking for <E> loops

Looking for infinite recursions
Recursion detection completed
Compilation has succeeded

Cannot open the graph DetSimple.grf
(D: vty Unitex\English'Graphs'DetSimple.grf)

Figure 6.4: Compilation window

If the graph references subgraphs, those are automatically compiled. The result is a .fst2
file that contains all the graphs that make up a grammar. The grammar is then ready to be
used by Unitex programs.

6.2.2 Approximation with a finite state transducer

The FST2 format conserves the architecture in subgraphs of the grammars, which is what
makes them different from strict finite state transducers. The Flatten program allows

98 CHAPTER 6. ADVANCED USE OF GRAPHS

you to turn a FST2 grammar into a finite state transducer whenever this is possible, and
to construct an approximation if not. This function thus permits to obtain objects that are
easier to manipulate and to which all classical algorithms on automata can be applied.

In order to compile and thus transform a grammar, select the command "Compile & Flatten
FST2" in the "Tools" submenu of the "FSGraph" menu. The window of Figure 6.5 allows you
to configure the approximation process.

Compile & Flatten il

- Expected result grammar format;

i® equivalent FST2 (subgraph calls may remain)
i_ Finite State Transducer (can be just an approximation)

Flattening depth:

Maximum flattening depth: 10

0K Cancel

Figure 6.5: Configuration of approximation of a grammar

The box "Flattening depth" lets you specify the level of embedding of subgraphs. This value
represents the maximum depth up to which the callings of subgraphs will be replaced by
the subgraphs themselves.

The "Expected result grammar format" box allows you to determine the behavior of the pro-
gram beyond the selected limit. If you select the "Finite State Transducer" option, the calls
to subgraphs will be replaced by <E> beyond the maximum depth. This option guaran-
tees that we obtain a finite state transducer, however possibly not equivalent to the original
grammar. On the contrary, the "equivalent FST2" option indicates that the program should
allow for subgraph calls beyond the limited depth. This option guarantees the strict equiva-
lence of the result with the original grammar but does not necessarily produce a finite state
transducer. This option can be used for optimizing certain grammars.

A message indicates at the end of the approximation process if the result is a finite state
transducer or an FST2 grammar and in the case of a transducer if it is equivalent to the
original grammar (cf. Figure 6.6).

6.2.3 Constraints on grammars

With the exception of inflection grammars, a grammar can never have an empty path. This
means that the paths of a main graph must not recognize the empty word but this does not
prevent a subgraph of that grammar from recognizing epsilon.

6.2. COMPILATION OF A GRAMMAR 99

essages with a colored background are generated by the interface, not by the external programs.

Compiling graph loop

Recursion detection started

Resolving <E* conditions

Looking for <E> loops

Looking for infinite recursions

Recursion detection completed

Compilation has succeeded

Loading ¥:BOULOT Recherche'manuelunitexiresourcesimigloopfst2...
Computing grammar dependencies...

Flattening...

Cleaning graph...

Minimization...

Writing grammar...

Saving tags...

The resulting grammar is an equivalent finite-state transducer.

Figure 6.6: Resultat of the approximation of a grammar

It is not possible to associate a transducer output with a call to a subgraph. Such outputs are
ignored by Unitex. It is therefore necessary to use an empty box that is situated to the left of
the call to the subgraph in order to specify the output (cf. Figure 6.7).

DET iz ignored on this path

DET

but not on thiz one

Figure 6.7: How to associate an output with a call to a subgraph

The grammars must not contain void loops because the Unitex programs cannot terminate
the exploration of such a grammar. A void loop is a configuration that causes the Locate

100 CHAPTER 6. ADVANCED USE OF GRAPHS

program to enter an infinite loop. Void loops can originate from transitions that are labeled
by the empty word or from recursive calls to subgraphs.

Void loops due to transitions with the empty word can have two origins of which the first
is illustrated by the Figure 6.8. This type of loops is due to the fact that a transition with the
empty word cannot be eliminated automatically by Unitex because it is associated with an
output. Thus, the transition with the empty word of Figure 6.8 will not be suppressed and
will cause a void loop.

— i)

M

ADJ

Figure 6.8: Void loop due to a transition by the empty word with a transduction

The second category of loop by epsilon concerns the call to subgraphs that can recognize the
empty word. This case is illustrated in Figure 6.9: if the subgraph Adj recognizes epsilon,
there is a void loop that Unitex cannot detect.

—— <pET>) Adj [<>) (@)

Figure 6.9: Void loop due to a call to a subgraph that recognizes epsilon

The third possibility of void loops is related to recursive calls to subgraphs. Look at the
graphs Det and DetCompose in figure 6.10. Each of these graphs can call the other without
reading any text. The fact that none of these two graphs has labels between the initial state
and the call to the subgraph is crucial. In fact, if there were at least one label different from
epsilon between the beginning of the graph Det and the call to DetCompose, this would
mean that the Unitex programs exploring the graph Det would have to read the pattern
described by that label in the text before calling DetCompose recursively. In this case the
programs would loop infinitely only if they recognized the pattern an infinite number of
times in the text, which is impossible.

6.2.4 Error detection

In order to keep the programs from blocking or crashing, Unitex automatically detects er-
rors during graph compilation. The graph compiler checks that the main graph does not
recognize the empty word and searches for all possible forms of void loops. When an error

6.3. CONTEXTS 101

Det.grf (X:BOULOTRecherch... o° @ [DetCompose.grf (X:BOULOTRecherchel.. o & [

<DET=
DetCompose

Figure 6.10: Void loop caused by two graphs calling each other

ERROR
essages with a colored background are generated by the interface, not by the external programs.

Compiling graph Det

Compiling graph DetCompose
Recursion detection started
Resolving <E> conditions
Looking for <E= loops

Looking Tor infinite recursions
Recursion detection completed

ERROR: Det calls DetCompose that recalls the graph Det

OK Cancel

Figure 6.11: Error message when trying to compile Det

is encountered, an error message is displayed in the compilation window. Figure 6.11 shows
the message that appears if one tries to compile the graph Det of Figure 6.10.

When you start a pattern search with a .grf graph , if Unitex detects an error at the graph
compilation, the locate operation is automatically interrupted.

6.3 Contexts

Unitex graphs as we described them up to there are equivalent to algebraic grammars. These
are also known as context-free grammars, because if you want to match a sequence A4, the
context of A is irrelevant. Thus, you cannot use a contex-free graph for matching occurences

102 CHAPTER 6. ADVANCED USE OF GRAPHS
of president not followed by of the republic

However, you can draw graphs with positive or negative contexts. In that case, graphs are
no more equivalent to algebraic grammars, but to context-sensitive grammars that do not
have the same theoretical properties.

6.3.1 Right contexts

To define a right context, you must bound a zone of the graph with boxes containing $[and
$] , which indicate the start and the end of the right context. These bounds appear in the
graph as green square brackets. Both bounds of a right context must be located in the same
graph.

—p) i —©

Figure 6.12: Using a right context

Figure 6.12 shows a simple right context. The graph matches numbers followed by a cur-
rency symbol, but this symbol will not appear in matched sequences, i.e. in the concordance.

Right contexts are interpreted as follows. During the application of a grammar on a text,
let us assume that a right context start is found. Let pos be the current position in the text
at this time. Now, the Locate program tries to match the expression described inside the
right context. If it fails, then there will be no match. If it matches the whole right context
(that is to say if Locate reaches the right context end), then the program will rewind at the
position pos and go on exploring the grammar after the right context end.

You can also define negative right contexts, using $![to indicate the right context start.
Figure 6.13 shows a graph that matches numbers that are not followed by th . The difference
with positive right contexts is that when Locate tries to match the expression described
inside the context, reaching the context stop will be considered as a failure, because it would
have matched a forbidden sequence. At the opposite, if the context stop cannot be reached,
then Locate will rewind at the position pos and go on exploring the grammar after the
context end.

Right contexts can appear anywhere in the graph, including the beginning of the graph.
Figure 6.14 shows a graph that matches an adjective in the right context of something that is
not a past participle. In other words, this graph matches adjectives that are not ambiguous
with past participles.

6.3. CONTEXTS 103

e p—1 [Hu)- | —O

Figure 6.13: Using a negative right context

I [FE)— | =0

Figure 6.14: Matching an adjective that is not ambiguous with a past participle

This mechanism allows you to formulate complex patterns. For instance, the graph of
figure 6.15 matches a sequence of two simple nouns that is not ambiguous with a com-
pound word. In fact, the pattern <CDIC><<M([*]+ [* [+)$>> matches a compound
word with exactly one space, and the pattern <N><<([*]+)$>> matches a noun with-
out space, that is to say a simple noun. Thus, in the sentence Black cats should like the town
hall, this graph will match Black cats, but not town hall, which is a compound word.

—[}— —| <CDICE<<[" [+ [* [Hig== E}—

<M=<<[M [Hif=> E}—| <M< [Hg== E}—@

Figure 6.15: Advanced use of right contexts

You can use nested contexts. For instance, the graph shown in figure 6.16 matches a number
that is not followed by a dot, except for a dot followed by a number. Thus, in the sequence
5.0+7.=12, this graph will match 5, 0 and 12.

) a1 — | —O

Figure 6.16: Nested contexts

If a right context contains boxes with transducer outputs, the outputs are ignored. However,
it is possible to use a variable that was defined inside a right context (cf. figure 6.17). If you
apply this graph in MERGE mode to the text the cat is white, you will obtain:

104 CHAPTER 6. ADVANCED USE OF GRAPHS

the <pet name="cat" color="white"/> is white
blue
—) M(— o D —"
<pet name="" green " color="%C$" /=

Figure 6.17: Variable defined inside a right context

6.3.2 Left contexts

It is also possible to look for an expression X only if it occurs after an expression Y. Of
course, it was already possible to do that with a grammar like the one shown on Figure 6.18.
However, with such a grammar, the context part on the left will be included in the match, as
shown on Figure 6.19.

o1ne
two
thiee
four

—D— ii;e <M= @

SEVEN
eight
e
tenn

Figure 6.18: Matching a noun that occurs after a numerical determiner

To avoid that, you can use the special symbol $* to indicate the end of the left context of the
expression you want to match. This symbol will be represented by a green star in the graph,
as shown on Figure 6.20. The effect of such a context is to use this part of the grammar for
computing matches, but to ignore it in the results, as shown on Figure 6.21.

6.3. CONTEXTS

F
Concordance: D)Wy Unitex'English'Corpusiivanhoe_snt\concord.html

horseback, at any secure place, within
were brieflvy as follows: {53} First, the
which, betwixt sun and sun, he baptized
A&t length the barriers were opened, and
urse of spectators fixed upon thewm, the
n a champion that could bear down these
et and khlack, the chosen colours of the
hed their wow, by each of them breaking

eight davs after our liberation:;{3} wul
fiwe challengers were to undertake all
fiwve hundred heathen Danes and Britong
fiwe knjghts, chosen by lot, advanced
fiwe knights adwanced up the platform
fiwe knjghts in one day's jousting. {3
fiwe knights challengers. {3} The cords

fiwe lances, the Prince was to declare .|

M

q] I

| D] |

Figure 6.19: Results of the application of the grammar shown on Figure 6.18

one
two
three
four
I five

v gix
SEVEN
eight
1ine
ten

<N=>

Figure 6.20: Matching a noun after a left context

Concordance: D:iMy Unitex'English'Corpustivanhoe_snticoncord.html :

e courses, and cast to the ground three
utes to keep at sword's point his three
entinels to giwve the alarm when any one
omanlike and brawvely. {3} 0f twenty-four
started up and bent their bows. {3} 3ix
he hack of which was decorated with two
These two squires were followed by two
ber with a grawve pace, followed by four
ake part:{3! and being divided into two

antagonists. {3} I add, that sewvern
antagonists, turning and wheeling=
approaches. {3} But I trust =oon
arrows, shot in succession, ten
arrows placed on the string were
azz's ears, and which was placed
attendants, whose dark wisages,
attendants, bearing in a tahle co
bandzs of equal numbers, might fig—

Figure 6.21: Results of the application of the grammar shown on Figure 6.20

106 CHAPTER 6. ADVANCED USE OF GRAPHS

All the outputs produced in the left context are ignored, as you can see in the concordance
of Figure 6.23, showing the results obtained with the grammar of Figure 6.22.

one
two
three
four

—— =)0

hello geven [N= |
eiglt
fnine
ten

Figure 6.22: Ignored output in a left context

F
Concordance: D:My Unitex EnglishiCorpusivanhoe_snticoncord.html

e courses, and cast to the ground three [N=antagonists].4{3} I add, that sewven of th
utes to keep at sword's point his three [N=antagqonists], turhing and wheeling with
entinels to give the alarm whenh any ohe [N=approaches].{3} But I trust sSoon to gath
cmanlike and brawvely. {3} 0f twenty-four [N=arrows], shot in succession, ten were f£i
started up and bent their bows. {3} 3ix [N=arrows] placed on the strihg were pointe
he back of which was decorated with two [N=ass's ears], and which was placed about
These two squires were followed by two [N=attendants], whose dark wvisages, white 1
ber with a grave pace, followed by four [N=attendants], bearing in a table cowvered
ake part;{3} and being divided into two [N=bhands] of equal numbers, might fight it -
q] I | []

ME

Figure 6.23: Results of the application of the grammar shown on Figure 6.22

However, you can catch things with variables (see section 6.7.5) and use them outside the
left context, as shown on grammar of Figure 6.24.

So, with left and right contexts, you can make a distinction between the pattern used to
match something, and the thing you want to extract in your results. For instance, the gram-
mar shown on Figure 6.26 looks for expressions like the animal’s , but only extract nouns,
as you can see on Figure 6.27.

6.3. CONTEXTS

one
two
three
four

A (—)= ——0

seven [Det=num]

nun el ght nmn

nine
ten

Figure 6.24: Using a variable in a left context

107

Concordance: DXy Unitex'EnglishCorpusiivanhoe_snt'concord.html

e courses, and cast to the ground three antagqonists[Det=threel.{3! I add, that =
utes Lo keep at sword's point his three antagonists[Det=three], turning and wvhee
entinels to give the alarm when any ohne approaches[Det=one]. {3} But I trust sSoon
omanlike and brawvely. {3} 0f twenty-four arrows[Det=four], shot in succession, el

started up and bent their bows. {3} 3ix arrows[Det=3ix] placed on the string wer
he hack of which was decorated with two ass's ears[Det=two], atd which was place
ber with a grave pace, followed by four attendants[Det=four], bearing in a table

=+t e dan e . = I

[heze 0300 B3 WEle 0 owred b T .
[¥]

ME

[4

Figure 6.25: Results of the application of the grammar shown on Figure 6.24

)) [| —©

Figure 6.26: A grammar with both left and right contexts

Concordance: D:iMy Unitex'EnglishiCorpusiivanhoe_snt'concord.bitml

zaid Athelstane, upon whose memory the Abbhot's good ale (for Burton was a
mouited, some by the dexterity of their adwersarvy's lance,---some by the =
The jawelin inflicted a wound upon the animal's shoulder, and narrowly mi
the Templar aimed at the centre of his antagoniszt's shield, and struck it
r, "iz not yet wery far spent---let the archer's shoot a few rounds at the
he back of which was decorated with two ass's ears, and which was placed
;, taking their directions wore from the Baron's eve and his hand than his

« I | Dl

Figure 6.27: Results of the application of the grammar shown on Figure 6.26

108 CHAPTER 6. ADVANCED USE OF GRAPHS
6.4 The morphological mode

6.41 Why?

As Unitex works on a tokenized version of the text, it is not possible to perform queries that
need to enter inside tokens, except with morphological filters (see section 4.7), as shown on
Figure 6.28.

—E}—' un [:}—' <MOT= t}—' able E}—@

This does not work, We should use the
following morpliological filter:
<< Fahlefss

Figure 6.28: Matching morphological things

However, even morphological filters cannot allow any query, since they cannot refer to dic-
tionaries. Thus, it is impossible to formulate this way a query like “a word made of the prefix
un followed by an adjective suffixed with able ”.

To overcome this difficulty, we introduced a morphological mode in the Locate program.
It consists of bounding a part of your grammar with the special symbols $< and $>. Within
this zone, things are matched letter by letter, as shown on Figure 6.29.

—Pp—<F

Figure 6.29: Example of morphological zone in a grammar

6.4.2 The rules
In this mode, the content of the graph is not interpreted as it is in the normal way.

1. There is no implicit space between boxes. So, if you want to match a space, you have
to make it explicit with " " (a space between double quotes).

2. You can still use subgraphs, but the end of the morphological zone must occur in the
same graph as its beginning.

3. You cannot declare variables with $xxx(and $xxx) .

6.4. THE MORPHOLOGICAL MODE 109

4. You can use morphological filters on <DIC> and patterns referring to dictionaries, like
<be>, <N:ms>, etc.

5. Left and right contexts are forbidden.
6. You can use outputs.
7. <MOT>will match any letter, as defined in the alphabet file.
8. <MIN> will match any lowercase letter, as defined in the alphabet file.
9. <MAJ>will match any uppercase letter, as defined in the alphabet file.
10. <DIC> will match any word present in the morphological dictionaries (see below).

11. You can use patterns that refer to the morphological dictionaries, like <have> , <V:K>,
etc.

12. The meta #, <PRE> <NB> <TOKEN><SDIC> and <CDIC> are forbidden.

13. If you reach the end of the morphological zone and if you are not at the end of a token,
the match will fail. For instance, if the text contains enabled , you can not only match
enable .

6.4.3 Morphological dictionaries

In morphological mode, you can perform queries using dictionaries. For instance, you can
ask for every word made of the prefix un followed by an adjective with the grammar shown
on Figure 6.30.

l.hr < Iun D—| < A=< ghlef=> D— }—@

Figure 6.30: Matching words made of "un’+adjective ending with “able’

However, if we want to match with this grammar the word unaware , we must know that
aware is an adjective. But, aware may not be present in the text, so that we cannot rely on
the text dictionaries. This is the reason why we must define a list of dictionaries to lookup in
in morphological mode. To do that, go in “Info>Preferences>Morphological dictionaries”,
as shown on Figure 6.31. You can select as many dictionaries as you want, but they MUST
be .bin ones. Once done, you can apply your grammar and get results.

110 CHAPTER 6. ADVANCED USE OF GRAPHS

Preferences for English

Graph Presentation |T Morphological dictionaries |
Directories |/ Language & Presentation

Choose the .hin dictionaries to use in Locate's morphological
mode:

D:Unitex2.0beta'EnglishiDela'dela-en-public.hin

Figure 6.31: Configuration of morphological dictionaries

6.4.4 Dictionary entry variables

Whereas you cannot define standard variables in morphological mode, you can associate
variables to patterns that refer to the morphological dictionaries, except <DIC>. To do that,
you must set the output of the box with xxx where xxx is a valid variable name. That
defines a special variable named xxx that represents the dictionary entry that has matched
with your pattern. Now you can get the inflected form, lemma and codes of the entry with
$xxx.INFLECTEDS$, $xxx.LEMMA$ and $xxx.CODE$, as shown on Figure 6.32. Moreover,
such variables can be used even after the end of the morphological mode, as shown on
Figure 6.34.

6.5. EXPLORING GRAMMAR PATHS 111

< ——>—@

a [Inflected form=$a. INFLECTEDS, Lemma=%a LEMMAS, Codes=$a.CODE$]

Figure 6.32: Using a morphological variable

Concordance: D:'My Unitex'English'Corpusiivanhoe_snticoncord.htm

g of Stephen, and[Inflected form-and, lemms-and, Codes=W+i:W:Pls:P2s:Plp:P2p:P3p]

e of Henry the ZSecond[Inflected form=second, Lemma=zecond, Codes=V:W:iPls:P2=s:PIp:iPapiPip]
nry the Second HIH :

ond had scarce

[»

jection to the crowm[Inflected form=crown, Lemma=crown, Codes=V:II: Pls st Pln PZD P3n1

to the crown, had[Inflected form=had, Lemmashave, Codes=V:K:Tl1z:T23:135:T1p:I2p:T3n]

crowr, had now resumed[Inflected form=resumed, Lemma=resume, Codes=W:K:T1s5:T2=:T35:T1p:T2p:T3p]
their ancient license[Inflected form=license, Lemma=license, Codes=V:W:Pls:PEZ=s:Plp:P2p:P3p]
ost extent; {5} despising[Inflected form=despising, Lemma=despise, Codes=V:G]
ference of the English[Inflected form=Fnglish, Lemma=English, Codes=Y¥:W:Pls:PZs:Plp:PEp:iPap] |
1]

L]

Figure 6.33: Results of grammar of Figure 6.32 applied in MERGE mode

<> 0

[Inflected form=$a.INFLECTEDS, Lemma=$a.LEMMAS, Codes=$a.CODES$]

Figure 6.34: Using a morphological variable in normal mode

6.5 Exploring grammar paths

It is possible to generate the paths recognized by a grammar, if they are in finite number,
for example to check that it correctly generates the expected forms. For that, open the main
graph of your grammar, and ensure that the graph window is the active window (the active
window has a blue title bar, while the inactive windows have a gray title bar). Now go to

the "FSGraph" menu and then to the "Tools" menu, and click on "Explore Graph paths". The
Window of figure 6.35 appears.

The upper box contains the name of the main graph of the grammar to be explored. The
following options are connected to the outputs of the grammar and to subgraph calls:

¢ "Ignore outputs": outputs are ignored;

e "Separate inputs and outputs": outputs are displayed afterinputs(a b ¢ / A B C);

e "Merge inputs and outputs™: each output is emitted immediately after the input to
which it corresponds (a/A b/B c/C).

112

CHAPTER 6. ADVANCED USE OF GRAPHS

Explore graph paths

Graph: FIBOULCOTRecherchelmanuelunitexiresourcesigiglace. grf

(= lgnore outputs

) Separate inputs and outputs

_ Merge inputs and outputs

Maximum number of sequences: 100 GO

@ Only paths) Do not explore subgraphs recursively

Figure 6.35: Exploring the paths of a grammar

e "Only paths": calls to subgraphs are explored recursively;

e "Do not explore subgraphs recursively": calls to subgraphs are printed but not ex-
plored recursively.

If the option "Maximum number of sequences" is activated, the specified number will be
the maximum number of generated paths. If the option is not selected, all paths will be
generated, if they are in finite number.

Here you see what is created for the graph shown on Figure 6.36 with default settings (ig-
noring outputs, limit = 100 paths):

<NB>
<NB>
<NB>
<NB>
<NB>
<NB>
<NB>
<NB>
<NB>
glace
glace
glace
glace
glace
glace

<boule>
<boule>
<boule>
<boule>
<boule>
<boule>
<boule>
<boule>
<boule>

de
de
de
de
de
de
de
de
de

glace a la pistache
glace a la fraise
glace a la vanille
glace vanille

glace fraise

glace pistache
pistache

fraise

vanille

a la pistache
a la fraise
a la vanille

vanille
fraise
pistache

6.6. GRAPH COLLECTIONS

wanille
<NE> [} <boule> [} de | fraise
pistache

<E=>
ala

113

b glace }‘

Figure 6.36: Sample graph

6.6 Graph collections

It can happen that one wants to apply several grammars located in the same directory. For
that, it is possible to automatically build a grammar starting from a file tree structure. Let us
suppose for example that one has the following tree structure:

e Dicos:

— Bangque:
x carte.grf
— Nourriture:
* eau.grf
* pain.grf
— truc.grf

If one wants to gather all these grammars in only one, one can do it with the "Build Graph
Collection" command in the "FSGraph Tools" sub-menu. One configures this operation by
means of the window seen in figure 6.37.

Building Graph Collection il

Source directony:

| | set..

Resulting GRF grammar:

‘ | Set...
Cancel OK

Figure 6.37: Building a graph collection

114 CHAPTER 6. ADVANCED USE OF GRAPHS

In the "Source Directory" field, select the root directory which you want to explore (in our
example, the directory Dicos). In the field "Resulting GRF grammar", enter the name of the
produced grammar.

WARNING: Do not place the output grammar in the tree structure which you want to ex-
plore, because in this case the program will try to read and to write simultaneously in this
file, which will cause a crash.

When you click on "OK", the program will copy the graphs to the directory of the output
grammar, and will create subgraphs corresponding to the various sub-directories, as one
can see in figure 6.38, which shows the output graph generated for our example.

One can observe that one box contains the calls with subgraphs corresponding to sub-
directories (here directories Banque and Nourriture), and that the other box calls all the graphs
which were in the directory (here the graph truc.grf).

Cramnars comresponding
to sub-diectones:

Bangue _dir
Mourriture _dir

O

Cramimars corresponding to graphs:

¥ trac

Figure 6.38: Main graph of a graph collection

6.7 Rules for applying transducers

This section describes the rules for the application of transducers along with the operations
of preprocessing and the search for patterns. The following does not apply to inflection
graphs and normalization graphs for ambiguous forms.

6.7.1 Insertion to the left of the matched pattern

When a transducer is applied in REPLACE mode, the output replaces the sequences that
have been read in the text. When a box in a transducer has no output, it is processed as if
it had an <E> output. In MERGE mode, the output is inserted to the left of the recognized
sequences.

6.7. RULES FOR APPLYING TRANSDUCERS 115

[)@

[Adj]

Figure 6.39: Example of a transducer

Look at the transducer in Figure 6.39. If this transducer is applied to the novel Ivanhoe by Sir
Walter Scott in MERGE mode, the following concordance is obtained.

Concordance: D:My Unitex'English'Corpus'ivanhoe_snticoncord.html

of pointed beams, which the [A4d7 adijacent] forest supplied, defended the o
£ the outlaws, with whom the [A4d9 adjacent] forest abounded, or by the wiol
23, way be still seen in the [&4d9) anticue] Colleges of Oxford or Cambridge.
insolence, fellow,” =said the [Ad) armed] rider, breaking in on his prattle
an; {3t take a turn round the [Ad) back] o' the hill to gain the wind on the
ring the greater part of the [&d] beautiful] hills and walleys which lie he

wantle and hood were of the [Ad7 best] Flanders cloth, and £fell in ample,
dest wine-cask:;{3} place the [&dj best] mead, the mightiest ale, the riches

Then (sad relief!) from the [4d) bleak] coast that hears The German Ocean
e bring to the shrine of the [AdY EBlessed] Virgin.'™ "Well, vou have said en
rong, And vellow hair'd, the [Ad) blue-eved] Saxon came. {3} Thomson's Liber

the son of Beowalph, is the [A4d7 born] thrall of Cedric of Rotherwood.™ Ee

1]

Figure 6.40: Concordance obtained in MERGE mode with the transducer of figure 6.39

6.7.2 Application while advancing through the text

During the preprocessing operations, the text is modified as it is being read. In order to
avoid the risk of infinite loops, it is necessary that the sequences that are produced by a
transducer will not be re-analyzed by the same one. Therefore, whenever a sequence is
inserted into the text, the application of the transducer is continued after that sequence. This
rule only applies to preprocessing transducers, because during the application of syntactic
graphs, the transductions do not modify the processed text but a concordance file which is
distinct from the text.

6.7.3 Priority of the leftmost match

During the application of a local grammar, overlapping occurrences are all indexed. Note
that we talk about real overlapping occurrences like abc and bcd, not nested occurrences
like abc and bc. During the construction of the concordance all these overlapping occur-
rences are presented (cf. Figure 6.41).

116 CHAPTER 6. ADVANCED USE OF GRAPHS

iwer Don, there extended [in ancient] times a large forest, covering the gr
r Don, there extended in [ancient times] a large forest, covering the great
here extended in ancient [times a] large forest, covering the greater part

Figure 6.41: Overlapping occurrences in concordance

On the other hand, if you modify a text instead of constructing a concordance, it is necessary
to choose among these occurrences the one that will be taken into account. Unitex applies
the following priority rule for that purpose: the leftmost sequence is used.

If this rule is applied to the three occurrrences of the preceding concordance, the occurrence

[in ancient] overlaps with [ancient times] . The first is retained because this is the
leftmost occurrence and [ancient times] is eliminated. The following occurrence of
[times a] is no longer in conflict with [ancient times] and can therefore appear in
the result:

...Don, there extended [in ancient] [times a] large forest...

The rule of priority of the leftmost match is applied only when the text is modified, be it
during preprocessing or after the application of a syntactic graph (cf. section 6.8.3).

6.7.4 Priority of the longest match

During the application of a syntactic graph it is possible to choose if the priority should be
given to the shortest or the longest sequences or if all sequences should be retained. During
preprocessing, the priority is always given to the longest sequences.

6.7.5 Transducer outputs with variables

As we have seen in section 5.2.5, it is possible to use variables to store some text that has
been analyzed by a grammar. These variables can be used in preprocessing graphs and in
syntactic graphs.

You have to give names to the variables you use. These names can contain non-accentuated
lower-case and upper-case letters between A and Z, digits and the character _ (underscore).

In order to define the boundings of the zone to be stored in a variable, you have to create
two boxes that contain the name of the variable enclosed in the characters $ and (($ and)
for the end of a variable). In order to use a variable in a transducer output, its name must be
surrounded by the character $ (cf. Figure 6.42).

Variables are global. This means that you can define a variable in a graph and reference it in
another as is illustrated in the graphs of Figure 6.42.

If the graph TitleName is applied in MERGE mode to the text Ivanhoe, the concordance in
Figure 6.43 is obtained.

6.7. RULES FOR APPLYING TRANSDUCERS

TitieName.grf (X: BOULOT'Recherche'manuelunitexresourcesigrn) © o @ B4

F 9
< gl "
<duke> —

=
gas <king>
I§
&b

t <lmight> O
(<piinice=)

. “UeEL” .

title | <lord> title

<baron>

[4]

4] Il | I

Figure 6.42: Definition of a variable in a subgraph

Concordance: D:iMy Unitex'English'Corpusiivanhoe_snt'concord.html

lders and was silent. [3}Prince John[TITLE=Prince] resumed his retreat -

he hermit---"his name is Jir dnthony of Scrabelstone[TITLE=3ir]---as if I
again passed round, "To 23ir Athelstane of Coningsburgh[TITLE=3ir]."™

r shall call thee 3axon, 3it Baron[TITLE=3ir]," replied Cedric, offended
to say, lady,” answered 3ir Brian de Bois[TITLE=3ir]-Guilbert,

ory.” "8ir Palmer,” said 23ir Brian de Bois[TITLE=S5ir]-Guilbert

zo unsafe, the escort of 3ir Brian de Bois[TITLE=3ir]-Guilbert is not to
er to be a handwmaidern to 23ir Brian de Bois[TITLE=3ir]-Guilbert, after the

ghts of the Tewmple---and 3ir Brian de BoisGuilbert[TITLE=53ir] well knows
hawve offended,” replied Zir Erian[TITLE=%ir], "I crawe your

[4]

q] i [[»]

Figure 6.43: Concordance obtained by application of graph TitleName

117

118 CHAPTER 6. ADVANCED USE OF GRAPHS

Outputs with variables can be used to move word groups. In fact, the application of a trans-
ducer in REPLACE mode inserts only the produced sequences into the text. In order to
invert two word groups, you just have to store them into variables and produce an out-
put with these variables in the desired order. Thus, the application of the transducer in
Figure 6.44 in REPLACE mode to the text Ivanhoe results in the concordance of Figure 6.45.

—= (=) —(—==))))

$NOUNE $ADJIS

ADJ ADJ NOURN NOURN

Figure 6.44: Inversion of words using two variables

X

Concordance: D:ivy UnitexiEnglish'Corpus'ivanhoe_snt'concord.html

gtopping the courze of a brook small, which glided swmoothly round the foot
when his return from his captivity long had become an ewvent rather wished t
heir gnarled arms ower a carpet thick of the most delicious green sward;{5}
ight, az it were, to the chains feudal with which they were loaded. {3} At C
atratice, of that wild and character rustic, which belonhged to the woodlands
gorget was engraved, in characters Sawon, an inscription of the following
nd the sufferings of the classes inferjor, arozse from the consequences of t©

[b

™,

< L]

Figure 6.45: Result of the application of the transducer in figure 6.44

If the beginning or the end of variable is malformed (end of a variable before its beginning
or absence of the beginning or end of a variable), it will be ignored during the emission of
outputs.

There is no limit to the number of possible variables.

The variables can be nested and even overlap as is shown in figure 6.46.

6.8 Applying graphs to texts

This section only applies to syntactic graphs.

6.8.1 Configuration of the search

In order to apply a graph to a text, you open the text, then click on "Locate Pattern..." in the
"Text" menu, or press <Ctrl+L>. You can then configure your search in the window shown
in figure 6.47.

6.8. APPLYING GRAPHS TO TEXTS 119

January
February
Monday E: Eh
Tuesday Mlﬂy
Wednesday .
Thursday } -
Friday Hu};} y
:?;E:;Y Heptember
October
Movember
(() December)

DayAndNumber NumberAndhIonth DayAndMNumber NumberAndhonth

Figure 6.46: Overlapping variables

In the "Locate pattern in the form of" field, choose "Graph" and select your graph by clicking
on the "Set" button. You can choose a graphin .grf format (Unicode Graphs) or a compiled
graph in .fst2 format (Unicode Compiled Graphs). If your graph is a .grf one, Unitex
will compile it automatically before starting the search.

The "Index" field allows to select the recognition mode.

e "Shortest matches" : give precedence to the shortest matches;

e "Longest matches" : give precedence to the longest sequences. This is the default
mode;

e "All matches" : give out all recognized sequences.

The "Search limitation" field allows you to limit the search to a certain number of occur-
rences. By default, the search is limited to the 200 first occurrences.

The "Grammar outputs” field concerns transducers. The "Merge with input text" mode
allows you to insert the output sequences in input sequences. The "Replace recognized
sequences" mode allows you to replace the recognized sequences with the produced se-
quences. The third mode ignores all outputs. This latter mode is used by default.

After you have selected the parameters, click on "SEARCH" to start the search.

6.8.2 Concordance

The result of a search is an index file that contains the positions of all encountered occur-
rences. The window of Figure 6.48 lets you choose whether to construct a concordance or
modify the text.

120 CHAPTER 6. ADVANCED USE OF GRAPHS

Locate Pattern -
Locate pattern in the form of:

i’ Regular expression:

@ Graph: Set

Index Grammar outputs
i) Shortest matches @ Are not taken into account
i@ Longest matches) Merge with input text

i all matches) Replace recognized sequences

Search limitation

® Stop after | 200 matches SEARCH
i) Index all utterances in text

Figure 6.47: Locate pattern Window

In order to display a concordance, you have to click on the "Build concordance" button.
You can parameterize the size of left and right contexts in characters. You can also choose
the sorting mode that will be applied to the lines of the concordance in the "Sort Accord-
ing to" menu. For further details on the parameters of concordance construction, refer to
section 4.8.2.

The concordance is produced in the form of an HTML file. You can parameterize Unitex so
that concordance files can be read using a web browser (cf. section 4.8.2).

If you display concordances with the window provided by Unitex, you can access a recog-
nized sequence in the text by clicking on the occurrence. If the text window is not iconified
and the text is not too long to be displayed, you see the selected sequence appear (cf. Fig-
ure 6.49).

Furthermore, if the text automaton has been constructed, and if the corresponding window
is not iconified, clicking on an occurrence selects the automaton of the sentence that contains
this occurrence.

6.8.3 Modification of the text

You can choose to modify the text instead of constructing a concordance. In order to do that,
type a file name in the "Modify text" field in the window of Figure 6.48. This file has to have
the extension .txt

If you want to modify the current text, you have to choose the corresponding .txt file. If
you choose another file name, the current text will not be affected. Click on the "GO" button

6.8. APPLYING GRAPHS TO TEXTS 121

Display indexed sequUences...

Modify text
Resulting .snt file:
Set File GO
Extract units
Set File:
Extract matching units Extract unmatching units

Concordance presentation

[]Use a web browser to view the concordance
(hetter for more than 2000 matches)

Show differences with previous concordance |

Show matching sequences in context

Context length: Stop at: Sort according to:
Left | 40/chars []{S}
Right| 75 chars [| {5}

Center, Left | - |

Build concordance

Figure 6.48: Configuration for displaying the encountered occurrences

to start the modification of the text. The precedence rules that are applied during these
operations are described in section 6.7.

After this operation, the resulting file is a copy of the text in which transducer outputs have
been taken into account. Normalization operations and splitting into lexical units are auto-
matically applied to this text file. The existing text dictionaries are not modified. Thus, if
you have chosen to modify the current text, the modifications will be effective immediately.
You can then start new searches on the text.

WARNING: if you have chosen to apply your graph ignoring the transducer outputs, all
occurrences will be erased from the text.
6.8.4 Extracting occurrences

To extract from a text all sentences containing matches, set the name of your output text file
using the "Set File" button in the "Extract units" frame (Figure 6.48). Then, click on "Extract

122 CHAPTER 6. ADVANCED USE OF GRAPHS

Concordance: DMy Unitex'English'Corpusiivanhoe_snt'concord.html

ted of wore the fabulous Dragon of Wantley:!53) here were fought many of {_

(] I [] |

Dty Unitex EnglishiCorpusiivanhoe.snt nz 5 E
2343 sentence delimiters, 186612 (9300 diff) tokens, 83774 (9274) simple forms, 25 (9) di...
81970 occurrences {13284 DLF entries) simple words, 273 occurrences (274 DLC entries)...

{3y IN THAT PLEASANT DISZTRICT of merry England which i=
watered by the river Don, there extended in ancient tinmes a
large forest, covering the greater part of the beautiful
hill=s and walleys which lie between 3heffield and the
pleasant town of Doncaster.{3} The remains of this extensive
wood are still to be seen at the noble seats of Wentworth, of
Warncliffe Park, and around Fotherham.{3} Here haunted of
vore the fabulous Dragon of Wantlew: {3} here were fought mwany
of the most desverate hattles during the Civil Wars of the

Lin]»

[4]

Figure 6.49: Selection of an occurrence in the text

matching units". At the opposite, if you click on "Extract unmatching units", all sentences
that do not contain any match will be extracted.

6.8.5 Comparing concordances

With the "Show differences with previous concordance” option, you can compare the current
concordance with the previous one. The ConcorDiff program builds both concordances
according to text order and compares them line by line. The result is an HTML page that
presents results in two columns. A blue line indicates that an utterance is common to the
two concordances. A red line indicates that a match is common to both concordances but
with different range, i.e. the two matches only overlap partially. A green line indicates an
utterance that appears in only one concordance. Figure 6.50 gives an example.

NOTE: you cannot click on utterances in a concordance comparison.

If you have no previous concordance the button is deactivated.

123

6.8. APPLYING GRAPHS TO TEXTS

SEm ORI ‘1I07E Ul{c) ‘Snhuod omeE o0 UT palaaTlap alam =

AYABW J20W 200 UNOYS PRY 2084 UBNAON =ud J0 SUYDIBUOW 23 TV

AYIBW 1S0W A1 TWWOE PEY 2081 UENA0] =20t J0 SUDIBUOT 213 TV

I3 J0 AU2aAD 203 A0 ‘AITTTOOU UEWAOR =03 J0 SPURY 211 UT pad

STTTY ThITIte=d 213 J0 248d d=a90°1b =01 LuTiasaod fazaiog 26

aed 1a3e=1f 2yl furiasns ‘323303 2hiB] B SaWIl JUITIUR UT pa

ied Iaie21f 2yl fuTiasns 923303 DI B SSWMI] QUATOUR UT Rpa

S3JUBPI0IUGD 0] 3L} J0 U0 AUD Ul IN330 12Y) saduanbas (uas i
saouanbas Jualap g RIS pay
saouanbas [e2anuap :an|g

- JIg AoUepIoIU0) ﬂ

Figure 6.50: Example of a concordance comparison

124 CHAPTER 6. ADVANCED USE OF GRAPHS

Chapter 7

Text automaton

Natural languages contain much lexical ambiguity. The text automaton is an effective and
visual way of representing such ambiguity. Each sentence of a text is represented by an
automaton whose paths represent all possible interpretations.

This chapter presents the concept of text automaton, the details of their construction and the
operations that can be applied, in particular ambiguity removal with ELAG ([49]). It is not
possible at the moment to search the text automaton for patterns.

7.1 Displaying text automaton

The text automaton explicit all possible lexical interpretations of the words. These different
interpretations are the different entries presented in the dictionary of the text. Figure 7.1
shows the automaton of the fourth sentence of the text Ivarnhoe.

You can see in Figure 7.1 that the word Here has three interpretations here (adjective, ad-
verb and noun), haunted two (adjective and verb), etc. All the possible combinations are
expressed because each interpretation of each word is connected to all the interpretations of
the following and preceding words.

In case of an overlap between a compound word and a sequence of simple words, the au-
tomaton contains a path that is labeled by the compound word, parallel to the paths that
express the combinations of simple words. This is illustrated in Figure 7.2, where the com-
pound word courts of law overlaps with a combination of simple words.

By construction, the text automaton does not contain any loop. One says that the text au-
tomaton is acyclic.

NOTE: The term “text automaton” is an abuse of language. In fact, there is an automaton for
each sentence of the text. Therefore, the combination of all these automata corresponds to
the automaton of the text. This is why we use the term “text automaton” even if this object
is not manipulated as a global automaton for practical reasons.

125

126 CHAPTER 7. TEXT AUTOMATON

FST-Text ©
7344 spntences Here haunted of wore the fabulous Dragon of Wantlew:

Sentence # 4 :

Reset Sentence Graph

Rebuild FST-Text

Elag Frame

Explode

Implode

haunted
haunt

V:E:Ils:I2s:3s:T1p: 2p:3p

Apply Elag Rule

Figure 7.1: Sentence automaton example

7.2 Construction

In order to construct the text automaton, open the text, then click on "Construct FST-Text..."
in the menu "Text". One should first split the text into sentences and apply dictionaries. If
sentence boundary detection is not applied, the construction program will arbitrarily split
the text in sequences of 2000 lexical units instead of constructing one automaton per sen-
tence. If no dictionaries are applied, the text automaton that you obtain will consist of only
one path made up of unknown words per sentence.

7.2.1 Construction rules for text automata

Sentence automata are constructed from text dictionaries. The resulting degree of ambiguity
is therefore directly linked to the granularity of the descriptions of dictionaries. From the

7.2. CONSTRUCTION 127

Y cowts of law
cowt of law

N+NFPFN+zl:p

Figure 7.2: Overlap between a compound word and a combination of simple words.

sentence automaton in figure 7.3, you can conclude that the word which has been coded
twice as a determiner in two subcategories of the category DET. This granularity of descrip-
tions will not be of any use if you are only interested in the grammatical category of this
word. It is therefore necessary to adapt the granularity of the dictionaries to the intended
use.

PRO+RelQ:s:p

which

DET+DetQ:s5/p

DET+Dind:s

which

DET+Dad;:s:p

Figure 7.3: Double entry for which as a determiner

For each lexical unit of the sentence, Unitex searches the dictionary of the simple words of
the text for all possible interpretations. Afterwards, all combination of lexical units that have
an interpretation in the dictionary of the compound words of the text are taken into account.
All the combinations of these information constitute the sentence automaton.

128 CHAPTER 7. TEXT AUTOMATON

NOTE: If the text contains lexical labels (e.g. {out of date, A+z1}), these labels are
reproduced identically in the automaton without trying to decompose them.

In each box, the first line contains the inflected form found in the text, and the second line
contains the canonical form if it is different. The other information is coded below the box.
(cf. section 7.4.1).

The spaces that separate the lexical units are not copied into the automaton except for the
spaces inside compound words.

The case of lexical units is retained. For example, if the word Here is encountered, the
capital letter is preserved (cf. figure 7.1). This choice allows you to keep this information
during the transition to the text automaton, which could be useful for applications where
case is important as for recognition of proper names.

7.2.2 Normalization of ambiguous forms

During construction of the automaton, it is possible to effect a normalization of ambiguous
forms by applying a normalization grammar. This grammar has to be called Norm.fst2
and must be placed in your personal folder, in the subfolder /Graphs/Normalization of
the desired language. The normalization grammars for ambiguous forms are described in
section 6.1.3.

If a sequence of the text is recognized by the normalization grammar, all the interpretations
that are described by the grammar are inserted into the text automaton. Figure 7.4 shows
the part of the grammar used for the ambiguity of the sequence I’ in French.

{la,le. PRO+PpvLE+zl:3{s}

Figure 7.4: Normalization of the sequence I

If this grammar is applied to a French sentence containing the sequence I' , a sentence au-
tomaton that is similar to the one in figure 7.5 is obtained.

You can see that the four rules for rewriting the sequence I’ have been applied, which has
added four labels to the automaton. These labels are not concurrent with the two preexisting

7.2. CONSTRUCTION 129

accumulation des
7| accumulation de

NDET+Dnom14

MN+z1:fs

FPRO+FpvLE+z1:3fs

Figure 7.5: Automaton that has been normalized with the grammar of figure 7.4

paths for the sequence I' , because of the "keep best paths" heuristic (see section 7.2.4). The
normalization at the time of the construction of the automaton allows you to add paths to the
automaton but not to remove ones. Removing paths will be partially done by the "keep best
paths" heuristic, if enabled. To go further, you will need to use the ELAG disambiguation
functionality.

7.2.3 Normalization of clitical pronouns in Portuguese

In Portuguese, verbs in the future tense and in the conditional can be modified by the inser-
tion of one or two clitical pronouns between the root and the suffix of the verb. For example,
the sequence dir-me-do (they will tell me), corresponds to the complete verbal form dirdo, as-
sociated with the pronoun me. In order to be able to manipulate this rewritten form, it is
necessary to introduce it into the text automaton in parallel to the original form. Thus, the
user can search one or the other form. The figures 7.6 and 7.7 show the automaton of a
sentence after normalization of the clitics.

130 CHAPTER 7. TEXT AUTOMATON

] FST-Text i)
3543 sentences Oz henfeitores!... ir-se-ia u.ma.galeria

de afogados, todos solenes, secos, hirtos, de
Sentence # 1|285|:: lahios finos e ar de cerimania.

Reset Sentence Graph

Rebuild FST-Text

Elag Frame

Explode

Implode

V+MC:C15:C4s:C3s

Apply Elag Rule . .
N:ms:mp pro+Pes:R4ms: R4fs: Ramp: R4fp |-

V+MC:C1s:C4s:C3s

PRO+Pes:R4ms: R4fs: R4mp: R4fp

Figure 7.7: Normalized phrase automaton

7.2. CONSTRUCTION 131

The Reconstrucao program allows you to construct a normalization grammar for these
forms for each text dynamically. The grammar thus produced can then be used for normal-
izing the text automaton. The configuration window of the automaton construction suggests
an option "Build clitic normalization grammar" (cf. figure 7.10). This option automatically
starts the construction of the normalization grammar, which is then used to construct the
text automaton, if you have selected the option "Apply the Normalization grammar".

7.2.4 Keeping the best paths

An unknown word can perturb the text automaton by overlapping with a completely la-
beled sequence. Thus, in the automaton of figure 7.8, it can be seen that the adverb
aujourd’hui overlaps with the unknown word aujourd , followed by an apostrophe and
the past participle of the verb huir .

FST-Text :

A - ; -
3653 sentences Je n'ai pas'le tgmps.aujnurd hui.
_ Restez, répondit Fix.

Sentence # 1,646—

Reset Sentence Graph

Rebuild FST-Text

Elag Frame

Explode

Implode

-

Apply Elag Rule

Figure 7.8: Ambiguity due to a sentence containing an unknown word

This phenomenon can also take place in the treatment of certain Asian languages like Thai.
When words are not delimited, there is no other solution than to consider all possible com-
binations, which causes the creation of numerous paths carrying unknown words that are
mixed with the labeled paths. Figure 7.9 shows an example of such an automaton of a Thai
sentence.

132 CHAPTER 7. TEXT AUTOMATON

FST-Text @ XA
1003 sentences waauiusedhumuTaan dauda iiueusndandhumiuwala
—Endaryyawne wa -y
Sentence # 13
Reset Sentence Graph

Rebuild F5T-Text

Elag Frame

Exzplode

Implode

Apphy Elag Rule

Figure 7.9: Automaton of a thal sentence

It is possible to suppress parasite paths. You have to select the option "Clean Text FST"
in the configuration window for the construction of the text automaton (cf. figure 7.10).
This option indicates to the automaton construction program that it should clean up each
sentence automaton.

This cleaning is carried out according to the following principle: if several paths are concur-
rent in the automaton, the program keeps those that contain the fewest unlabeled tokens.
For instance, the compound adverb aujourd’hui is preferred to the sequence made of
aujourd followed by a quote and hui , because aujourd and the quote are both unlabeled

7.2. CONSTRUCTION 133

Construct the Text FST : il
Mormalization

[] Build clitic normalization grammar {available only for Portuguese {Portugal))
Apphy the Normalization grammar (Morm.fst2)

Clean Text FST

[] Use morpheme structures: available for Korean

[| Normalize according to Elag tagset.def

Use Following Dictionaries previoushy constructed:

The program will construct the text FST according to the DLF, DLC and tags.ind files
previoushy built by the Dico program for the current text.

Cancel Construct FST

Figure 7.10: Configuration of the construction of the text automaton

tokens, while the compound adverb path does not contain any unknown word. Figure 7.11
shows the automaton of figure 7.9 after cleaning.

FST-Text ‘I M
1003 sentences fuaauriswdomTaen Bouds Winwmusmdandhamumala
e Sy awnn sl <)
Sentence # 13
Reset Sentence Graph

Rebuild FST-Text

Elag Frame

Explode

Implode

Apply Elag Rule

Figure 7.11: Automaton of figure 7.9 after cleaning

134 CHAPTER 7. TEXT AUTOMATON
7.3 Resolving Lexical Ambiguities with ELAG

The ELAG program allows for applying grammars for ambiguity removal to the text au-
tomaton. This powerful mechanism makes it possible to write rules on independently from
already existing rules. This chapter briefly presents the grammar formalism used by ELAG
and describes how the program works. For more details, the reader may refer to [6] and

[49].

7.3.1 Grammars For Resolving Ambiguities

The grammars used by ELAG have a special syntax. They consist of two parts which we
call the if and then parts. The if part of an ELAG grammar is divided in two parts which are
divided by a box containing the <!> symbol. The then part is divided the same way using
the <=> symbol. The meaning of a grammar is the following: In the text automaton, if a path
of the if part is recognized, then it must also be recognized by the then part of the grammar,
or it will be withdrawn from the text automaton.

If ' follows a verb in the 2nd person singular
and a dasly, then it is a pronoun and not the
past participle of 'tawe'

<PRO+PpvIL:2g>
V=

<=> —<vae> <= -) <Pro*PpviL2s> <=)

Figure 7.12: ELAG grammar elag-tu.grf

Figure 7.12 shows an example of a grammar. The if part recognizes a verb in the 2"¢ person
singular followed by a dash and tu , either as a pronoun, or as a past participle of the verb
taire . The then part imposes that tu is then regarded as a pronoun. Figure 7.13 shows the
result of the application of this grammar on the sentence "Feras-tu cela bientot ?". One can
see in the automaton at the bottom that the path corresponding to tu past participle was
eliminated.

Synchronization point

The if and then parts of an ELAG grammar are divided into two parts by <!> in the if part,
and <=> in the then part. These symbols form a synchronization point. This makes it possible
to write rules in which the if and then constraints are not necessarily aligned, as it is the
case for example in figure 7.14. This grammar is interpreted in the following way: if a dash
is found followed by il , elle or on, then this dash must be preceded by a verb, possibly

7.3. RESOLVING LEXICAL AMBIGUITIES WITH ELAG 135

FST-Text :
3 sentences Feras-tu cela bientdt ?
Sentence # 1 :
Reset Sentence Graph
Rehbuild FST-Text
close elag frame
Explode
tu cela bied
taite celer
Al
WHHZ1: K WH+z3:J3s =
o bie
o
Implode aue Al
Feras V+se+pFi+E+z1:K cela |
faire o PRO+Pdem+z1:ms
V+z1:F2s
PRO+PpvIL+z1:2fs:2ms
Apphy Elag Rule
4] Il D]
Ty P P O PP T Y S P T TPy
Y
Explode _
FPRO+PpvlL:
Implode
PRO+Pdem:ms | |
Feras
faire
Replace V:F2s |
q Il Ol

Figure 7.13: Result of applying the grammar in figure 7.12

followed by -t . So, if one considers the sentence of the figure 7.15 beginning with Est-il, one
can see that all non-verb interpretations of Est were removed.

7.3.2 Compiling ELAG Grammars

Before an ELAG grammar can be applied to a text automaton, the grammar must be com-
piledina.rul file. This operation is carried out via the "Elag Rules" command in the "Text"
menu, which opens the windows shown in figure 7.16.

If the frame on the right already contains grammars which you don’t wish to use, you can
withdraw them with the "«" button. Then select your grammar(s) in the file explorer located

136

a dagh followed by 'L, "elle’ or 'on' must be

CHAPTER 7. TEXT AUTOMATON

preceeded by averh

<l>

<PRO+PpvIL 3ms>
<PROA+PpvIL:3fs>

<VP3::03::13: 135> <=3

<VP3s Fisd3slds> - <>

Figure 7.14: Use of the synchronization point

FST-Text

2 sentences Est-1il gentil 2

Sentence # 2

Reset Sentence Graph

Rebuild FST-Text

close elag frame

Explode

Implode

Apphy Elag Rule

Explode

Implode

Replace

Figure 7.15: Result of the application of the grammar in figure 7.14

7.3. RESOLVING LEXICAL AMBIGUITIES WITH ELAG 137

[Elag Grammar Compitation

Set of Elag Grammars: Flag.lst | | browse ‘ | save | | |

Look In: ‘Ij PPVs |'| E ey

D postpos.grf D SE.grf
) PondLggrt

[} PpuLE.gr

) P ULgr

[PovpRart

D PpwSeq.grf view

D:My UnitexiFrench'Elag PPYs\SE.grf

<<

File Name: |SE.oi |

locate

Files of Type: ‘Elag Grammar {.grf) ‘ - ‘

Compiled Elag Rule: Flag.rul ‘ | compile | cancel compilation

Figure 7.16: ELAG grammars compilation frame

in the left frame, and click on the "»" button to add them to the list in the right frame. Then
click on the "Compile" button. This will launch the ElagComp program which will compile
the selected grammars and create a file named elag.rul by default.

If you have selected grammars in the right frame, you can search patterns whith them by
clicking on the "Locate" button. This opens the window "Locate Pattern" and automatically
enters a graph name ending with -conc.fst2 . This graphs corresponds to the if part of
the grammar. You can thus obtain the occurrences of the text to which the grammar will

apply.

NOTE: The -conc.fst2 tile used to locate the if part of a grammar is automatically gen-
erated when ELAG grammars are compiled by means of the "Compile" button. It is thus
necessary to have your grammar compiled before searching using the "Locate" button.

7.3.3 Resolving Ambiguities

Once you have compiled your grammar into an elag.rul file, you can apply it to a text
automaton. In the text automaton window, click on the "Apply Elag Rule" button. A dialog
box will appear which asks for the .rul file to be used (see figure 7.17). The default file is
elag.rul . This will launch the Elag program which will try to resolve the ambiguity.

Once the program has finished you can view the resulting automaton by clicking on the
"Open Elag Frame" button. As you can see in figure 7.18, the windows is separated into two
parts: The original text automaton can be seen on the top, and the result at the bottom.

138 CHAPTER 7. TEXT AUTOMATON

] FST-Text o EF X
3 sentences La porte du car sSe ferme automatiguemsnt.
Sentence # E=
Reset Sentence Graph
Rebuild FST-Text
close elag frame
Explode
DET+Dind+z1:
Implode [Apply Elag Rule
2] e =)
Implose resulting text automaton PREP+z1
Apply Elag Rule
N+[Mus]+z1:ms:mp
l I | v
Figure 7.17: Text automaton frame
[8110
3 sentences Lz porte du car se ferme automatiguemsnt.
Sentence # 3=
Reset Sentence Graph
Rebuild FST-Text
close elag frame
Explode
Implode
Apply Elag Rule
Explode g8 automatiquement
PRO+PpvLE: > ADv
ferme
fe
Implode o, ermer
V:53s:P3s
SE
Replace PRO+PpvLUL:3ms:3fs
4] [Il D

Figure 7.18: Splitted text automaton frame

7.3. RESOLVING LEXICAL AMBIGUITIES WITH ELAG 139

Don’t be surprised if the automaton shown at the bottom seems more complicated. This re-
sults from the fact that factorized lexical entries' were exploded in order to treat each inflec-
tional interpretation separately. To refactorize these entries, click on the "Implode" button.
Clicking on the "Explode" button shows you an exploded view of the text automaton.

If you click on the "Replace" button, the resulting automaton will become the new text au-
tomaton. Thus, if you use other grammars, they will apply to the already partially disam-
biguated automaton, which makes it possible to accumulate the effects of several grammars.

7.3.4 Grammar collections

Itis possible to gather several ELAG grammars into a grammar collection in order to compile
and apply them in one step. The sets of ELAG grammars are described in .Ist files. They
are managed through the window for compiling ELAG grammars (figure 7.16). The label on
the top left indicates the name of the current collection, by default elag.Ist . The contents
of this collection are displayed in the right part of the window.

To modify the name of the collection, click on the "Browse" button. In the dialog box that
appears, enter the .Ist file name for the collection.

To add a grammar to the collection, select it in the file explorer in the left frame, and click
on the "»" button. Once you have selected all your grammars, compile them by clicking on
the "Compile" button. This will create a .rul file bearing the name indicated at the bottom
right (the name of the file is obtained by replacing .Ist by .rul).

You can now apply your grammar collection. As explained above, click on the "Apply Elag
Rule" button in the text automaton window. When the dialog asks for the .rul file to use,
click on the "Browse" button and select your collection. The resulting automaton is identical
to that which would have been obtained by applying each grammar successively.

7.3.5 Window For ELAG Processing

At the time of disambiguation, the Elag program is launched in a processing window which
displays the messages printed by the program during its execution.

For example, when the text automaton contains symbols which do not correspond to the set
of ELAG labels (see the following section), a message indicates the nature of the error. In the
same way, when a sentence is rejected (all possible analyses were eliminated by grammars),
a message indicates the number of the sentence. That makes it possible to locate the source
of the problems quickly.

'Entries which gather several different inflectional interpretations, such as for example:
{se,.PRO+PpvLE:3ms:3fs:3mp:3fp}

140 CHAPTER 7. TEXT AUTOMATON

Evaluation of ambiguity removal

The evaluation of the ambiguity rate is not based solely on the average number of interpre-
tations per word. In order to get a more representative measure, the system also takes into
account the various combinations of words. While instances of ambiguities are resolved,
the Elag program calculates the number of possible analyses in the text automaton before
and after the modification (which corresponds to the number of possible paths through the
automaton). On the basis of this value, the program computes the average ambiguity by
sentence and word. It is this last measure which is used to represent the ambiguity rate
of the text, because it does not vary with the size of the corpus, nor with the number of
sentences within. The formula applied is:

log(number—of—paths)

lexical ambiguity rate= exp text—length

The relationship between the ambiguity rate before and after applying the grammars gives
a measure of their efficiency. All this information is displayed in the ELAG processing win-
dow.

7.3.6 Description of the tag sets

The Elag and ElagComp programs require a formal description of the tag set to be used in
dictionaries. This description consists essentially of an enumeration of all the parts of speech
present in the dictionaries, with, for each of them, the list of syntactic and inflectional codes
compatible with it, and a description of their possible combinations. This description must
be contained in a file called tagset.def =~ and placed in your personal folder, in the Elag
subfolder of the desired language.

tagset.def file

Here is an extract of the tagset.def file used for French.

NAME francais

POS ADV

POS PRO
inflex:

pers =12
genre =m f
nombre = s p
discr:

3

7.3. RESOLVING LEXICAL AMBIGUITIES WITH ELAG 141
subcat = Pind Pdem PpviL PpvLUI PpvLE Ton PpvPR PronQ Dnom Ppossls...

complete:
Pind <genre> <nombre>
Pdem <genre> <nombre>

Ppossls <genre> <nombre>
Pposslp <genre> <nombre>
Pposs2s <genre> <nombre>
Pposs2p <genre> <nombre>
Pposs3s <genre> <nombre>
Pposs3p <genre> <nombre>

PpviL <genre> <nombre> <pers>

PpvLE <genre> <nombre> <pers>

PpvLUI <genre> <nombre> <pers> #

Ton <genre> <nombre> <pers> # lui, elle, moi
PpvPR #eny

PronQ # ou qui que quoi
Dnom # rien

POS A ## adjectifs
inflex:
genre =m f
nombre = s p
cat:
gauche = g
droite = d
complete:
<genre> <nombre>
pour {de bonne humeur, A}, {au bord des larmes,.A} par exemple

POS V
inflex:
temps =

CFIJKPSTWYGHKX
pers =1
m
S

3
genre =
nombre =
complete:
w

G

C <pers> <nombre>
F <pers> <nombre>
| <pers> <nombre>
J <pers> <nombre>

2
f
p

142 CHAPTER 7. TEXT AUTOMATON

<pers> <nombre>

<pers> <nombre>

<pers> <nombre>

1 s # eussé dussé puissé fussé (-je)
1p

2 <nombre>

<genre> <nombre>

AX<X<X-Hwnwo

The # symbol indicates that the remainder of the line is a comment. A comment can appear
at any place in the file. The file always starts with the word NAMEfollowed by an identifier
(francais , for example). This is followed by the POSsections for each part of speech. Each
section describes the structure of the lexical tags of the lexical entries belonging to the part
of speech concerned. Each section is composed of 4 parts which are all optional:

e inflex : this part enumerates the inflectional codes belonging to the grammatical cat-
egory. For example, the codes 1,2,3 which indicate the person of the entry are rel-
evant for pronouns but not for adjectives. Each line describes an inflexional attribute
(gender, time, etc.) and is made up of the attribute name, followed by the = character
and the values which it can take. For example, the following line declares an attribute
pers being able to taking the values 1, 2 or 3:

pers =12 3

e cat : this part declares the syntactic and semantic attributes which can be assigned to
the entries belonging to the part of speech concerned. Each line describes an attribute
and the values which it can take. The codes declared for the same attribute must be
exclusive. In other words, an entry cannot take more than one value for the same
attribute.

On the other hand, all the tags in a given part of speech don’t necessarily take val-
ues for all the attribute of the part of speech. For example, to define the attribute
niveau_de_langue which can take the values z1, z2 and z3, the following line can
be written:

niveau_de_langue = z1 z2 z3

but this attribute is not necessarily present in all words.

e discr : this part consists of a declaration of a unique attribute. The syntax is the
same as in the cat part and the attribute described here must not be repeated there.
This part allows for dividing the grammatical category in discriminating sub categories
in which the entries have similar inflectional attributes. For pronouns for example, a
person feature is assigned to entries that are part of the personal pronoun sub category
but not to relative pronouns. These dependencies are described in the complete part;

7.3. RESOLVING LEXICAL AMBIGUITIES WITH ELAG 143

e complete : this part describes the inflectional part of the tags of the words in the
current part of speech. Each line describes a valid combination of inflectional codes
by their discriminating sub category (if such a category was declared). If an attribute
name is specified in angle brackets (< and >), this signifies that any value of this at-
tribute may occur. It is possible as well to declare that an entry does not take any
inflexional feature by means of a line containing only the _ character (underscore). So
for example, if we consider that the following lines extracted from the section describ-
ing the verbs:

w
K <genre> <nombre>

They make it possible to declare that verbs in the infinitive (indicated by the Wcode)
do not have other inflectional features while the forms in the past participle (K code)
are also assigned a gender and a number.

Description of the inflectional codes

The principal function of the discr part is to divide a part of speech into subcategories
having similar inflectional behavior. These subcategories are then used to facilitate writing
the complete part.

For the legibility of the ELAG grammars, it is desirable that the elements of the same sub-
category all have the same inflectional behavior; in this case the complete part is made up
of only one line per subcategory. Let us consider for example the following lines from the
pronoun description:

Pdem <genre> <nombre>
Ppvll <genre> <nombre> <pers>
PpvPr

These lines mean:
e all the demonstrative pronouns (PRO+Pdemyhave only a gender and a number;

e clitic pronouns in the nominative (<KPRO+Ppvll>) are labelled grammatically in per-
son, gender and number;

e the prepositional pronouns (en, y) do not have any inflectional feature.
All combinations of inflectional features and discriminant subcategories which appear in

the dictionaries must be described in the tagset.def file; otherwise, the information in
the corresponding entries will be discarded by ELAG.

144 CHAPTER 7. TEXT AUTOMATON

If words of the same subcategory differ by their inflectional profile, it is necessary to write
several lines into the complete part. The disadvantage of this method of description is that
it becomes difficult to make the distinction between such words in an ELAG grammar.

If one considers the description given by the previous example of a tagset.def file, certain
adjectives of French take a gender and a number, whereas others to not have any inflectional
feature. This allows for coding fixed sequences like de bonne humeur as adjective, on the basis
of their syntactic behavior.

Consider a French dictionary with such sequences as invariable adjectives without inflec-
tional features. The problem is that if one wants to refer exclusively to this type of adjectives
in a disambiguation grammar, the <A> symbol is not appropriate, since it will recognize all
adjectives. To circumvent this difficulty, it is possible to deny an inflectional attribute by
writing the @character right before one of the possible values for this attribute. Thus, the
<A:@m@pzymbol recognizes all the adjectives which have neither a gender nor a number.
Using this operator, it is possible to write grammars like those in figure 7.19, which imposes
agreement in gender and number between a name and an adjective which suits?. This
grammar will preserve the correct analysis of sentences like: Les personnes de bonne humeur
m’insupportent.

Is is however recommended to limit the use of the @operator, because it harms the legibility
of the grammars. It is preferable to distinguish the labels which accept various inflectional
combinations by means of discriminating subcategories defined in the discr part.

> T s)

= D—{ <Mms> D—| == D— :i%ﬁ@w
<A g

<=> D»—{ <Mfg> D*—| == D— <A@m@p>

== D—' <N:mp> H === D— :i%i:@p:b

<=3 [>—| <N:fp H <= D_ :ifé::u@lﬁ’

Figure 7.19: ELAG grammar that verifies gender and number agreement

Optional Codes

The optional syntactic and semantic codes are declared in the cat part. They can be used
in ELAG grammars like other codes. The difference is that these codes do not intervene to

2This grammar is not completely correct, because it eliminates for example the correct analysis of the sen-
tence: J'ai recu des coups de fil de ma mere hallucinants.

7.3. RESOLVING LEXICAL AMBIGUITIES WITH ELAG 145

decide if a label must be rejected as an invalid one while loading of the text autmaton.

In fact optional codes are independent of other codes, such as for example the attribute of
the language level (z1, z2 or z3). In the same manner as for inflectional codes, it is possible
to deny an inflectional attribute by writing the ! character right before the name of the
attribute. Thus, with our example file, the <Algauche:f> symbol recognizes all adjectives
in the feminine which do not have the gauche code?.

All codes which are not declared in the tagset.def file are discarded by ELAG. If a dictio-
nary entry contains such a code, ELAG will produce a warning and will withdraw the code
from the entry.

Consequently, if two concurrent entries differ in the original text automaton only by unde-
clared codes, these entries will become indistinguishable by the programs and will thus be
unified into only one entry in the resulting automaton.

Thus, the set of labels described in the file tagset.def file is compatible with the dictio-
naries distributed with Unitex, by factorizing words which differ only by undeclared codes,
and this independently of the applied grammars.

For example, in the most complete version of the French dictionary, each individual use of a
verb is characterized by a reference to the lexicon grammar table which contains it. We have
considered until now that this information is more relevant to syntax than to lexical analysis
and we thus don’t have integrated them into the description of the tagset. They are thus
automatically eliminated at the time when the text automaton is loaded, which reduces the
rate of ambiguity.

In order to distinguish the effects bound to the tagset from those of the ELAG grammars, it
is advised to proceed to a preliminary stage of normalization of the text automaton before
applying disambiguation grammars to it. This normalization is carried out by applying to
the text automaton a grammar not imposing any constraint, like that of figure 7.20. Note
that this grammar is normally present in the Unitex distribution and precompiled in the file
norm.rul

<= <7> <= <l

== =7z <=2 “=>

Figure 7.20: ELAG grammar without any constraint

3This code indicates that the adjective must appear on the left of the nound to which it refers to, as is the case
for bel.

146 CHAPTER 7. TEXT AUTOMATON

The result of applying such a grammar is that the original is cleaned of all the codes which
either are not described in the tagset.def file, or do not conform to this description (be-
cause of unknown grammatical categories or invalid combinations of inflectional features).
By then replacing the text automaton by this normalized automaton, one can be sure that
later modifications of the automaton will only be effects of ELAG grammars.

7.3.7 Grammar Optimization

Compilation of ELAG grammars by the ElagComp program consists in building an au-
tomaton whose language is the set of the sequences of lexical tags (or lexical analyses of a
sentence) which are not accepted by the grammars. This task is complex and can take a lot
of time. It is however possible to appreciably speed it up by observing certain principles at
the time of writing gramars.

Limiting the number of branches in the then part

It is recommended to limit the number of then parts of a grammar to a minimum. This can
reduce considerably the compile time of a grammar. Generally, a grammar having many
then parts can be rewritten with one or two then parts, without a loss of legibility. It is for
example the case of the grammar in figure 7.21, which imposes a constraint between a verb
and the pronoun which follows it.

<> p—T<vi1e [}—E[}—| <=>) <PRO+PpviLi1s>)—]<=> |
<=> —{<vae> - <= - <PrO*PpviL2e> —{<=>)
<=> —]<vie D—E[}—| <=> [<PRO+PpviL3s> [—]<=> |)
<=> —<v1p> - J—{<=> {<PrO*PpviL1p> —<=>)
[<=> p—T<vap> [}—D—| <=> |} <PRO+PpviL2p> [—]<=> |
[<=> p—]<vp> [}—ED»—| <=> | <PRO+PpvIL3p> [—] <=> |

<PROAPpvLE=
[<=>)— <vr> —- <=) <PrO+PpvLUI
<PROAPpvwPE=

Figure 7.21: ELAG grammar checking verb-pronoun agreement

As one can see in figure 7.22, one can write an equivalent grammar by factorizing all the

7.4. MANIPULATION OF TEXT AUTOMATA 147

then parts into only one. The two grammars will have exactly the same effect on the text
automaton, but the second one will be compiled much more quickly.

<PRO+PpvIL:1s> [}

<PRO+PpvIL2s> |}

<PRO+PpvIL:3p=

<PRO+PpvLE~
<PRO+PpwLUL=
<PRO+PpvPERE>
<FRO+T on»

Figure 7.22: Optimized ELAG grammar checking verb-pronoun agreement

Using lexical symbols

It is better to use lemmas only when it is necessary. That is particularly true for some gram-
matical words, when their subcategories carry almost as much of information as the lemmas
themselves. In any case, it is recommended to specify its syntactic, semantic and inflectional
features as much as possible. For example, with the dictionaries provided for French, it is
preferable to replace symbols like <je.PRO:1s> , <je.PRO+PpvIL:1s> and <je.PRO>
with the symbol <PRO+Ppvll:1s> . Indeed, all these symbols are identical insofar as they
can recognize only the single entry of the dictionary {je,PRO+PpviL:1ms:1fs} . How-
ever, as the program does not deduce this information automatically, if all these features are
not specified, the program will consider nonexisting labels such as <je.PRO:3p> ,
<je.PRO+PronQ> etc. in vain.

7.4 Manipulation of text automata

7.4.1 Displaying sentence automata

As we have seen above, the text automaton is in fact the collection of the sentence automata
of a text. This structure can be represented using the format .fst2 , also used for represent-

148 CHAPTER 7. TEXT AUTOMATON

ing the compiled grammars. This format does not allow the system to directly display the
sentence automata. Instead, the system uses the Fst2Grf program to convert the sentence
automaton into a graph that can be displayed. This program is called automatically when
you select a sentence in order to generate the corresponding .grf file.

The generated .grf files are not interpreted in the same manner as the .grf files that rep-
resent graphs constructed by the user. In fact, in a normal graph, the lines of a box are
separated by the + symbol. In the graph of a sentence, each box represents either a lexical
unit without a tag or a dictionary entry enclosed by curly brackets. If the box only repre-
sents an unlabeled lexical unit, this unit appears alone in the box. If the box represents a
dictionary entry, the inflected form is displayed, followed in another line by the canonical
form if it is different. The grammatical and inflectional information is displayed below the
box as a transducer output.

Figure 7.23 shows the graph obtained for the first sentence of Ivanhoe. The words Ivanhoe ,
Walter and Scott are considered unknown words. The word by corresponds to two en-
tries in the dictionary. The word Sir corresponds to two dictionary entries as well, but since
the canonical form of these entries is sir , it is displayed because it differs from the inflected
form by a lower case letter.

N+Hum:s

Figure 7.23: Automaton of the first sentence of Ivanhoe

7.4.2 Modifying the text automaton

It is possible to manually modify the sentence automaton. You can add or erase boxes or
transitions. When a graph is modified, it is saved to the text file sentenceN.grf , where N
represents the number of the sentence.

When you select a sentence, if a modified graph exists for this sentence, this one is displayed.
You can then reset the automaton of that sentence by clicking on the botton "Reset Sentence
Graph" (cf. figure 7.24).

During the construction of the text automaton, all the modified sentence graphs in the text
file are erased.

7.5. CONVERTING THE TEXT AUTOMATON INTO LINEAR TEXT 149

FST-Text
7344 sentences Ivanhoe by 3ir Walter Scott

Sentence # 1

Reset Sentence Graph

Rebuild FST-Text

close elag frame

Explode

Implode \ | by ——] it Walter Scott p—(0)

N+ProperNoun FPREF N+ProperNoun

Apply Elag Rule

Figure 7.24: Modified sentence automaton

NOTE: After you reconstruct the text automaton, you can save your manual modifications.
In order to do that, click on the button "Rebuild FST-Text". All sentences that have been
modified are then replaced in the text automaton by their modified versions. The new text
automaton is then automatically reloaded.

7.4.3 Display configuration

Sentence automata are subject to the same presentation options as the graphs. They use
the same colors and fonts as well as the antialiasing effect. In order to configure the ap-
pearance of the sentence automata, you modify the general configuration by clicking on
"Preferences..." in the "Info" menu. For further details, refer to section 5.3.5.

You can also print a sentence automaton by clicking on "Print..." in the "FSGraph" menu
or by pressing <Ctrl+P>. Make sure that the printer’s page orientation is set to landscape
mode. To configure this parameter, click on "Page Setup" in the "FSGraph" menu.

7.5 Converting the text automaton into linear text

If the text automaton does not contain any lexical ambiguity, it is possible to build a text file
corresponding to the unique path of the automaton. Go into the "Text" menu and click on
"Convert FST-Text to Text...". You can set the output text file in the window as shown on
Figure 7.25.

150 CHAPTER 7. TEXT AUTOMATON

Convert Text Automaton to Text
Output text file:

Ceibdy UnitesiEnglishiCorpusilinear.snt

Cancel

Figure 7.25: Setting output file for linearization of the text automaton

If the automaton is not linear, an error message will give you the number of the first sentence
that contain ambiguity. Otherwise, the Fst2Unambig program will build the output file
according to the following rules:

e the output file contains one line per sentence;
e every line but the last is ended by {S} ;

e for each box, the program writes its content followed by a space.

e @ X

2 3 {cats,cat.l+hinl:p} {are,be.V:PZs:Plp:PZp:P3p}

FST-Text

1 sentence) '
{white, white.L} .
Sentence # 1
Reset Sentence Graph

Rebuild FST-Text

close elag frame

[»

Explode

cats

Implode

Apply Elag Rule

Figure 7.26: Example of a linear text automaton

NOTE: correcting spaces in the output text can only be done manually. If the original text is
the one of the text automaton shown on Figure 7.26, the output text will be:

2 3 {cats,cat.N+Anl:p} {are,be.V:P2s:P1p:P2p:P3p} {white,white.A} .

Chapter 8

Lexicon-grammar

The tables of lexicon-grammar are a compact way for representing syntactical properties of
the elements of a language. It is possible to automatically construct local grammars from
such tables, due to a mechanism of parameterized graphs.

In the first part of the chapter the formalism of tables is presented. The second part describes
parameterized graphs and a mechanism of automatically lexicalizing them with lexicon-
grammar tables.

8.1 Lexicon-grammar tables

Lexicon-grammar is a methodology developed by Maurice Gross and the LADL team ([9],
[10], [36], [38]) based on the following principle: every verb has an almost unique set of
syntactical properties. Due to this fact, these properties need to be systematically described,
since it is impossible to predict the exact behavior of a verb. These descriptions are repre-
sented by matrices where rows correspond to verbs and columns to syntactical properties.
The considered properties are formal properties such as the number and nature of allowed
complements of the verb and the different transformations the verb can undergo (passiviza-
tion, nominalisation, extraposition, etc.). The matrices, or tables, are mostly binary: a + sign
occurs at the intersection of a row and a column of a property if the verb has that property,
a - sign if not. More information in http://infolingu.univ-mlv.fr , including some
lexicon-grammar tables that you can freely download.

This type of description has also been applied to adjectives ([53]), predicative nouns ([30],
[51]), adverbs ([37], [55]), as well as frozen expressions, in many languages ([14], [25], [26],

[581, [59], [62], [66], [67], [68]).

Figure 8.1 shows an example of a lexicon-grammar table. The table contains verbs that,
among other definitional properties, do not admit passivization.

151

http://infolingu.univ-mlv.fr

152 CHAPTER 8. LEXICON-GRAMMAR

"i ¥_32NM - DpenDffice.org Calc ol x|
Fichier Editer Afficher Insérer Format Outls Donndes Fenétre Aide x
iA-cE= BRIV LEBER-FlOo - HHHU B I HOREQ D
Py Jarial FlJow =]l 6 I s|l====sMb*%n@|EE 0-9-A-8
Im fig B = Itn accomodate
c|D B FIG|H[T|J|K|L|M|N|OQ|P 2 R 3 a
=
- =
Sl |E s |Fl=
2l |= =&
1| "y <ENT> g| & P g g| ¥ <OPT=Exemple
2l & %’%m?é’wo?ézgs
= I g el P Rl A) .
ir LL A ':L || E &
=111 ol Bl Bl Bl Bl Bl B0 Rl F=2 =2 =3 NN L &
=l =g =l ezt ezt el el e Pl Rl =l B B s i
| 2 | + accepter B + - FFFE Co salonfacceptedyingt personnes
| 3 |-+ accueillir - + L e S Ce salonfaccusillegvingt personnes
| ¢+ | + accuser - + S s i e MeaxGaccuse§s0 kilos
| 5 |+ accuser - S e T R i S S Max§accuse§ses trente ans
| & | + admetire - + L N Ongadmet$50 personnes dans cette salle
| 7 | |+ affecter - + R R S Ces cristauxgaffectentiune forme geomeatrique
| 8 |-+ afficher - + - Ll T e e e Les valeurs ontgaffichesun repli
| 9 | + aimer - + o+ O G e o O La plantefaimegl'eau
| 10 |-+ approcher + -+ Ll o e e e Cette maisonfapprochegles deux millions
| 11 |-+ arpenter - - L R Ce terraingarpenta$30 arpents
| 12 |- |+ atteindre - + o+ - - - - - Waxgatteint§80 kilos
| 13 |+ |+ avoir - + il S S e e e S MaxGag{une soeur+uns voiture+des sous)
| 14 |-+ avoisiner - + o O e o e Ce sackavoisinesles 20 kg,
| 15 |-+ batire + -t t - - - - - La montre§bat§les secondes
| 16 |- |+ cacher - + - EE Son calmegcache${son+une grandelangoisse
17 |+ caler S e e Ce bateaufcalef80 cm -
[T [fheszmm/ [— Ll_l
[Feuile 1/ 1 [Pagestyle_caznm [100% | & | Somme=0

Figure 8.1: Lexicon-grammar Table 32NM

8.2 Conversion of a table into graphs

8.2.1 Principle of parameterized graphs

The conversion of a table into graphs is carried out by a mechanism involving parameter-
ized graphs. The principle is the following: a graph that describes the possible constructions
is constructed manually. That graphs refers to the columns of the table in the form of param-
eters or variables. Afterwards, for each line of the table a copy of this graph is constructed
where the variables are replaced with the contents of the cell at the intersection of line and
the column that corresponds to the variable. If a cell of the table contains the + sign, the
corresponding variable is replaced by <E>. If the cell contains the - sign, the box containing
the corresponding variable is removed, interrupting the paths through that box. In all other
cases the variable is replaced by the contents of the cell.

8.2.2 Format of the table

The lexicon-grammar tables are usually encoded with the aid of a spreadsheet like OpenOf-
fice.org Calc ([57]). To make them usable with Unitex, the tables have to be encoded in
Unicode text format in accordance with the following convention: the columns need to be

8.2. CONVERSION OF A TABLE INTO GRAPHS 153

separated by a tab and the lines by a newline.

In order to convert a table with OpenOffice.org Calc, save it in text format (.cSv extension).
You can then parameterize the output format with a window as shown on Figure 8.2. Choose
"Unicode", select tabulation as column separator and do not set any text delimiter.

Export de texte

Options de champ

Jeu de carackéres IUnicode j

Annuler
Séparateur de champ I-[Tal:u} j E |
Separateur de texte I ﬂ Aide |

[Largeur de colonne fize

Figure 8.2: Saving a table with OpenOffice.org Calc

During the generation of the graphs, Unitex skips the first line, considering that it contains
the headings of the columns. It is therefore necessary to ensure that the headings of the
columns occupy exactly one line. If there is no line for the heading, the first line of a table
will be ignored anyway, and if there are multiple heading lines, from the second line on they
will be interpreted as lines of the table.

8.2.3 Parameterized graphs

Parameterized graphs are graphs with variables referring to the columns of a lexicon-grammar
table. This mechanism is usually used with syntactical graphs, but nothing prevents the con-
struction of parameterized graphs for inflection, preprocessing, or for normalization.

Variables that refer to columns are formed with the @symbol followed by the name of the
column in capital letters (the columns are named starting with A).

Example: @Gefers to the third column of the table.

Whenever a variable takes the value of a + or - sign, the - sign corresponds to the removal
of a path through that variable. It is possible to swap the meaning of these signs by typing
an exclamation mark in front of the @symbol. In that case, the path is removed when there
is a + sign and keeped where there is a - one. In all other cases, the variable is replaced by
the content of the table cell.

The special variable @%s replaced by the number of the line in the table. The fact that its
value is different for each line allows for its use as a simple characterization of a line. That
variable is not affected by an exclamation point to the left of it.

Figure 8.3 shows an example of a parameterized graph designed to be applied to the lexicon-
grammar table 31H presented in figure 8.4.

154 CHAPTER 8. LEXICON-GRAMMAR

(le verbe n*@% ne vérifie pas la propriété de la colonne A)

MOV vers N

Figure 8.3: Example of parameterized graph

f& v_31H - OpenOffice.org Calc =10l x|
Fichier Editer Afficher Insérer Format Outils Données Fentre Aide x
B-eH2RER IV ibB -Flo-0- AUH v HEeBEQI®D |
i b il Bl B 61 sS|l====M|:%5%5"c=[0->-4-]
|\.f31 'I fg Z = | ‘
A E =] EIE &I &I K JIK|JL|M M Oﬂ
k=
=3 =}
o 3 '
ol B = |8 =
1| 8 5 <ENT> = el Bz i <QPT>F
E ol ERE=Y =lE| Bl e ol o fou
AR Fle ElE 2 =
Z|=| @ HREEIEENEE 3
i | ! 513 al=| &= § &
o|lal| = ool o e o | = | O
A AR z|z|zZ|2|Z2| 2| =3 v
2 | - + abandonner e e T e e e o i Paul agabandonnég
3 | - + abuser ST S A S Max§abuses
4 | - |+ |acquiescer -+ FFEEF MWax agacquiesceg(E+de
5 | - + |adouber e e T e e e o i Faulgadoubeg|echecs|
& |- -+ lagioter e N T O s MaxGagiote§sur les chan
7 |+ -+ agoniser S S SN O S SO S S Max§agonise§
8 |- - |+ |archaiser + - k- EFE Cet auteur§archaisefvolc
s | -+ larquer T T e Max a§arquégtoute |a jou
10 - - - arriver e T MWax estGarrivés
i - -+ aermoyer T o e Max§atermoied
12 .+ + |badauder - - - - - + - + - |badaud Marx&hadaudes -
KRN 3 =113 L
[Feuille 1 {1 [Pagestyle_catH [100% | = | Sormme=0

Figure 8.4: Lexicon-grammar table 31H

8.2.4 Automatic generation of graphs

In order to be able to generate graphs from a parameterized graph and a table, first of all the
table must be opened by clicking on "Open..." in the "Lexicon-Grammar" menu (see figure
8.5). The table must be in Unicode text format.

The selected table is then displayed in a window (see figure figure 8.6). If it does not appear

8.2. CONVERSION OF A TABLE INTO GRAPHS 155

Unitex 2.0 - current language is French

Text DELA FSGraph Lexi-::un-Grammar| XAlign Edit Fle Edition Windows Info

Open...
Compile to GRF...
Close

Figure 8.5: Menu "Lexicon-Grammar"

on your screen, it may be hidden by other Unitex windows.

E:V_31H.txt
MO = M-hum| MNO=%-n | Aux=:avoir =ENT= MO estV-ant| MO est¥pp | MOpcluiy NOY de MOpohkhum W sur.. [NI
abando. ..
abuser
acquie. ..
adouber
agioter
agoniser
archalser
Argquer
arriver
AtErmoyer
badauder
haisser
barmbocher
hander

>

[+ [F [+ [[+ [+ [+
L T A A T O A A |
[o A I A A R R O A B AR A A R |

L1 T T T Y Y A A I O
a0 I O A I AR AR B R O R A |
Plrfr+ e rf+rfrfreprfrfrjn

L1 T T Y Y A A O I

LI T A T Y Y A A O O

1 I T I T T I I O A O A B A

-

Figure 8.6: Displaying a table

To automatically generate graphs from a parameterized graph, click on "Compile to GRE..."
in the "Lexicon-Grammar" menu. The window in figure 8.7 shows this.

In the "Reference Graph (in GRF format)" frame, indicate the name of the parameterized
graph to be used. In the "Resulting GRF grammar" frame, indicate the name of the main
graph that will be generated. This main graph is a graph that invokes all the graphs that are
going to be generated. When launching a search in a text with that graph, all the generated
graphs are simultaneously applied.

The "Name of produced subgraphs" frame is used to set the name of each graph that will be
generated. Enter a name containing @%because for each line of the table, @%vill be replaced
the line number, which guarantees that each graph name will be unique. For example, if the

main graph is called "TestGraph.grf " and if subgraphs are called "TestGraph_@%.grf ",
the graph generated from the 16th line of the line will be named "TestGraph_0016.grf "

Figures 8.8 and 8.9 show two graphs generated by applying the parameterized graph of
tigure 8.3 at table 31H.

156 CHAPTER 8. LEXICON-GRAMMAR

Compile Lexicon-Grammar to GRF

Reference Graph {in GRF format}):

||:w|~,r UnitemFrenchIGraphstarametrized_graph.grﬂ

Resulting GRF grammar:

|D:1ruw UnitexiFrenchiGraphstTestGraph.grf

Mame of produced subgraphs:

|D21rl.l1'5-' LnitextFrenciGraphsiTestGraph_@%. orf |

Cancel Compile

Figure 8.7: Configuration of the automatic generation of graphs

Figure 8.10 shows the resulting main graph.

<archaiser V.G=>

MO &tre V-ant

(le verbe n°0007 ne vérifie pas |la propriété de Ia colonne A)

Figure 8.8: Graph generated for the verb archaiser

©

L L

(le verbe n°0011 ne vérifie pas la propriété de la colonne A)

<badauder V> D—| wars <HN> }
NOV vers N

Figure 8.9: Graph generated for the verb badauder

8.2. CONVERSION OF A TABLE INTO GRAPHS 157

TestGraph 0119
TestGraph 0120
TestGraph 0121
TestGraph 0122
TestGraph 0123
TestGraph 0124
TestGraph 0125
TestGraph 0126
— TestGraph_0127 ©
TestGraph 0128
TestGraph 0129

TestGraph 0130
TestGraph 0131

Figure 8.10: Main graph referring to all the generated graphs

158 CHAPTER 8. LEXICON-GRAMMAR

Chapter 9

Text alignment

The principle of text alignment is simple: aligning two (or more) texts, one supposed to
be the source, and the other(s) supposed to be its translation(s). The alignment is made at
the sentence level, because word alignment is not possible yet, and certainly not relevant.
Then, one can look for an expression A in one of the texts and look for its translations in the
sentences aligned with those containing occurrences of A.

To include such a functionality into Unitex, Patrick Watrin integrated the Open Source text
alignment tool XAlign, developed at the LORIA ([52]). In this chapter, we will explain how
to use the alignment module. The reader interested in details about the integration of XAlign
can consult [23] or [60], and [70] for an illustration of what can be done with this module.

9.1 Loading texts

First, you need to select your 2 texts. To do that, go into "XAlign>Open files. ..", and you will
see the frame shown on Figure 9.1. You provide texts under two formats: raw unicode text
(as you do for your corpus) or TEI-encoded texts (an XML format; see [41]). In the last text
field, you can select a XML alignment file, if you have already built one. If you select a raw
text, Unitex will need to build a basic TEI version of it (for more details, see section 11.32
about the XMLizer program). So, when you click on "OK", you will be asked to provide
a XML file name as shown on Figure 9.2. Then, Unitex builds the XML versions of your
texts, if needed, and displays the frame shown on Figure 9.3. As you can see, each text is
presented as a list, each cell representing a sentence.

159

160 CHAPTER 9. TEXT ALIGNMENT

XAlign
Source text

Target text

Alignment file {optional)

Figure 9.1: Text alignment selection frame

Xalign
Source text

|D:1ru1~,f LInitexiF renchiCorpusid funtana-fr i | SBt

o x|
Dty '

® Your source file is a 1zt one. Please select the
Alignr destination file to be used by XAlign {TEl format).

’: OK

| OK || Cancel |I

Figure 9.2: Warning about raw texts

9.2. ALIGNING TEXTS 161

D:iby Unitex X Alignfuntana.xml |
- Je wous demande pardon, & cer scuze, stimatd doamna, o nu pot -
= chere madame, de ne pas =5 v rdspund in limha dumneavaastra. =

p‘:'::‘v‘:'“i vous repondre dans Sint probabil sigura persoand de pe

[FObrE - Sngue. aceastd insuld cireia i s-a gters din 1

& suis sans doute, sur mermorie lumea de dincolo de mare.

cette 1le, la seule o 2

personne qui ait oublie la '_marea' - - -

héonire df oubre—ter. . Siinsulele indepartate pierdute la 3

a2lih ! la mer. LEana orzontului
Et ces iles, la-bas on Fard de veste vintul se pravale dinspre
- 31, a : ot si so frnbiare S mantri o oS Staria hl
@ All sentences/Plain text All sentences/Plain text ®
_) Matched sentences Matched sentences
i All sentencesHTML All sentences HTML
1 Aligned with target concordance Aligned with source concordance @
Locate... | ‘ Clear alignment | Align | Save alignment Save alighment as... | | Locate...

Figure 9.3: Text alignment frame

9.2 Aligning texts

Once you have loaded your texts, you can align them by clicking on the "Align" button.
You will be asked to provide the name of the XML file that will contain all the information
about the alignment. Then, Unitex launches the XAlign program and you will visualize the
alignment under the form of red links between aligned sentences, as shown on Figure 9.4.

You can edit the alignment links with the mouse. Clicking on a link removes it. To add a
link (or remove it, if it already exists), click on one sentence (in the text you want, source or
destination), and then move your mouse over the corresponding sentence in the other text.
The link about to be added will appear in yellow, as shown on Figure 9.5. When you click,
the link is actually added and becomes red. When you have made all your corrections, you
can save your modified alignment using the "Save alignment" and "Save alignment as..."
buttons.

An interesting feature of XAlign is that it is reentrant. It means that you can take an existing
alignment as a set of mandatory links in input of the alignment process. This can be useful if
you want to work with cognates. For more details about cognates and XAlign, see discussion
in [60].

162 CHAPTER 9. TEXT ALIGNMENT

Dty Unitex' ¥ Alignfuntana.xmi

«| 78Jp’entre-déchirent - Me incapatindm sé le venardm pe -
n’ecrivez pas cela, s’il amindoud in timp ce ele se devord
= [rous plait; reciproc - nu scrieti asta, va rog, cineva =
on pourrait me le ar putea & ma tragi la rAspundere 76
f9|reprocher—. intr-o bund zi.

Mon je ne suisz ici que - " - -
¢ 1 MU, n-am venit decit de citeva minute, cel

depuis gquelques minutes, un # u i
80 quart dfheure tout au plus. mult un sfert de ora. -

r-am comandat nimic, va agteptam pe 78
bl o wioi ves crewemede o _1 Hurnnesvoastrs, il
@ All sentences/Plain text All sentences/Plain text @
' Matched sentences Matched sentences
1 All sentencesHTML All sentences HTML
) Aligned with target concordance Aligned with source concordance ()

Locate... | ‘ Clear alignment | Align | Save alignment Save alighment as... | | Locate...

Figure 9.4: Aligned sentences

Dty Unitex ¥ Align'funtana.zml : i |
o] [ERCEEIois Ia TErre Ferme. || i Coriinentl, mumit e
=| 11|0ui, e=’était 17 Italie. \ rerne Terra FErma. =
12 Comtoe wous, madame, comne \ alia, 1
OIS .
O comime Altea, ma chére,
Bleonme 2itea. \
Hom, nous &rions encore au A cay ca Altea, doamna mea, ca Altea. 13
bercail, il n'y a pas Find maiieri Leagdnul civilizatiei
longtemps: les linguistes , noastre: lingvigtii sustin chiarci 14
14|dizent méme gque nous apartinerm unei arii italice.
bl lannartenons & faire fuici £ R Twealois B ey mioafedialii il
@ All sentences/Plain text All sentences/Plain text &
) Matched sentences Matched sentences
2 All sentencesHTML Al sentencesHTML O
1 Aligned with target concordance Aligned with source concordance @
Locate... | ‘ Clear alignimert | Align | Save alignment Save alignment as... | | Locate...

Figure 9.5: Adding a link

9.3. PATTERN MATCHING 163
9.3 Pattern matching

You can perform pattern matching queries on any of your texts, by clicking on its "Locate"
button. The first time you click, Unitex will ask you to build a working version of your text,
as shown on Figure 9.6. This text version will be preprocessed according to the text language
(in particular, the default dictionaries will be applied).

WARNING: the text language is determined on the basis of the path name. For instance,
if your text file is located in .../MyUnitex/Klingon/Corpus , the language will be con-
sidered to be Klingon . So, if your text is not in a subdirectory of your personal Unitex
directory, its language will not be identified.

- Unitex needs a text version of your ®ml text in order to locate
-
expression. Do you agree to build and preprocess

D'y Unitex'FrenchiCorpus'a funtana-fr_xaliontxt 7

Figure 9.6: Unitex needs to build a working version of your text

¥ilign Locate Pattern
Locate pattern in the form of:

i Regular expression:

i Graph: Set

Index

i_! Shortest matches
i@ Longest matches
i All matches

Search limitation

w Stop after | 200 matches SEARCH
) Index all utterances in text

Figure 9.7: Pattern matching frame for aligned texts

Once Unitex has created and preprocessed the working version of the text, you can perform

164 CHAPTER 9. TEXT ALIGNMENT

your query using the frame shown on Figure 9.7. As the matching operation is performed
by the Locate program, you can perform the same queries than you would perform on a
normal corpus. The only restriction is that you cannot exploit the outputs of your grammars,
if any.

For instance, let us lookup for the pattern <manger> (to eat) in the French text of our ex-
ample. First, we see no result, because we have not changed yet the display mode for the
French text, which by default is "All sentences/Plain text". Clicking on "Matched sentences",
we only see sentences that contain occurrences, highlighted as usual in blue, as shown on
Figure 9.8. Clicking on "All sentences/HTML" will display all sentences, highlighting oc-
currences in blue.

DMy Unitex XAlignfuntana.xml °

-~ nais nous assassinons & Degi cregting, nu ne-arm pierdut -
tour de bras, commwe nous bineinteles indeminarea dach e cazul 58

qpg [UERUEONS, COMIE nOUS G (U, dar noi asasindm cu atita (106 [

L CeSplrons, commne nous nongalantd, de parcd am minca, am =

acconplissons les gestes
les plus quotidiens.

Aprés avoir mandgé le sien,
l"un dfentre nous

respira, am face un gest de zi cu Zi.

Si apoi recurgern la cdintd gila tot ce ne
oferd doctrinele noastre filosofice, 107
religioase gipolitice,

commengait @ o« Tante, - —

donne-moi le dessus, =7il sidacd toate astea nu sintindeajuns,
| 3edlre nlair 2 Elle avern siun fel de reminiscentd de regret|108 |
1 Al sentences/Plain text All sentences/Plain text @
@ Matched sentences Matched sentences O
i All sentencesHTML All sentencesHTML
1 Aligned with target concordance Aligned with source concordance)

Locate... | ‘ Clear alignment | Align | Save alignment Save alignment as... | | Locate...

Figure 9.8: Displaying matched sentences

To exploit parallel texts, it is then interesting to retrieve sentences aligned with matched
sentences. This can be done by selecting for the other text, the display mode "Aligned with
source concordance". In this mode, Unitex filters sentences that are not linked to matched
sentences in the source text. So, it is easy to lookup for an expression in one text and to find
the corresponding sentences in the other, as shown on Figure 9.9.

9.3. PATTERN MATCHING 165

D:iy Unitex ¥ Alignifuntana.xml :

- ais nous assassinons a sugrumarn, dar noi asasindrm cu atita |[106 |~
tour de bras, comome nous nongalantd, de parcd am minca, am
100 [OANCE0ns, CONmeE nous respira, am face un gest de zi cu 70

respirons, comme nous
acconplissons les gestes
les plus quotidiens.

Cupa ce igi manca poria, unul dintre noi
mcepes ;= Tanti, d&-mi, te rog, partea
e deasupra | » Matuga detaga partea
de sus, ornatd de zahar gi bucati de 355
ciocolatl, gii-o dadea, ea
multurnindu-se s8-3i lingd degetele

Lprés awvoir mandgé le sien,
1"un d'entre nous
comtmehgalilt @ o« Tante,
donne-moi le dessus, 5711

| aralie nlait 9 » Flle murdare de zah&r, -
' All sentences Plain text All sentences/Plain text
(@ Matched sentences Matched sentences
_ All sentencesHTML All sentences HTML
1 Aligned with target concordance Aligned with source concordance| (®
Locate... | ‘ Clear alignment | Align | Save alignment Save alighment as... | | Locate...

Figure 9.9: Displaying matched sentences and sentences they are linked to

166 CHAPTER 9. TEXT ALIGNMENT

Chapter 10

Compound word inflection

MULTIFLEX is a multi-lingual Unicode-compatible platform for automatic inflection of multi-
word units (MWUs), also known as compound words. It is meant in particular for the creation
of morphological dictionaries of MWUs. It implements a unification-based formalism ([64])
for the description of inflectional behavior of MWUs which supposes the existence of a mod-
ule for the inflectional morphology of simple words.

In this chapter, we present the notion of multi-word unit and we describe the method to
inflect them with MULTIFLEX.

This chapter is derived from the MULTIFLEX manual, written by Agata Savary, the author
of MULTIFLEX.

10.1 Multi-Word Units

Multi-word units (MWUs) encompass a bunch of hard-to-define and controversial linguistic
objects (cf. [39], [18]). Their numerous linguistic and pragmatic definitions ([5], [22], [51],
[4], [34], [3], [65], [35], [13]) invoke three major points:

e they are composed of two or more words

¢ they show some degree of morphological, distributional or semantic non-compositionality

¢ they have unique and constant references
However, the basic notions (a word, a reference, the non-compositionality) and measures
(degree of non-compositionality), used in those definitions are themselves controversial.
Pragmatically, we consider a MWU as a contiguous sequence of graphical units which, for

some application-dependent reasons, has to be listed, described (morphologically, syntacti-
cally, semantically, etc.) and processed as a unit.

167

168 CHAPTER 10. COMPOUND WORD INFLECTION
10.1.1 Formal Description of the Inflectional Behavior of Multi-word Units

The main issue in MULTIFLEX is the inflectional morphology of MWUs. This phenomenon
has been linguistically analyzed for English, Polish and French in [63].

Obviously, a reliable inflection processing of single words is a necessary condition for the
inflection processing of MWUs. However, this condition is rarely a sufficient one. For ex-
ample, in order to obtain the plural form of

e battle cry
e battle royal

e Dbattle of nerves

in English, not only do we need to know how to generate the plural of battle, royal and cry,
but also to know how different inflected forms of these constituents combine:

e battle cries
e battle royals, or battles royal,

e battles of nerves
but not

* battles cries
* battles royals

* battles of nerve_

Formally, a fully explicit description of the inflectional paradigms of MWUs requires an
answer to the following questions:

e What is the MWU'’s morphological class (noun, adjective, etc.) and thus what inflec-
tion categories (number, gender, case, etc.) are relevant to it? [61] argue for a mor-
phosyntactically motivated definition of morphological classes: a morphological class
should fully determine the inflection categories the word inflects for as well as those
that are lexically fixed for the word, e.g. in Polish, a noun has a gender and inflects for
number and case.

e What are the exceptions to the inflection categories determined above? E.g. in Polish

— wybory powszechne
(general election)

is a compound noun but it doesn’t have a singular form (although its head word
wybory does).

10.1. MULTI-WORD UNITS 169

e What are the inflectional characteristics (base form, morphological class, inflection
paradigm, etc.) of the single constituents of the MWU? E.g. in French, porte (door)
is an uninflected verb in

— porte-avion
(aircraft carrier)

while it is an inflected noun in

— porte-fenétre
(French window)

which takes an s in plural
— portes-fenétres

e How should we combine the inflected forms of the single constituents in order to gen-
erate the inflected forms of the whole compound? E.g. to inflect battle of nerves and
battle cry in number we need to inflect the first and the last constituent, respectively.

10.1.2 Lexicalized vs. Grammar-Based Approach to Morphological Description

A previous study ([63]) has confirmed the status of MWUs as units on the frontier between
morphology and syntax. Their compound structure suggests productivity which can hardly
be processed without a grammar-based approach. However some of their morphological,
syntactic and semantic properties exclude their processing merely in terms of the properties
of their constituents. For example, in both examples below:

e chief justice

e lord justice

there are few automatically accessible hints indicating that the former one is morphologi-
cally a standard English Noun Noun phrase taking an s at its last constituent in plural, while
the plural of the latter has three variants:

e chief justices

e lord justices, lords justice, lords justices

Thus, at least one of the above examples has to be considered as lexicalized in order for the
automatic morphological processing to be reliable.

MULTIFLEX implements a unification-based formalism for the description of the inflec-
tional behavior of MWUs presented in [64]. Its features are described in section 10.2. This
formalism requires the description to be fully lexicalized: each MWU listed in a dictionary

170 CHAPTER 10. COMPOUND WORD INFLECTION

obtains a code (e.g. NC_NN, NC_NN2, etc.) representing its inflectional paradigm, for in-
stance, in the DELA-like format:

aircraft carrier(carrier.N1:s), NC_NN
chief justice(justice.N1:5), NC_NN
lord(lord.N1:s) justice(justice.N1:s), NC_NN2

However, only a few codes, which can be seen as a phrase grammar of the language, repre-
sent the big majority of all MWUs. Thus, the lexicalization of the description mainly consists
of pointing out the MWUs which respect or don’t respect the “grammar”.

10.2 Formalism for the Computational Morphology of MWUs

In [64] was proposed a formalism for describing the morphological paradigms of MWUs.
It has been based on studies of English, Polish and French, and further tested for Serbian
[44]. It consists of a language-independent kernel which is to be completed by a set of
morphological elements characteristic for the given language. In this section we give an
in-depth description of this formalism.

10.2.1 Morphological Features of the Language

When processing MWUs of a given language we have to provide some general data about
that language. These data are included in two textual files.

The Morphology.txt tile gives the morphological classes (noun, adjective,...), categories
(number, gender, case,...) and values (masculine, feminine, singular, nominative,...). Con-
sider the following example:

Polish

<CATEGORIES>

Nb: sing, pl

Case: Nom, Gen, Dat, Acc, Inst, Loc, Voc

Gen: masc_pers, masc_anim, masc_inanim, fem, neu
<CLASSES>)

noun: (Nb,<var>),(Case,<var>),(Gen,<fixed>)
adj:(Nb,<var>),(Case,<var>),(Gen,<var>)

adv:

The above file says that, for Polish, three inflection categories are considered: the number
(ND), the case (Case) and the gender (Gen). Each category is given an exhaustive list of its
possible values (singular and plural for number, etc.). Further, each morphological class is
described with respect to the categories it inflects for, and those that are fixed for it. For
example, a noun inflects for number and case, and has a (fixed) gender. The presence of

10.2. FORMALISM FOR THE COMPUTATIONAL MORPHOLOGY OF MWUS 171

such a file is necessary if we wish to express the fact that a certain word inflects for number,
gender or case, without having to explicitly enumerate each time which inflectional values
(singular, plural, masculine, etc.) it can take.

Similarly, for French the Morphology.txt file may be as follows:

French

<CATEGORIES>

Nb: s, p

Gen: m, f

<CLASSES>

noun: (Nb,<var>),(Gen,<var>)
adj:(Nb,<var>),(Gen,<var>)
adv:

However, in the existing systems for computational morphology, such a description of classes,
categories and values is not always present. For example, according to the DELA conven-
tions ([20]) the morphological values of each simple word are plain sequences of characters
(e.g. ms for masculine singular) without any explicit mention of their corresponding cate-
gories. In order for the program to be compatible with such systems, we use a list (contained
in a file called Equivalences.txt) that describes which foreign inflectional feature corre-
sponds to which category-value pair in our description. For example, the following lists:

Polish French

s: Nb=sing s:Nb=s
p: Nb=npl p:Nb=p
M : Case = Nom f:Gen=f
D : Case = Gen m:Gen=m
C : Case = Dat

B : Case = Acc

I: Case = Inst

L : Case = Loc

V :Case =Voc

o : Gen = masc_pers

: Gen = masc_anim

: Gen = masc_inanim
:Gen = fem

: Gen = neu

3 = 3w

describe the equivalences between the previous Morphology.txt file for Polish and French,
respectively, and the single-character features that might be used in DELA dictionaries for
those languages under Unitex.

172 CHAPTER 10. COMPOUND WORD INFLECTION
10.2.2 Decomposition of a MWU into Units

The notion of an elementary graphical unit is controversial and varies across languages and
NLP systems. For instance in nitex an alphabet, i.e. a set of characters, is first defined for
each language. Each non alphabet character is called a separator. A graphical unit is then
either a single separator (usually a punctuation mark, a digit, etc.) or a contiguous sequence
of alphabet characters (e.g. aujourd’hui in French consists, according to this definition, of 3
units). In other systems a graphical unit may contain a punctuation mark (e.g. c’est-a-dire),
or a limit between two graphical units may occur within a sequence of alphabet characters
(widziat|bym, cf [61]).

This variety of possible definitions of a graphical unit obviously has an impact on the def-
inition of a multi-word unit. However, we wish our formalism for MWUs to be adaptable
to different morphological systems for “simple words”. Thus, the definition of a graphical
unit is a parameter to our system: each time MULTIFLEX is used with an external module
for single units, this module has to decide how a sequence of characters is to be divided into
units.

In our formalism, units are referred to by numerical variables $1, $2, $3, etc. For example
with Unitex, a sequence like

o Athens 04

consists of five constituents referred to in MULTIFLEX as:

$1 = Athens
$2 = <space>
$3="

$4=0

$5=4

Each simple unit subject to inflection within a MWU has to be morphologically identified.
The identification means providing sufficient data so that any inflected form of the same
item may be generated on demand. For instance in:

e mémoire vive

we need to know that vive is the feminine singular form of a lemma, and we have to be able
to generate the feminine plural form of the same lemma, vives. We suppose that the external
module for single units working with MULTIFLEX is responsible for such identification and
generation of inflected forms of single units.

In Unitex, the generation of forms is strongly inspired by the DELA system ([20]). In order
to be able to generate one or more inflected forms of a word we have to know:

e its lemma

10.2. FORMALISM FOR THE COMPUTATIONAL MORPHOLOGY OF MWUS 173

e its inflection paradigm (called inflection code)

e the inflection features of forms to be generated

Thus, within the Unitex/MULTIFLEX interface the description of a single unit is done as
follows:

o vive(vif.A54:fs)

where A54 is the inflection code of vif and fs is the DELA-style description using morpho-
logical features appearing in Equivalences.txt file (cf section 10.2.1). Knowing that vive
is a feminine singular form of vif we may demand the generation of its plural without hav-
ing to explicitly indicate the plural of which gender we are interested in: since we only wish
to change the number, the gender remains as in the original word vive, i.e. feminine.

10.2.3 Inflection paradigm of a MWU

The morphological description of MWUs in our formalism is inspired by the DELA system
in the sense that:

e cach MWU is attributed an inflection code

e a MWU'’s inflection code explicitly describes each inflected form of a MWU in terms of
actions to be performed on the lemma, and inflectional features to be attached to each
form

In the Unitex-interfaced version, MULTIFLEX uses inflection codes represented as Unitex
graphs compiled into the .fst2 format. For example, Figure 10.1 contains the inflection
graph for battle royal.

e.g. battle rovyal

<§2> |}

Figure 10.1: Inflection graph for battle royal

According to the Unitex convention, three constituents are present in battle royal: battle re-
ferred to as $1, a space referred to as $2, and royal referred to as $3. If a variable appears alone
in a box the constituent has to be the same as in the lemma of the MWU. For instance, <$3>
in the uppermost path means that the unit royal is to be recopied as such. If the variable is

174 CHAPTER 10. COMPOUND WORD INFLECTION

accompanied by a set of category-feature equations, the constituent has to be inflected to the
required form. E.g. <$3:Nb=p> means that the plural form of royal is needed.

In order to generate all inflected forms of the MWU we have to explore all the paths existing
in the graph. Each path starts at the leftmost right arrow and ends at the final encircled
box. Each time we come to a node we perform the action contained in the box (a recopy
or an inflection of a constituent) and we accumulate the morphological features contained
under the box. The total of the accumulated node outputs should result in the complete
morphological description of the inflected form.

For example in the graph on Figure 10.1 if we follow the intermediate path shown on Fig-
ure 10.2:

<$3 Nb=p=

=Nb=p=

Figure 10.2: One path of the inflection graph for battle royal

we recopy battle ($1) and the space ($2), and we put royal into plural, which yields the plural
form battle royals of the whole MWU. As the graph on Figure 10.1 contains three different
paths the whole set of inflected forms generated for battle royal would be:

battle royal <Nb=s>
battle royals <Nb=p>
battles royal <Nb=p>

After rewriting these forms into the Unitex DELACF format we obtain the following entries:

battle royal,battle royal.N:s
battle royals,battle royal.N:p
battles royal battle royal.N:p

Note that this description is independent of the way we generate inflected forms of single
words because we suppose that this problem is handled by an existing external morpho-
logical system for single words. In the Unitex-interfaced version of MULTIFLEX, we would
generate the plural of royal due to the fact that its lemma is known as having the inflection
code N1 represented on Figure 10.3.

In an inflection paradigm of a MWU, each constituent is accompanied only by those mor-
phological categories which it should inflect for. The categories that remain unchanged
don’t have to be mentioned. For instance, in bateau-mouche in French (a Paris-style river-
boat), both noun constituents have their gender set but they inflect in number: bateaux-
mouches. That’s why on Figure 10.4 containing the inflection graph for this MWU, the cor-
responding boxes contain value assignments for number only. Note that both constituents
may or may not agree in gender, here bateau is masculine while mouche is feminine.

10.2. FORMALISM FOR THE COMPUTATIONAL MORPHOLOGY OF MWUS 175

Figure 10.3: Inflection graph N1 for simple words inflecting like royal

<$1= H <2 [:>—| <§3>)
=Gen=m;Nbh=s=

<§1Nb=p>)] <§2>) <$38b=p>

=Gen=m; Nb=p=

Figure 10.4: Inflection graph for MWUs inflection like bateau-mouche

Unification Variables

An important feature of our formalism are unification variables. They are introduced by the
dollar sign followed by an identifier which may contain any number of characters, e.g. $g1,
$num_10, $c, etc. For example, Figure 10.5 shows a graph roughly equivalent! to the one
on Figure 10.4 in the sense that it allows to generate the same inflected forms for the same
MWUs. However, this time a single path represents both the singular and the plural form.
That is possible due to the unification variable $n which may be instantiated to any value
of the domain of its category (Nb), here $n=s or $n=p. The instantiation is unique for all
elements on a path: if we fix the singular value for the first constituent the same value has
to be set for the third one, as well as for the whole MWU. Similarly, if we fix $n to p while
processing the first node it has to remain p until the end of the path.

_[>.| <$1 Mbh=fn= £>-| <§3= t}—| <$3 Mbh=fn= t}—b—@

=Gen=m;Nb=%$n>

&.g. bateau-mouche

Figure 10.5: Inflection graph for bateau-mouche with a unification variable

The inflection graph on Figure 10.5 applies to most kinds of French compounds of types
Noun Noun and Noun Adjective (bateau-mouche, ange gardien, circuit séquentiel, etc.) which
are of masculine gender. That is because the output of the final node contains Gen=m. For
all compounds of the same types but of feminine gender, e.g. main courante, moissoneuse-
batteuse, etc., a new graph has to be created which is identical to Figure 10.5 up to the final
output containing <Gen=f;Nb=$n>. That is not very intuitive since circuit séquentiel and main

'Up to the case when single constituents appearing in the lemma of a MWU are already in plural, as in
cross-roads.

176 CHAPTER 10. COMPOUND WORD INFLECTION

courante inflect in the same way;, in the sense that in both cases we need to put the first and
the last constituent to plural in order to obtain the plural form of the whole MWU.

That’s why another type of instantiation for unification variables has been introduced. It is
accompanied by a double equal sign (==) (as opposed to the single equal sign = as for $n on
Figure 10.5). If a unification variable is assigned to a category by this symbol then it inherits
the value of this category from the corresponding constituent, as it appears in the lemma
of the MWU. For instance, Figure 10.6 contains a graph describing the inflected forms for
both masculine and feminine French compounds of types Noun Noun and Noun Adjective. Its
tirst box contains the double assignment of the gender to variable $g which means that this
variable has its value fixed to the gender value of the first constituent. For bateau-mouche it is
fixed to masculine because bateau is masculine while for main courante it is fixed to feminine.

—D—{ <1 Gen==%g;Nb=fn> E}~| <§2= t}—l <$3 Mb=$n> [}—D—@

=Gen=$g;INb=$n>

&.g. bateau-mouche

Figure 10.6: Inflection graph for bateau-mouche with two types of instantiation

Note that the double assignment, contrary to the single assignment, no longer means that
the variable is to be instantiated to all values of the corresponding category domain. It has
a unique value all through the path on which it appears, even if it is concerned by another,
single, assignment somewhere else on the same path. For example, on Figure 10.6 the final
output contains Gen=$g but $g may only take one value determined by the first constituent.

Unification variables are particularly useful in highly inflected languages. For example, in
Polish most nouns inflect for number (2 values) and case (7 values), which implies at least
14 different forms (if variants and syncretic forms are distinguished). This score is even
higher for adjectives which inflect for number, case and gender (3 till 9 values, according to
different approaches). If no unification mechanism were available each of these numerous
forms would have to be described by a separate path in the graph. The use of unification
variables allows to dramatically reduce the size of the graph (to one path only in most cases).

For example, Figure 10.7 shows the graph for Polish compounds that inflect like pranie mézgu
(brainwashing) or powoZenie koniem (horse coaching). Their third constituent has its case fixed
(most often to genitive or instrumental). Their first and third constituent inflect in number
independently from each other (pranie mézgéw, prania mézgu, prania mézgéw, etc.). That’s
why either of them has a different unification variable for number inflection ($n1 and $n2).
The three variables $n1, $n2, and $¢ may be instantiated to any value from their respective
domains ({sing,pl}, {sing,pl}, and {Nom,Gen,Dat,Acc,Inst,Loc,Voc}; cf Morphology.txt file in
section 10.2.1). The whole MWU inherits its gender, number and case from its first con-
stituent. Its gender is fixed (Gen==$g) while its number and case are instantiated to any of
the 14 possible combinations. The single path in this graph would have to be replaced by 28
different ones if the use of unification variables were not allowed.

10.2. FORMALISM FOR THE COMPUTATIONAL MORPHOLOGY OF MWUS 177

—D—| <$1:Gen==%g Nb=$nl.Case=fc> £>-| <§2= £}-| <3 Nb=fn2> t}—@

<Gen=$g;INb=$nl; Case=5c> &.g. prafie mozgn

Figure 10.7: Inflection graph for pranie mozgu

Orthographic and Other Variants

Our formalism allows for any constituent to be omitted or moved within different inflected
forms if there is a need for that. It also enables the insertion of extra graphical units which do
not appear in the base form of the MWU. This allows to extend an inflection paradigm to a
more general variation description, e.g. orthographic or, partly, syntactic variation (see [47]
for an extensive study on term variation). For example, in English, student union appears
in corpus also as students union, and students’ union, in singular or plural in each case. Our
formalism allows to include both types of variation in one description (cf. Figure 10.8).

e.g. student union

e

<Nb=%n>

Figure 10.8: Inflection graph for student union

Figure 10.9 shows an example in which, additionally to the insertion of a new constituent,
the order of constituents may be reverted. The upper path allows to generate e.g. birth date
and birth dates while the lower one represents the syntactic variants of the previous forms:
date of birth and dates of birth.

e.g. bitth date

<$1= £>—| <$2> E>—| <3 Nb=Fn> & t} @
Nb=$
e Ham Malas pas)

Figure 10.9: Inflection graph for birth date

Interface with the Morphological System for Simple Words

MULTIFLEX is an implementation of the formalism for the inflectional morphology of MWUs
presented above. It supposes the existence of a morphological system for single words
which satisfies the following interface constraints:

e For a given sequence of characters it returns its segmentation into indivisible graphical
units (tokens) (cf section 10.2.2). For instance, in case of Unitex” definition of a token,

178 CHAPTER 10. COMPOUND WORD INFLECTION

sequence Athens ‘04 is to be divided into 5 tokens:

”Athe;’ls /04// _ (//AthenS//,// II,II///,IIO//,II4//)

e For a given simple inflected form it returns all its possible morphological identifica-
tions. A morphological identification has to allow the generation of any other inflected
form of the same lemma on demand by the same morphological module. For instance,
in case of Unitex, the form porte yields 7 morphological identifications (6 of which are
factorized with respect to their inflection code):

porte — ((porte,porte.N21:s),(porte,porter.V3:P1s:P3s:515:53s:Y2s))

In case of ambiguity, as above, the proper identification has to be done, for the time
being, by the user during the edition of the MWU lemma to be inflected (in future, this
task will be partly automated). For instance, in case of porte-fenétre the first constituent
has to be identified by the user as a noun rather than a verb.

e For a given morphological identification and a set of inflectional values it returns all
corresponding inflected forms. For instance, in Polish, if the instrumental forms of the
word reka are to be produced, three forms should be returned: rekq (singular instru-
mental), rekami and rekoma (two variants of the plural instrumental).

(reka,<Case=Inst>) — ((rgka,<Nb=sing;Gen=fem;Case=Inst>),
(rekami,<Nb=pl;Gen=fem;Case=Inst>),
(rekoma,<Nb=pl;Gen=fem;Case=Inst>))

Such definition of an interface between the morphological system for simple words and
the one for MWUs allows a better modularity and independence of one another. The latter
doesn’t need to know how inflected forms of simple words are described, analyzed and gen-
erated. It only requires a set of correct inflected forms of a MWU'’s constituents. Conversely,
the former system knows nothing about how the latter one combines the provided forms to
produce multi-word sequences.

10.3 Integration in Unitex

One of the major design principles of MULTIFLEX is to be as independent as possible of
the morphological system for simple words. However, the existence of such a system is
inevitable because MWUs consist of simple words which we need to be able to inflect in
order to inflect a MWU as a whole.

In its present version, MULTIFLEX relies on the Unitex simple word inflection system:

e MULTIFLEX uses the same character encoding standards as Unitex, i.e. Unicode 3.0.

e MULTIFLEX uses the Unitex’ graph editor for the representation of inflectional paradigms
of MWUs.

10.3. INTEGRATION IN UNITEX 179

e MULTIFLEX admits similar principles of the morphological description as those ad-
mitted in the DELA system implemented in Unitex. Thus, an inflection paradigm is a
set of actions to be performed on the lemma in order to generate its inflected forms,
and of corresponding inflection features to be attached to each generated form.

e MULTIFLEX allows to extend the Unitex dictionary treatment to the inflection of a
DELAC (DELA electronic dictionary of compounds) into a DELACF (DELA electronic
dictionary of compounds’ inflected forms). The format of the generated DELACF is
compatible with Unitex, while the format of the DELAC is novel but inspired from the
one of the DELAS (DELA electronic dictionary of simple words).

The following sections present, for several languages, complete examples of a DELAC into
DELACEF inflection within the MULTIFLEX/ Unitex interface.

10.3.1 Complete Example in English

Let us assume that the description of morphological features of English is given by the fol-
lowing Morphology.txt file:

English

<CATEGORIES>

Nb:s,p

<CLASSES>

noun:(Nb,<var>)

adj:

and that the equivalences between these features and their corresponding codes in DELA
dictionaries are given by the following Equivalences.txt file:

English
s : Nb=s
p : Nb=p

Consider the following sample English DELAC file:

angle(angle.N1:s) of reflection,NC_NXXXX

Adam’s apple(apple.N1:s),NC_XXXXN

air brake(brake.N1:s),NC_XXN

birth date(date.N1:s),NC_NN_NofN

criminal police,NC_XXXinv

cross-roads,NC_XXNs

head(head.N1:s) of government(government.N1:s),NC_NofNs
notary(notary.N3:s) public(public.N1:s),NC_NsNs

rolling stone(stone.N1:s),NC_XXN

student(student.N1:s) union(union.N1:s),NC_Ns’'N

180 CHAPTER 10. COMPOUND WORD INFLECTION

The corresponding inflection graphs N1 and N3 for simple words are represented on fig-
ures 10.10 and 10.11 while those for compounds are shown on figures 10.12 through 10.20.

The DELACEF dictionary resulting from the inflection, via MULTIFLEX, of the above DELAC
is as follows:

angle of reflection,angle of reflection.NC_NXXXX:s
angles of reflection,angle of reflection.NC_NXXXX:p
Adam’s apple,Adam’s apple.NC_XXXXN:s

Adam’s apples,Adam’s apple.NC_XXXXN:p

air brake,air brake.NC_XXN:s

air brakes,air brake.NC_XXN:p

date of birth,birth date.NC_NN_NofN:s

dates of birth,birth date.NC_NN_NofN:p

birth date,birth date.NC_NN_NofN:s

birth dates,birth date.NC_NN_NofN:p

criminal police,criminal police.NC_XXXinv:p
cross-roads,cross-roads.NC_XXNs:s
cross-roads,cross-roads.NC_XXNs:p

heads of government,head of government.NC_NofNs:p
heads of governments,head of government.NC_NofNs:p
head of government,head of government.NC_ NofNs:s
notaries public,notary public.NC_NsNs:p

notary public,notary public.NC_NsNs:s

notary publics,notary public.NC_NsNs:p

rolling stone,rolling stone.NC_XXN:s

rolling stones,rolling stone.NC_XXN:p

students’ union,student union.NC_Ns'N:s

students’ unions,student union.NC_Ns'N:p

students union,student union.NC_Ns'N:s

students unions,student union.NC_Ns’N:p

student union,student union.NC_Ns'N:s

student unions,student union.NC_Ns'N:p

Figure 10.10: Inflection graph N1 for En- Figure 10.11: Inflection graph N3 for English
glish simple words simple words

10.3. INTEGRATION IN UNITEX 181

—— <s1 908> [<s2> [H{H:b [H <$4> [<s5> [}—D—@

e.g. angle of reflection <Nb=$n>

Figure 10.12: Inflection graph NC_NXXXX for English MWUs

D| e [H <$2= L’;—| <$3> [}-| <§d= [}-| <$5 Mb=fn> [}—D—@

=Nb=%n=

g.g. advance booking office

Figure 10.13: Inflection graph NC_XXXXN for English MWUs

— <s1> |H <s2>] <s3200=40> 0
e.g. ai brake <Nb=%$n>

Figure 10.14: Inflection graph NC_XXN for English MWUs

e.g. birth date

<$1> [H <§2> [H <s300=$0>

<§3Nb=fn> [<$2> <§2> [<$1>)

Figure 10.15: Inflection graph NC_NN_NofN for English MWUs

[5{$1} <$2> |+ <§3> [

=Nb=p=

g.g criminal police

Figure 10.16: Inflection graph NC_XXXinv for English MWUs

M HE)H—@

=<Nb=%n=

E.B. CIOEE-104 da

Figure 10.17: Inflection graph NC_XXNs for English MWUs

182 CHAPTER 10. COMPOUND WORD INFLECTION

e.g head of government

<$1> [H<§2> [H <83> | <84> [<85> |

=Nb=s=
<$1:Nb=p> H::E:» E>-| <$3= E>—| <$4= H <$5Mb=4n> |)

<Nb=p=

Figure 10.18: Inflection graph NC_NofNs for English MWUs

e.g. battle royal

<§2>)

e.g. student union

et)

<Nb=$%n=

»‘ﬁ!

Figure 10.20: Inflection graph NC_Ns'N for English MWUs

10.3.2 Complete Example in French

Let us assume that the description of morphological features of French is given by the fol-
lowing Morphology.txt file:

French

<CATEGORIES>

Nb:s,p

Gen:m,f

<CLASSES>

noun : (Nb,<var>),(Gen,<var>)
adj:(Nb,<var>),(Gen,<var>)
adv:

and that the equivalences between these features and their corresponding codes in DELA

10.3. INTEGRATION IN UNITEX 183

dictionaries are given by the following Equivalences.txt file:

French

s : Nb=s
p: Nb=p
m : Gen=m
f: Gen=f

Consider the following sample French DELAC file (the DELAS inflection codes may vary
from those present in UNITEX):

avant-garde(garde.N21:fs),NC_XXN
bateau(bateau.N3:ms)-mouche(mouche.N21:fs),NC_NN
café(café.N1:ms) au lait, NC_NXXXX

carte(carte.N21:fs) postale(postal.A8:fs),NC_NN$
cousin(cousin.N8:ms) germain(germain.A8:ms),NC_NNmf
franc(franc.A47:ms) magon(magon.N41:ms),NC_AN1
mémoire(mémoire.N21:fs) vive(vif.A48:fs),NC_NN
microscope(microscope.N1:ms) a effet tunnel,NC_NXXXXXX
porte-serviette(serviette.N21:fs),NC_VNm

The corresponding inflection graphs for MWUs are shown on figures 10.21 through 10.27.

The DELACEF dictionary resulting from the inflection, via MULTIFLEX, of the above DELAC
is as follows:

avant-garde,avant-garde.NC_XXN:fs
avant-gardes,avant-garde.NC_XXN:fp
bateau-mouche,bateau-mouche.NC_NN:ms
bateaux-mouches,bateau-mouche.NC_NN:mp
café au lait,café au lait. NC_NXXXX:ms

cafés au lait,café au lait. NC_NXXXX:mp

carte postale,carte postale.NC_NN:fs

cartes postales,carte postale.NC_NN:fp

cousin germain,cousin germain.NC_NNmf:ms
cousins germains,cousin germain.NC_NNmf:mp
cousine germaine,cousin germain.NC_NNmf:fs
cousines germaines,cousin germain.NC_NNmf:fp
franc-macon,franc macon.NC_AN1:ms
franc-maconne,franc macon.NC_AN1:fs

franc macon,franc magon.NC_AN1:ms

franc maconne,franc macon.NC_AN1:fs
francs-macons,franc magon.NC_AN1:mp
francs-maconnes,franc macon.NC_ANL1:fp

184 CHAPTER 10. COMPOUND WORD INFLECTION

francs macons,franc magon.NC_AN1:mp

francs maconnes,franc macon.NC_AN1:fp

mémoire vive,mémoire vive.NC_NN:fs

mémoires vives,mémoire vive.NC_NN:fp

microscope a effet tunnel,microscope a effet tunnel.NC_NXXXXXX:ms
microscopes a effet tunnel,microscope a effet tunnel.NC_NXXXXXX:mp
porte-serviette,porte-serviette.NC_VNmM:ms

porte-serviettes,porte-serviette. NC_VNmM:ms
porte-serviettes,porte-serviette.NC_VNmM:mp

D| <§1= D>-| <§2= D>-| <$3.Gen==Fg.Mb=fn> D—D—@

e.g avant-garde <Gen=$% g Nb=%n=

Figure 10.21: Inflection graph NC_XXN for French MWUs

—D—| <$1.Gen==Fg.No=$n> H <§2= D—| <§3INb=$n> D—D—@

‘Gen=%g; Nb=%n>

e.g. bateau-mouche -

Figure 10.22: Inflection graph NC_NN for French MW Us

—D—| <§1 Gen==%g Mb=Fn> H <$2= H <$3= N <f= H::ﬁ:: D—D—@

<Gen=$g; Nb=$n>

&g pommne de tere

Figure 10.23: Inflection graph NC_NXXXX for French MWUs

—){ <81 Gen=3 g Nb=$n> |} <$2> |H <$3:Gen=$gNo=> —p——0O)

<Gen=$g;Nb=%n>

.2 assistant-approvisionneur

Figure 10.24: Inflection graph NC_NNmf for French MWUs

} <$3:Gen=Fg:Nb=Fn> D’—D—@

=Gen=%g;Nb=%n>

=8 franc macon

Figure 10.25: Inflection graph NC_ANT1 for French MWUs

10.3. INTEGRATION IN UNITEX 185

—H <51 Gen==sgNb=gn> | <s2> | <83> |} <84>] <85> | <s6> |} <s7> D)

=Gen=9% g;Nh=$11:= e.g microscope a effet tunnel

Figure 10.26: Inflection graph NC_NXXXXXX for French MWUs

e.g potte-zerviette <33 Nh=4n>
<3 Nb=p>

<Gen=m; Nb=p=

Figure 10.27: Inflection graph NC_VNm for French MWUs

10.3.3 Complete Example in Serbian

Let us assume that the description of morphological features of Serbian is given by the fol-
lowing Morphology.txt file:

Serbian

<CATEGORIES>

Nb:s,p,w

Case:1,2,3,4,5,6,7

Gen:m,f,n

Anim:v,q,g

Comp:ab,c

Det:d ke

<CLASSES>
noun:(Nb,<var>),(Case,<var>),(Gen,<var>),(Anim,<fixed>)
adj:(Nb,<var>),(Case,<var>),(Gen,<var>),(Anim,<var>),(Comp,<var>),(Det,<var>)
adv:

The particuliarity of this morphological model is not only its reachness but also the existence
of no-care features like Anim=g or Det=e. These features agree with all other features in the
same category. They are used only for some particular sublasses of nouns or adjectives and
are necessary for a better compactness of the inflection paradigms of simple words which
are already considerably huge, and would be even larger if no no-care symbols were used.

Let us assume that the equivalences between the above features and their corresponding

186 CHAPTER 10. COMPOUND WORD INFLECTION

codes in DELA dictionaries are given by the following Equivalences.txt file:

Serbian
s:Nb=s
p:Nb=p
w:Nb=w
1:Case=1
2:Case=2
3:Case=3
4:Case=4
5:Case=5
6:Case=6
7:Case=7
m:Gen=m
f:Gen=f
n:Gen=n
v:Anim=v
q:Anim=q
g:Anim=g
a:Comp=a
b:Comp=b
c:Comp=c
d:Det=d
k:Det=k
e:Det=e

Consider the following sample Serbian DELAC file (the DELAS inflection codes may vary
from those present in Unitex):

zxiro racyun(racyun.N1:ms1q),NC_2XN1+N+Comp
avio-prevoznik(prevoznik.N10:ms1v),NC_2XN2+N+Comp

predsednik(predsednik.N10:ms1lv) drzxave(drzxava.N600:fs2q),NC_N2X1+N+Comp
Ujedinxene(Ujedinxen.Al:aefplg) nacije(nacija.N600:fp1qg),NC_AXN3+N+Comp+NProp+Org
Kosovo(Kosovo.N308:ns1q) i Metohija(Metohija.N623:fs1q),NC_N3XN+N+Comp+NProp+Top+Reg
istrazxni(istrazxni.A2:adms1g) sudija(sudija.N679:ms1v),NC_AXNF+N+Comp
Mirosinka(Mirosinka.N1637:fs1v) Dinkicx(Dinkicx.N1028:ms1v),NC_ImePrezime+N+Comp+Hum+PersName
gladan(gladan.A18:akmslg) kao vuk(vuk.N128:mslv),AC_A3XN2/hungry as a wolf

The corresponding inflection graphs for MWUs are shown on figures 10.28 through 10.35.

The DELACEF dictionary resulting from the inflection, via MULTIFLEX, of the above DELAC
is as follows:

zxiro-racyun,zxiro racyun.NC_2XN1+N+Comp:slgm
zxiro-racyuna,zxiro racyun.NC_2XN1+N+Comp:s2gm
zxiro-racyunu,zxiro racyun.NC_2XN1+N+Comp:s3gm
zxiro-racyun,zxiro racyun.NC_2XN1+N+Comp:s4gm
zxiro-racyune,zxiro racyun.NC_2XN1+N+Comp:s5gm

10.3. INTEGRATION IN UNITEX

zxiro-racyunom,zxiro racyun.NC_2XN1+N+Comp:s6gm
zxiro-racyunu,zxiro racyun.NC_2XN1+N+Comp:s7gm
zxiro-racyuni,zxiro racyun.NC_2XN1+N+Comp:plgm
zxiro-racyuna,zxiro racyun.NC_2XN1+N+Comp:p2gm
zxiro-racyunima,zxiro racyun.NC_2XN1+N+Comp:p3gm
zxiro-racyune,zxiro racyun.NC_2XN1+N+Comp:p4gm
zxiro-racyuni,zxiro racyun.NC_2XN1+N+Comp:p5qm
zxiro-racyunima,zxiro racyun.NC_2XN1+N+Comp:p6gm
zxiro-racyunima,zxiro racyun.NC_2XN1+N+Comp:p7gm
zxiro-racyuna,zxiro racyun.NC_2XN1+N+Comp:w2gm
zxiro-racyuna,zxiro racyun.NC_2XN1+N+Comp:w4gm
zxiro racyun,zxiro racyun.NC_2XN1+N+Comp:slgm
zxiro racyuna,zxiro racyun.NC_2XN1+N+Comp:s2gm
zxiro racyunu,zxiro racyun.NC_2XN1+N+Comp:s3gm
zxiro racyun,zxiro racyun.NC_2XN1+N+Comp:s4gm
zxiro racyune,zxiro racyun.NC_2XN1+N+Comp:s5gm
zxiro racyunom,zxiro racyun.NC_2XN1+N+Comp:s6gm
zxiro racyunu,zxiro racyun.NC_2XN1+N+Comp:s7gm
zxiro racyuni,zxiro racyun.NC_2XN21+N+Comp:plgm
zxiro racyuna,zxiro racyun.NC_2XN1+N+Comp:p2gm
zxiro racyunima,zxiro racyun.NC_2XN1+N+Comp:p3gm
zxiro racyune,zxiro racyun.NC_2XN1+N+Comp:p4gm
zxiro racyuni,zxiro racyun.NC_2XN21+N+Comp:p5gm
zxiro racyunima,zxiro racyun.NC_2XN1+N+Comp:p6gm
zxiro racyunima,zxiro racyun.NC_2XN1+N+Comp:p7gm
zxiro racyuna,zxiro racyun.NC_2XN1+N+Comp:w2gm
zxiro racyuna,zxiro racyun.NC_2XN1+N+Comp:w4gm
avio-prevoznik,avio-prevoznik.NC_2XN2+N+Comp:slvm
avio-prevoznika,avio-prevoznik.NC_2XN2+N+Comp:s2vm
avio-prevozniku,avio-prevoznik.NC_2XN2+N+Comp:s3vm
avio-prevoznika,avio-prevoznik.NC_2XN2+N+Comp:s4vm
avio-prevoznicye,avio-prevoznik.NC_2XN2+N+Comp:s5vm
avio-prevoznikom,avio-prevoznik.NC_2XN2+N+Comp:sévm
avio-prevozniku,avio-prevoznik.NC_2XN2+N+Comp:s7vm
avio-prevoznici,avio-prevoznik.NC_2XN2+N+Comp:plvm
avio-prevoznika,avio-prevoznik.NC_2XN2+N+Comp:p2vm
avio-prevoznicima,avio-prevoznik.NC_2XN2+N+Comp:p3vm
avio-prevoznike,avio-prevoznik.NC_2XN2+N+Comp:p4vm
avio-prevoznici,avio-prevoznik.NC_2XN2+N+Comp:p5vm
avio-prevoznicima,avio-prevoznik.NC_2XN2+N+Comp:p6vm
avio-prevoznicima,avio-prevoznik.NC_2XN2+N+Comp:p7vm
avio-prevoznika,avio-prevoznik.NC_2XN2+N+Comp:w2vm
avio-prevoznika,avio-prevoznik.NC_2XN2+N+Comp:w4vm
avioprevoznik,avio-prevoznik.NC_2XN2+N+Comp:slvm
avioprevoznika,avio-prevoznik.NC_2XN2+N+Comp:s2vm
avioprevozniku,avio-prevoznik.NC_2XN2+N+Comp:s3vm
avioprevoznika,avio-prevoznik.NC_2XN2+N+Comp:s4vm
avioprevoznicye,avio-prevoznik.NC_2XN2+N+Comp:s5vm
avioprevoznikom,avio-prevoznik.NC_2XN2+N+Comp:sévm
avioprevozniku,avio-prevoznik.NC_2XN2+N+Comp:s7vm
avioprevoznici,avio-prevoznik.NC_2XN2+N+Comp:plvm
avioprevoznika,avio-prevoznik.NC_2XN2+N+Comp:p2vm
avioprevoznicima,avio-prevoznik.NC_2XN2+N+Comp:p3vm
avioprevoznike,avio-prevoznik.NC_2XN2+N+Comp:p4vm
avioprevoznici,avio-prevoznik.NC_2XN2+N+Comp:p5vm

187

188 CHAPTER 10. COMPOUND WORD INFLECTION

avioprevoznicima,avio-prevoznik.NC_2XN2+N+Comp:p6vm
avioprevoznicima,avio-prevoznik.NC_2XN2+N+Comp:p7vm
avioprevoznika,avio-prevoznik.NC_2XN2+N+Comp:w2vm
avioprevoznika,avio-prevoznik.NC_2XN2+N+Comp:w4vm

predsednik drzxave,predsednik drzxave.NC_N2X1+N+Comp:slvm
predsednika drzxave,predsednik drzxave.NC_N2X1+N+Comp:s2vm
predsedniku drzxave,predsednik drzxave.NC_N2X1+N+Comp:s3vm
predsednika drzxave,predsednik drzxave.NC_N2X1+N+Comp:s4vm
predsednicye drzxave,predsednik drzxave.NC_N2X1+N+Comp:s5vm
predsednikom drzxave,predsednik drzxave.NC_N2X1+N+Comp:s6vm
predsedniku drzxave,predsednik drzxave.NC_N2X1+N+Comp:s7vm
predsednici drzxave,predsednik drzxave.NC_N2X1+N+Comp:plvm
predsednici drzxava,predsednik drzxave.NC_N2X1+N+Comp:plvm
predsednika drzxave,predsednik drzxave.NC_N2X1+N+Comp:p2vm
predsednika drzxava,predsednik drzxave.NC_N2X1+N+Comp:p2vm
predsednicima drzxave,predsednik drzxave.NC_N2X1+N+Comp:p3vm
predsednicima drzxava,predsednik drzxave.NC_N2X1+N+Comp:p3vm
predsednike drzxave,predsednik drzxave.NC_N2X1+N+Comp:p4vm
predsednike drzxava,predsednik drzxave.NC_N2X1+N+Comp:p4vm
predsednici drzxave,predsednik drzxave.NC_N2X1+N+Comp:p5vm
predsednici drzxava,predsednik drzxave.NC_N2X1+N+Comp:p5vm
predsednicima drzxave,predsednik drzxave.NC_N2X1+N+Comp:p6vm
predsednicima drzxava,predsednik drzxave.NC_N2X1+N+Comp:p6vm
predsednicima drzxave,predsednik drzxave.NC_N2X1+N+Comp:p7vm
predsednicima drzxava,predsednik drzxave.NC_N2X1+N+Comp:p7vm
predsednika drzxave,predsednik drzxave.NC_N2X1+N+Comp:w2vm
predsednika drzxava,predsednik drzxave.NC_N2X1+N+Comp:w2vm
predsednika drzxave,predsednik drzxave.NC_N2X1+N+Comp:w4vm
predsednika drzxava,predsednik drzxave.NC_N2X1+N+Comp:w4vm
Ujedinxene nacije,Ujedinxene nacije.NC_AXN3+N+Comp+NProp+0rg:fplq
Ujedinxenih nacija,Ujedinxene nacije.NC_AXN3+N+Comp+NProp+Org:fp2q
Ujedinxenima nacijama,Ujedinxene nacije.NC_AXN3+N+Comp+NProp+0rg:fp3q
Ujedinxenim nacijama,Ujedinxene nacije.NC_AXN3+N+Comp+NProp+0rg:fp3q
Ujedinxene nacije,Ujedinxene nacije.NC_AXN3+N+Comp+NProp+0rg:fp4q
Ujedinxene nacije,Ujedinxene nacije.NC_AXN3+N+Comp+NProp+0rg:fp5q
Ujedinxenima nacijama,Ujedinxene nacije.NC_AXN3+N+Comp+NProp+Org:fp6q
Ujedinxenim nacijama,Ujedinxene nacije.NC_AXN3+N+Comp+NProp+Org:fp6q
Ujedinxenima nacijama,Ujedinxene nacije.NC_AXN3+N+Comp+NProp+0rg:fp7q
Ujedinxenim nacijama,Ujedinxene nacije.NC_AXN3+N+Comp+NProp+0Org:fp7q

Kosovo i Metohija,Kosovo i Metohija.NC_N3XN+N+Comp+NProp+Top+Reg:nslq
Kosova i Metohije,Kosovo i Metohija.NC_N3XN+N+Comp+NProp+Top+Reg:ns2q
Kosovu i Metohiji,Kosovo i Metohija.NC_N3XN+N+Comp+NProp+Top+Reg:ns3q
Kosovo i Metohiju,Kosovo i Metohija.NC_N3XN+N+Comp+NProp+Top+Reg:ns4q
Kosovo i Metohijo,Kosovo i Metohija.NC_N3XN+N+Comp+NProp+Top+Reg:ns5q

Kosovom i Metohijom,Kosovo i Metohija.NC_N3XN+N+Comp+NProp+Top+Reg:ns6q
Kosovu i Metohiji,Kosovo i Metohija.NC_N3XN+N+Comp+NProp+Top+Reg:ns7q
istrazxne sudije,istrazxni sudija.NC_AXNF+N+Comp:1vfp

istrazxnih sudija,istrazxni sudija.NC_AXNF+N+Comp:2vfp

istrazxnima sudijama,istrazxni sudija.NC_AXNF+N+Comp:3vfp

istrazxnim sudijama,istrazxni sudija.NC_AXNF+N+Comp:3vfp

istrazxne sudije,istrazxni sudija.NC_AXNF+N+Comp:4vfp

istrazxne sudije,istrazxni sudija.NC_AXNF+N+Comp:5vfp

istrazxnima sudijama,istrazxni sudija.NC_AXNF+N+Comp:6vfp

istrazxnim sudijama,istrazxni sudija.NC_AXNF+N+Comp:6vfp

istrazxnima sudijama,istrazxni sudija.NC_AXNF+N+Comp:7vfp

10.3. INTEGRATION IN UNITEX

istrazxnim sudijama,istrazxni sudija.NC_AXNF+N+Comp:7vfp

istrazxne sudije,istrazxni sudija.NC_AXNF+N+Comp:2viw

istrazxne sudije,istrazxni sudija.NC_AXNF+N+Comp:4viw

istrazxnoga sudiju,istrazxni sudija.NC_AXNF+N+Comp:ms4v

istrazxnog sudiju,istrazxni sudija.NC_AXNF+N+Comp:ms4v

istrazxni sudija,istrazxni sudija.NC_AXNF+N+Comp:1vms

istrazxnoga sudije,istrazxni sudija.NC_AXNF+N+Comp:2vms

istrazxnog sudije,istrazxni sudija.NC_AXNF+N+Comp:2vms

istrazxnomu sudiji,istrazxni sudija.NC_AXNF+N+Comp:3vms

istrazxnome sudiji,istrazxni sudija.NC_AXNF+N+Comp:3vms

istrazxnom sudiji,istrazxni sudija.NC_AXNF+N+Comp:3vms

istrazxnomu sudiji,istrazxni sudija.NC_AXNF+N+Comp:7vms

istrazxnome sudiji,istrazxni sudija.NC_AXNF+N+Comp:7vms

istrazxnom sudiji,istrazxni sudija.NC_AXNF+N+Comp:7vms

istrazxni sudijo,istrazxni sudija.NC_AXNF+N+Comp:5vms

istrazxni sudija,istrazxni sudija.NC_AXNF+N+Comp:5vms

istrazxnim sudijom,istrazxni sudija.NC_AXNF+N+Comp:6vms

Dinkicx Mirosinka,Mirosinka Dinkicx.NC_ImePrezime+N+Comp+Hum+PersName:s1vf
Dinkicx Mirosinke,Mirosinka Dinkicx.NC_ImePrezime+N+Comp+Hum+PersName:s2vf
Dinkicx Mirosinki,Mirosinka Dinkicx.NC_ImePrezime+N+Comp+Hum+PersName:s3vf
Dinkicx Mirosinku,Mirosinka Dinkicx.NC_ImePrezime+N+Comp+Hum+PersName:s4vf
Dinkicx Mirosinka,Mirosinka Dinkicx.NC_ImePrezime+N+Comp+Hum+PersName:s5vf
Dinkicx Mirosinkom,Mirosinka Dinkicx.NC_ImePrezime+N+Comp+Hum+PersName:s6vf
Dinkicx Mirosinki,Mirosinka Dinkicx.NC_ImePrezime+N+Comp+Hum+PersName:s7vf
Mirosinka Dinkicx,Mirosinka Dinkicx.NC_ImePrezime+N+Comp+Hum+PersName:s1vf
Mirosinke Dinkicx,Mirosinka Dinkicx.NC_ImePrezime+N+Comp+Hum+PersName:s2vf
Mirosinki Dinkicx,Mirosinka Dinkicx.NC_ImePrezime+N+Comp+Hum+PersName:s3vf
Mirosinku Dinkicx,Mirosinka Dinkicx.NC_ImePrezime+N+Comp+Hum+PersName:s4vf
Mirosinka Dinkicx,Mirosinka Dinkicx.NC_ImePrezime+N+Comp+Hum+PersName:s5vf
Mirosinkom Dinkicx,Mirosinka Dinkicx.NC_ImePrezime+N+Comp+Hum+PersName:s6vf
Mirosinki Dinkicx,Mirosinka Dinkicx.NC_ImePrezime+N+Comp+Hum+PersName:s7vf
gladni kao vuk,gladan kao vuk.AC_A3XN2:slmgda//hungry as a wolf

gladan kao vuk,gladan kao vuk.AC_A3XN2:slmgka//hungry as a wolf

gladna kao vuk,gladan kao vuk.AC_A3XN2:slfgea//hungry as a wolf

gladno kao vuk,gladan kao vuk.AC_A3XN2:slngea//hungry as a wolf

gladnoga kao vuk,gladan kao vuk.AC_A3XN2:s2mgda//hungry as a wolf

gladnog kao vuk,gladan kao vuk.AC_A3XN2:s2mgda//hungry as a wolf

gladna kao vuk,gladan kao vuk.AC_A3XN2:s2mgka//hungry as a wolf

gladne kao vuk,gladan kao vuk.AC_A3XN2:s2fgea//hungry as a wolf

gladnoga kao vuk,gladan kao vuk.AC_A3XN2:s2ngda//hungry as a wolf

gladnog kao vuk,gladan kao vuk.AC_A3XN2:s2ngda//hungry as a wolf

gladna kao vuk,gladan kao vuk.AC_A3XN2:s2ngka//hungry as a wolf

gladnome kao vuk,gladan kao vuk.AC_A3XN2:s3mgda//hungry as a wolf
gladnom kao vuk,gladan kao vuk.AC_A3XN2:s3mgda//hungry as a wolf

gladnu kao vuk,gladan kao vuk.AC_A3XN2:s3mgka//hungry as a wolf

gladnoj kao vuk,gladan kao vuk.AC_A3XN2:s3fgea//hungry as a wolf

gladnome kao vuk,gladan kao vuk.AC_A3XN2:s3ngda//hungry as a wolf

gladnom kao vuk,gladan kao vuk.AC_A3XN2:s3ngda//hungry as a wolf

gladnu kao vuk,gladan kao vuk.AC_A3XN2:s3ngka//hungry as a wolf

gladnu kao vuk,gladan kao vuk.AC_A3XN2:s4fgea//hungry as a wolf

gladno kao vuk,gladan kao vuk.AC_A3XN2:s4ngeal//hungry as a wolf

gladni kao vuk,gladan kao vuk.AC_A3XN2:s5mgea//hungry as a wolf

gladna kao vuk,gladan kao vuk.AC_A3XN2:s5fgea//hungry as a wolf

gladno kao vuk,gladan kao vuk.AC_A3XN2:s5ngeal//hungry as a wolf

gladnim kao vuk,gladan kao vuk.AC_A3XN2:sémgea//hungry as a wolf

189

190 CHAPTER 10. COMPOUND WORD INFLECTION

gladnom kao vuk,gladan kao vuk.AC_A3XN2:s6fgea//hungry as a wolf
gladnim kao vuk,gladan kao vuk.AC_A3XN2:s6ngeal//hungry as a wolf
gladnome kao vuk,gladan kao vuk.AC_A3XN2:s7mgda//hungry as a wolf
gladnom kao vuk,gladan kao vuk.AC_A3XN2:s7mgda//hungry as a wolf
gladnu kao vuk,gladan kao vuk.AC_A3XN2:s7mgka//hungry as a wolf
gladnoj kao vuk,gladan kao vuk.AC_A3XN2:s7fgea//hungry as a wolf
gladnome kao vuk,gladan kao vuk.AC_A3XN2:s7ngda//hungry as a wolf
gladnom kao vuk,gladan kao vuk.AC_A3XN2:s7ngda//hungry as a wolf
gladnu kao vuk,gladan kao vuk.AC_A3XN2:s7ngka//hungry as a wolf
gladni kao vuk,gladan kao vuk.AC_A3XN2:pimgea//hungry as a wolf
gladni kao vuci,gladan kao vuk.AC_A3XN2:plmgea//hungry as a wolf
gladni kao vukovi,gladan kao vuk.AC_A3XN2:plmgeal//hungry as a wolf
gladne kao vuk,gladan kao vuk.AC_A3XN2:plfgea//hungry as a wolf
gladne kao vuci,gladan kao vuk.AC_A3XN2:plfgea//hungry as a wolf
gladne kao vukovi,gladan kao vuk.AC_A3XN2:plfgea//hungry as a wolf
gladna kao vuk,gladan kao vuk.AC_A3XN2:plngea//hungry as a wolf
gladna kao vuci,gladan kao vuk.AC_A3XN2:plngea//hungry as a wolf
gladna kao vukovi,gladan kao vuk.AC_A3XN2:plngea//hungry as a wolf
gladnih kao vuk,gladan kao vuk.AC_A3XN2:p2mgeal//hungry as a wolf
gladnih kao vuci,gladan kao vuk.AC_A3XN2:p2mgea//hungry as a wolf
gladnih kao vukovi,gladan kao vuk.AC_A3XN2:p2mgea//hungry as a wolf
gladnih kao vuk,gladan kao vuk.AC_A3XN2:p2fgea//hungry as a wolf
gladnih kao vuci,gladan kao vuk.AC_A3XN2:p2fgea//hungry as a wolf
gladnih kao vukovi,gladan kao vuk.AC_A3XN2:p2fgea//hungry as a wolf
gladnih kao vuk,gladan kao vuk.AC_A3XN2:p2ngea//hungry as a wolf
gladnih kao vuci,gladan kao vuk.AC_A3XN2:p2ngea//hungry as a wolf
gladnih kao vukovi,gladan kao vuk.AC_A3XN2:p2ngea//hungry as a wolf
gladnima kao vuk,gladan kao vuk.AC_A3XN2:p3mgea//hungry as a wolf
gladnima kao vuci,gladan kao vuk.AC_A3XN2:p3mgea//hungry as a wolf
gladnima kao vukovi,gladan kao vuk.AC_A3XN2:p3mgea//hungry as a wolf
gladnim kao vuk,gladan kao vuk.AC_A3XN2:p3mgea//hungry as a wolf
gladnim kao vuci,gladan kao vuk.AC_A3XN2:p3mgea//hungry as a wolf
gladnim kao vukovi,gladan kao vuk.AC_A3XN2:p3mgea//hungry as a wolf
gladnima kao vuk,gladan kao vuk.AC_A3XN2:p3fgea//hungry as a wolf
gladnima kao vuci,gladan kao vuk.AC_A3XN2:p3fgea//hungry as a wolf
gladnima kao vukovi,gladan kao vuk.AC_A3XN2:p3fgea//hungry as a wolf
gladnim kao vuk,gladan kao vuk.AC_A3XN2:p3fgea//hungry as a wolf
gladnim kao vuci,gladan kao vuk.AC_A3XN2:p3fgea//hungry as a wolf
gladnim kao vukovi,gladan kao vuk.AC_A3XN2:p3fgea//hungry as a wolf
gladnima kao vuk,gladan kao vuk.AC_A3XN2:p3ngea//hungry as a wolf
gladnima kao vuci,gladan kao vuk.AC_A3XN2:p3ngea//hungry as a wolf
gladnima kao vukovi,gladan kao vuk.AC_A3XN2:p3ngea//hungry as a wolf
gladnim kao vuk,gladan kao vuk.AC_A3XN2:p3ngea//hungry as a wolf
gladnim kao vuci,gladan kao vuk.AC_A3XN2:p3ngea//hungry as a wolf
gladnim kao vukovi,gladan kao vuk.AC_A3XN2:p3ngeal//hungry as a wolf
gladne kao vuk,gladan kao vuk.AC_A3XN2:p4mgeal//hungry as a wolf
gladne kao vuci,gladan kao vuk.AC_A3XN2:p4mgeal//hungry as a wolf
gladne kao vukovi,gladan kao vuk.AC_A3XN2:p4dmgea//hungry as a wolf
gladne kao vuk,gladan kao vuk.AC_A3XN2:p4fgeal//hungry as a wolf
gladne kao vuci,gladan kao vuk.AC_A3XN2:p4fgea//hungry as a wolf
gladne kao vukovi,gladan kao vuk.AC_A3XN2:p4fgea//hungry as a wolf
gladna kao vuk,gladan kao vuk.AC_A3XN2:p4ngea//hungry as a wolf
gladna kao vuci,gladan kao vuk.AC_A3XN2:p4ngea//hungry as a wolf
gladna kao vukovi,gladan kao vuk.AC_A3XN2:p4ngea//hungry as a wolf
gladni kao vuk,gladan kao vuk.AC_A3XN2:p5mgea//hungry as a wolf

10.3. INTEGRATION IN UNITEX 191

gladni kao vuci,gladan kao vuk.AC_A3XN2:p5mgea//hungry as a wolf
gladni kao vukovi,gladan kao vuk.AC_A3XN2:p5mgeal//hungry as a wolf
gladne kao vuk,gladan kao vuk.AC_A3XN2:p5fgea//hungry as a wolf
gladne kao vuci,gladan kao vuk.AC_A3XN2:p5fgea//hungry as a wolf
gladne kao vukovi,gladan kao vuk.AC_A3XN2:p5fgea//hungry as a wolf
gladna kao vuk,gladan kao vuk.AC_A3XN2:p5ngea//hungry as a wolf
gladna kao vuci,gladan kao vuk.AC_A3XN2:p5ngea//hungry as a wolf
gladna kao vukovi,gladan kao vuk.AC_A3XN2:p5ngea//hungry as a wolf
gladnima kao vuk,gladan kao vuk.AC_A3XN2:p6mgeal//hungry as a wolf
gladnima kao vuci,gladan kao vuk.AC_A3XN2:p6mgea//hungry as a wolf
gladnima kao vukovi,gladan kao vuk.AC_A3XN2:p6mgeal//hungry as a wolf
gladnim kao vuk,gladan kao vuk.AC_A3XN2:p6mgea//hungry as a wolf
gladnim kao vuci,gladan kao vuk.AC_A3XN2:p6mgea//hungry as a wolf
gladnim kao vukovi,gladan kao vuk.AC_A3XN2:pémgea//hungry as a wolf
gladnima kao vuk,gladan kao vuk.AC_A3XN2:p6fgea//hungry as a wolf
gladnima kao vuci,gladan kao vuk.AC_A3XN2:p6fgea//hungry as a wolf
gladnima kao vukovi,gladan kao vuk.AC_A3XN2:p6fgea//hungry as a wolf
gladnim kao vuk,gladan kao vuk.AC_A3XN2:p6fgea//hungry as a wolf
gladnim kao vuci,gladan kao vuk.AC_A3XN2:p6fgea//hungry as a wolf
gladnim kao vukovi,gladan kao vuk.AC_A3XN2:p6fgea//hungry as a wolf
gladnima kao vuk,gladan kao vuk.AC_A3XN2:p6ngeal//hungry as a wolf
gladnima kao vuci,gladan kao vuk.AC_A3XN2:p6ngea//hungry as a wolf
gladnima kao vukovi,gladan kao vuk.AC_A3XN2:p6ngea//hungry as a wolf
gladnim kao vuk,gladan kao vuk.AC_A3XN2:p6ngea//hungry as a wolf
gladnim kao vuci,gladan kao vuk.AC_A3XN2:p6ngea//hungry as a wolf
gladnim kao vukovi,gladan kao vuk.AC_A3XN2:p6ngea//hungry as a wolf
gladnima kao vuk,gladan kao vuk.AC_A3XN2:p7mgeal//hungry as a wolf
gladnima kao vuci,gladan kao vuk.AC_A3XN2:p7mgea//hungry as a wolf
gladnima kao vukovi,gladan kao vuk.AC_A3XN2:p7mgea//hungry as a wolf
gladnim kao vuk,gladan kao vuk.AC_A3XN2:p7mgea//hungry as a wolf
gladnim kao vuci,gladan kao vuk.AC_A3XN2:p7mgea//hungry as a wolf
gladnim kao vukovi,gladan kao vuk.AC_A3XN2:p7mgea//hungry as a wolf
gladnima kao vuk,gladan kao vuk.AC_A3XN2:p7fgea//hungry as a wolf
gladnima kao vuci,gladan kao vuk.AC_A3XN2:p7fgea//hungry as a wolf
gladnima kao vukovi,gladan kao vuk.AC_A3XN2:p7fgea//hungry as a wolf
gladnim kao vuk,gladan kao vuk.AC_A3XN2:p7fgea//hungry as a wolf
gladnim kao vuci,gladan kao vuk.AC_A3XN2:p7fgeal//hungry as a wolf
gladnim kao vukovi,gladan kao vuk.AC_A3XN2:p7fgea//hungry as a wolf
gladnima kao vuk,gladan kao vuk.AC_A3XN2:p7ngea//hungry as a wolf
gladnima kao vuci,gladan kao vuk.AC_A3XN2:p7ngea//hungry as a wolf
gladnima kao vukovi,gladan kao vuk.AC_A3XN2:p7ngea//hungry as a wolf
gladnim kao vuk,gladan kao vuk.AC_A3XN2:p7ngea//hungry as a wolf
gladnim kao vuci,gladan kao vuk.AC_A3XN2:p7ngea//hungry as a wolf
gladnim kao vukovi,gladan kao vuk.AC_A3XN2:p7ngea//hungry as a wolf
gladna kao vuk,gladan kao vuk.AC_A3XN2:w2mgeal//hungry as a wolf
gladna kao vuci,gladan kao vuk.AC_A3XN2:w2mgea//hungry as a wolf
gladna kao vukovi,gladan kao vuk.AC_A3XN2:w2mgea//hungry as a wolf
gladne kao vuk,gladan kao vuk.AC_A3XN2:w2fgea//hungry as a wolf
gladne kao vuci,gladan kao vuk.AC_A3XN2:w2fgea//hungry as a wolf
gladne kao vukovi,gladan kao vuk.AC_A3XN2:w2fgea//hungry as a wolf
gladna kao vuk,gladan kao vuk.AC_A3XN2:w2ngea//hungry as a wolf
gladna kao vuci,gladan kao vuk.AC_A3XN2:w2ngea//hungry as a wolf
gladna kao vukovi,gladan kao vuk.AC_A3XN2:w2ngea//hungry as a wolf
gladna kao vuk,gladan kao vuk.AC_A3XN2:w4mgeal//hungry as a wolf
gladna kao vuci,gladan kao vuk.AC_A3XN2:w4mgea//hungry as a wolf

192 CHAPTER 10. COMPOUND WORD INFLECTION

gladna kao vukovi,gladan kao vuk.AC_A3XN2:w4mgea//hungry as a wolf
gladne kao vuk,gladan kao vuk.AC_A3XN2:w4fgeal//hungry as a wolf
gladne kao vuci,gladan kao vuk.AC_A3XN2:w4fgea//hungry as a wolf
gladne kao vukovi,gladan kao vuk.AC_A3XN2:w4fgea//hungry as a wolf
gladna kao vuk,gladan kao vuk.AC_A3XN2:w4ngea//hungry as a wolf
gladna kao vuci,gladan kao vuk.AC_A3XN2:w4ngea//hungry as a wolf
gladna kao vukovi,gladan kao vuk.AC_A3XN2:w4ngea//hungry as a wolf

o racyiuy, ali i maro-racym

<$3Mb=%n;Case=fc Anim==Fa,Gen==%g> D—@

<Nb=%n;Case=%c;Anim=%a;Gen=%g>

Figure 10.28: Inflection graph NC_2XNT1 for Serbian MWUs

avio-prevoznik i avioprevozil

<3 Mb=fn;Caze=F . Anim==Fa,Gen==Fg> E>—©

<Nb=%n;Case=%c;Anim=%a;Gen=%g

Figure 10.29: Inflection graph NC_2XN?2 for Serbian MWUs

predeedni dizave, plural, predsedmel dimxave 1 predse dimdel dizava

<§1 Nb=s5Case=$c Anim==Fa,Gen==Fg> [H <§2= E}—| <§3> |)
<Nb=s;Case=%c;Anim=%a;Gen=%$g>

<$1:Nb=p Caze=$c, Anim==Fa,Gen==$g> [:>—| <§2> |)

<Nb=p;Case=%c;Anim=%a;Gen=%g>

)
iarep)

Figure 10.30: Inflection graph NC_N2X1 for Serbian MWUs

1 <§1 Nb=w,Caze=$c, Anim==Fa,Gen==%g> E}—| <§2>)
<Nb=w;Case=%c;Anim=%a;Gen=%g>

10.3. INTEGRATION IN UNITEX 193

Wovi Bad, Crvena Zastava, Ujeinxenxe Nacije

J <51 Gen=$g.Nb=fn,Case=fc, Anim=g;Det=c>

<§2> H <$3:CGen==Fg.Mb==fn.Caze=$c Anim==Fa>
<$1 Gen=$gNb=fn,Case=Fc, Anim=g,Det=d> <Gen=$g;Nb=%n; Case=$c; Anim=$a>

magculine gender in accusative singular

<§1 Gen=m:Nb=s5:Case=4 Anim=§a;Det=c>

<§2= D—| <$3:Gen=m Nb=s5:Case=4 Anim==Fa>
1 <$1 Gen=mNb=s5:Case=4 Anim=F a;Det=c> <Gen=m;Nb=5;Case=4; Anim=$ a>

Figure 10.31: Inflection graph NC_AXN3 for Serbian MWUs

Fosovoiletohija

—t}—|{$1:Gen==$g1;Nb==$11;Case=$c;ﬂnjm $a;='|>-| <§2= ﬁ

m <$5Gen==$g5 Mb==%nl Caze=Fc, Anim= $a;=

=Gen=%g1; Nb=$n;Case=$c;Anim=$a>

Figure 10.32: Inflection graph NC_N3XN for Serbian MW Us

istramoi sudija
'l <$1:CGen=FgNb=5:Case=Fc Anim=g Det=¢>

<§2> [>-| <$3 Gen==§g;Nb=5;Case=$c; Anim==Fa> |)
J <§1 . Gen=fgNb=5.Case=fc Anim=g.Det=d> =Gen=$g;Nb=s>

<§1.Gen=f Nb=w;,Case=fc;Anim=g;Det=e> H <$1= [>—| <$3:Gen=f Nb=w,Caze=fc Anim==Fa> '
<Gen=f; Nb=w=

<§1.Gen=f,Nb=p,Case=Fc,Anim=g;Det=e> H <§2> H <$3.Gen=f:Nb=p;Case=be;Anim==Fa> |)
<Gen=f;Nb=p=

l‘ <§1.Gen=m;Nb=5,Case=4, Anim=F$a,Det=e>

<§2> H <$3:Gen=m,Nb=sCage=4 Anim==$a> [—I)
<Gen=m;Nb=s;Case=4; Anim=$a>

‘ <§1:Cen=m;Mb=5,Case=4, Anim=Fa;,Det=d>

Figure 10.33: Inflection graph NC_AXNF for Serbian MWUs

194 CHAPTER 10. COMPOUND WORD INFLECTION

feminin name: first name, swmame - Katarina Jovanowic

/ <$l:Anim==Fa,Gen=f,Cage=fc;Nb=g> H <§2= t}—| <$3Mb=2, Anim=Fa;Gen==§gl ,Caze=1>

=§3Mb=g;Anim=$a,Gen==%gl Cage=1> H <§2> M <§1:Anim==$a,Fen=F Cage=Fc;Nb=g> |)
feminine name: sumame, first name - Jovanovic Katarina

masculine name: first name, swname - Ljuba Popovic

\ <31 Anim==%a,Gen=m;Case=Fc Wh=g> H <§2= M <$3Nb=g;Anim=%a,Fen==$gl ;Case=hc> [}

masculne name: sumname, first name - Popovie Ljuba

\ =§3Mb=g,Anim=F$a,Gen==fgl Cage=1> D—| <§2= D)-| <§1:Anim==%a,Gen=m;Caze=Fc;Nb=g5> |)

Figure 10.34: Inflection graph NC_ImePrezime for Serbian MWUs

gladan kao vul

<f> D—| <$3> [}—| <fa= H <§5Hb=5> |)

<§1 Nb=s5;Case=$c,Gen=$ g, Anim==Fa,Det=$d,Comp==F cp=

<Nb=s;Case=%c;Gen=%g;Anim=%a; Det=%d; Comp=%cp=>

<$2> [<83>) <s4> | <s5000=8> p—0)

<§1 Nb=p.Case=$c.Gen=$g Anim==Fa;Det=Fd;Comp==Fcp=

<Nb=p;Case=%c¢;Gen=%g;Anim=%a3; Det=%d; Comp=%cp=>

<$1 Nb=w.Case=$c,Gen=§ g Anim==Fa.Det=$d,Comp==F cp>

<Nb=w;Case=%c;Gen=%g;Anim=%a;D "Comp=%cp>

<2 D—| <3 [}—{ <§4> [}—| <$5Hb=n> |}

Figure 10.35: Inflection graph AC_A3XN?2 for Serbian MWUs

Chapter 11

Use of external programs

This chapter presents the use of the different programs of which Unitex is composed. These
programs, which can be found in the Unitex/App folder, are automatically called by the in-
terface. Itis possible to see the commands that have been executed by clicking on "Info>Console".
It is also possible to see the options of the different programs on "Info>Help on commands".

WARNING: many programs use the text directory (my_text_snt). This directory is cre-
ated by the graphical interface after the normalization of the text. If you work with the
command line, you have to create the directory manually before the execution of the pro-
gram Normalize

WARNING (2): whenever a parameter contains spaces, it needs to be enclosed in quotation
marks so it will not be considered as multiple parameters.

11.1 CheckDic

CheckDic [OPTIONS] dic

This program carries out the verification of the format of a dictionary of DELAS or DELAF
type. The parameter dic corresponds to the name of the dictionary that is to be verified.

OPTIONS:
o -f /--delaf : checks an inflected dictionary;

e -s /--delas : checks a non inflected dictionary;

The program checks the syntax of the lines of the dictionary. It also creates a list of all
characters occurring in the inflected and canonical forms of words in the text, the list of
grammatical codes and syntax, as well as the list of inflection codes used. The results of the
verification are stored in a file called CHECK_DIC.TXT.

195

196 CHAPTER 11. USE OF EXTERNAL PROGRAMS
11.2 Compress

Compress [OPTIONS] dictionary

OPTIONS:

o -f /-flip :indicates that the inflected and canonical forms should be swapped in the
compressed dictionary. This option is used to construct an inverse dictionary which is
necessary for the program Reconstrucao

This program takes a DELAF dictionary as a parameter and compresses it. The compression
of a dictionary dico.dic produces two files:

e dico.bin :abinary file containing the minimum automaton of the inflected forms of
the dictionary;

e dico.inf : a text file containing the compressed forms required for the reconstruction
of the dictionary lines from the inflected forms contained in the automaton.

For more details on the format of these files, see chapter 12.

11.3 Concord

Concord [OPTIONS] <index>

This program takes a concordance index file produced by the program Locate and pro-
duces a concordance. It is also possible to produce a modified text version taking into ac-
count the transducer outputs associated to the occurrences. Here is the description of the
parameters:

OPTIONS:
o -f FONT /--font=FONT : the name of the font to use if the output is an HTML file;

e -s N /--fontsize=N : the font size to use if the output is an HTML file. The font
parameters are required if the output is an HTML file;

o -| X /--left=X : number of characters on the left of the occurrences. In Thai mode,
this means the number of non-diacritic characters.

e -r X /--right=X : number of characters (non-diacritic ones in Thai mode) on the
right of the occurrences. If the occurrence is shorter than this value, the concordance
line is completed up to right . If the occurrence is longer than the length defined by
right ,itis nevertheless saved as whole.

NOTE: For both --left and --right , you can add the s character to stop at the first
{S} tag. For instance, if you set 40s for the left value, the left context will end at 40
characters at most, less if the {S} tag is found before.

11.3.

CONCORD 197

Sort order options:

--TO : order in which the occurrences appear in the text (default);

--LC : left context for primary sort, then occurrence for secondary sort;
--LR : left context, then right context;

--CL : occurrence, then left context;

--CR : occurrence, then right context;

--RL :right context, then left context;

--RC : left context, then occurrence.

For details on the sorting modes, see section 4.8.2.

Output options:

-H /--html : produces a concordance in HTML format encoded in UTE-8 (default);
-t /-text :produces a concordance in Unicode text format;

-g SCRIPT /--glossanet=SCRIPT :produces a concordance for GlossaNet in HTML
format. The HTML file is encoded in UTEF-§;

-i /--index : produces an index of the concordance, made of the content of the occur-
rences (with the grammar outputs, if any), preceded by the positions of the occurrences
in the text file given in characters;

-u /--uima : the same as --index , but the ending position of each occurrence is also
given;

-A /--axis : quite the same as --index , but the numbers represent the median char-
acter of each occurrence. Fore more information, see [29];

-x /--xalign : another index file, used by the text alignment module. Each line is
made of 3 integers X Y Z followed by the content of the occurrence. X is the sen-
tence number, starting from 1. Y and Z are the starting and ending positions of the
occurrence in the sentence, given in characters;

-m TXT/--merge=TXT : indicates to the program that it is supposed to produce a
modified version of the text and save it in a file named TXT (see section 6.8.3).

Other options:

-d DIR /--directory=DIR : indicates to the program that it must not work in the
same directory than <index> but in DIR;

-a ALPH /--alphabet=ALPH : alphabet file used for sorting;

198 CHAPTER 11. USE OF EXTERNAL PROGRAMS

The result of the application of this program is a file called concord.txt if the concordance
was constructed in text mode, a file called concord.html if the output mode was --html
or --glossanet , and a text file with the name defined by the user of the program if the
program has constructed a modified version of the text.

In --html mode, the occurrence is coded as a hypertext link. The reference associated to
this link is of the form . Xet Y represent the beginning and ending po-
sitions of the occurrence in characters in the file text_name.snt . Z represents the number
of the sentence in which the occurrence was found.

11.4 ConcorDiff
ConcorDiff [OPTIONS] <concorl> <concor2>

This program takes two concordance files and produces an HTML page that shows their
differences (see section 6.8.5, page 122). <concorl> and <concor2> concordance index
files must have absolute names, because Unitex uses these names to deduce on which text
there were computed.

OPTIONS:
e -0 X /--out=X :output HTML page;
o -f FONT /--font=FONT :name of the font to use in output HTML page;

e -s N /--size=N :font size to use in output HTML page.

11.5 Convert
Convert [OPTIONS] <text 1> [<text 2> <text 3> ...]
With this program you can transcode text files.
OPTIONS:

e -s X /--src=X :input encoding;

e -d X /--dest=X :output encoding (default=LITTLE-ENDIAN);

Output options:
e -r /--replace :input files are overwritten (default);
e --ps=PFX :input files are renamed with the PFXprefix (toto.txt = PFXtoto.txt),

e --pd=PFX : ouput files are renamed with the PFXprefix;

11.5. CONVERT 199
e --ss=SFX :input files are named with the SFXsulffix; (toto.txt = totoSFX.txt);

e --sd=SFX : ouput files are named with the SFXsuffix.

HTML options:
Convert offers some special options dedicated to HTML files. You can use a combination
of the following options:

e --dnc (Decode Normal Chars): things like é x and ø will be
decoded as the single equivalent unicode character, except if it represents an HTML
control character;

e --dcc (Decode Control Chars): &It; > & and " will be decoded as <
> & and the quote (the same for their decimal and hexadecimal representations);

e -eac (Encode All Chars): every character that is not supported by the output encod-
ing will be encoded as a string like ǉ

e —-ecC (Encode Control Chars): <> & and the quote will be encoded by < >
& and "

All HTML options are deactivated by default.

Other options:
e -m/--main-names : prints the list of the encoding main names;
e -a /--aliases : prints the list of the encoding aliases;
e -A /--all-infos : prints all the information about all the encodings;

e -i X /-info=X :prints all the information about the encoding X.

The encodings can take values in the following list (non exhaustive, see below):

FRENCH

ENGLISH

GREEK

THAI

CZECH

GERMAN

SPANISH

PORTUGUESE

ITALIAN

NORWEGIAN

LATIN (default latin code page)
windows-1252 : Microsoft Windows 1252 - Latin I (Western Europe & USA)

200 CHAPTER 11. USE OF EXTERNAL PROGRAMS

windows-1250 : Microsoft Windows 1250 - Central Europe
windows-1257 : Microsoft Windows 1257 - Baltic
windows-1251 : Microsoft Windows 1251 - Cyrillic
windows-1254 : Microsoft Windows 1254 - Turkish
windows-1258 : Microsoft Windows 1258 - Viet Nam

is0-8859-1 : ISO 8859-1 - Latin 1 (Europe de 1’'ouest & USA)
is0-8859-15 : ISO 8859-15 - Latin 9 (Western Europe & USA)
iS0-8859-2 : ISO 8859-2 - Latin 2 (Eastern and Central Europe)
iS0-8859-3 : ISO 8859-3 - Latin 3 (Southern Europe)
is0-8859-4 : ISO 8859-4 - Latin 4 (Northern Europe)
is0-8859-5 : ISO 8859-5 - Cyrillic
iS0-8859-7 : ISO 8859-7 - Greek
is0-8859-9 : ISO 8859-9 - Latin 5 (Turkish)
is0-8859-10 : ISO 8859-10 - Latin 6 (Nordic)
next-step : NextStep code page
LITTLE-ENDIAN
BIG-ENDIAN
UTF8

11.6 Dico

Dico [OPTIONS] <dic_1> [<dic_2> <dic_3>...]

This program applies dictionaries to a text. The text must have been cut up into lexical units
by the Tokenize program.

OPTIONS:
o -t TXT /--text=TXT :complete.snt text file name;
e -a ALPH/--alphabet=ALPH : the alphabet file to use;

e -m DICS/--morpho=DICS : this optional parameter indicates which morphological
dictionaries are to be used, if needed by some .fst2 dictionaries. DICS represents a
list of .bin files (with full paths) separated with semi-colons.

<dic_i> represents the path and name of a dictionary. The dictionary must be a .bin dic-
tionary (obtained with the Compress program) or a dictionary graph in the .fst2 format
(see section 3.6, page 50). It is possible to give priorities to the dictionaries. For details see
section 3.6.1.

The program Dico produces the following files, and saves them in the directory of the text:

e dif : dictionary of simple words in the text;

e dlc : dictionary of compound words in the text;

11.7. ELAG 201

e err : list of unknown words in the text;
e tags.ind : sequences to be inserted in the text automaton (see section 3.6.3, page 51);

e stat_dic.n : file containing the number of simple words, the number of compound
words, and the number of unknown words in the text.

NOTE: Files dIf ,dlc and err are not sorted. Use the program SortTxt to sort them.

11.7 Elag
Elag [OPTIONS] <txtauto>

This program takes a .fSt2 text automaton <txtauto> and applies to it ambiguity re-
moval rules.

OPTIONS:
e -| LANG/--language=LANG : ELAG configuration file for the language of the text;
e - RULES/--rules=RULES :rule file compiled in the .rul format;
e -0 OUT/--output=OUT : output text automaton;

e -d DIR/--directory=DIR : directory where ELAG rules are located.

11.8 ElagComp
ElagComp [OPTIONS]

This program compiles the ELAG grammar named GRAMMARY all the grammars specified
in the RULESfile. The result is stored in the OUTfile that will be used by the Elag program.

OPTIONS:
e - RULES /--rules=RULES : file listing ELAG grammars;
¢ -g GRAMMAR--grammar=GRAMMAR single ELAG grammars;

e -| LANG /--language=LANG : ELAG configuration file for the language of the gram-
mar(s);

e -0 OUT/--output=OUT : output file. By default, the output file name is the same as
RULES except for the extension that is .rul ;

e -d DIR /--directory=DIR : directory where ELAG rules are located.

202 CHAPTER 11. USE OF EXTERNAL PROGRAMS
11.9 Evamb

Evamb [OPTIONS] <txtauto>

This program computes an average lexical ambiguity rate on the text automaton <txtauto>
or just on the sentence which number is specified by N. The results of the computation are
displayed on the standard output. The text automaton is not modified.

OPTIONS:

e -s N /--sentence=N :sentence number.

11.10 ExplodeFst2

ExplodeFst2 [OPTIONS] <txtauto>
This program computes and stores in OUTthe developed form of the text automaton <txtauto>

OPTIONS:

e -0 OUT/--output=OUT : output file. By default, OUTis made of <txtauto> with
-exp before the extension like: foo-exp.fst2

11.11 Extract

Extract [OPTIONS] <text>

This program extracts from the given text all sentences that contain at least one occurrence
from the concordance. The parameter <text> represents the complete path of the text file,
without omitting the extension .snt .

OPTIONS:
e -y /--yes : extracts all sentences containing matching units (default);
e -n /--no : extracts all sentences that don’t contain matching units;
e -0 OUT/--output=OUT : output text file;

e -i X /-index=X :the.ind file that describes the concordance. By default, Xis the
concord.ind file located in the text directory.

The result file is a text file that contains all extracted sentences, one sentence per line.

11.12. FLATTEN 203
11.12 Flatten

Flatten [OPTIONS] <fst2>

This program takes a .fSt2 grammar as its parameter, and tries to transform it into a final
state transducer.

OPTIONS:

o -f /--fst :the grammar is "unfolded" to the maximum depth and is truncated if there
are calls to sub-graphs. Truncated calls are replaced by void transitions. The result is
a.fst2 grammar that only contains a single finite state transducer;

e -r /--rtn : calls to sub-graphs that remain after the transformation are left as they are.
The result is therefore a finite state transducer in the favorable case, and an optimized

grammar strictly equivalent to the original grammar if not (default);
e -d N /--depth=N : maximum depth to which graph calls should be unfolded. The
default value is 10.
11.13 Fst2Grf

Fst2Grf [OPTIONS] <fst2>
This program extracts a sentence automaton in .grf ~ format from the given text automaton.

OPTIONS:
e -s N /--sentence=N : the number of the sentence to be extracted;

e -0 XXX/--output=XXX : pattern used to name output files XXX.grf and XXX.txt
(default=cursentence);

e -f FONT /--font=FONT : sets the font to be used in the output .grf
(default=Times new Roman).
The program produces the following two files and saves them in the directory of the text:

e cursentence.grf : graph representing the automaton of the sentence

e cursentence.txt : text file containing the sentence.

204 CHAPTER 11. USE OF EXTERNAL PROGRAMS
11.14 Fst2List
Fst2List [-0 out][-p s/f/d][-[a/t] s/m][-f s/a][-s "L,[R]"]

[-sO "Str][-v][-rx "L,[R]"] [l line#] [-i subname]*
[-c SS=0xxxx]* fname

This program takes a .fst2 file and lists the sequences recognized by this grammar. The
parameters are:

e fname : grammar name, including .fst2 ;
e -0 out :specifies the output file, Ist.txt by default;

e -[a/t] s/Im : indicates if the program must take into account (t) or not (a) the out-
puts of the grammars if any. S indicates that there is only one initial state, whereas m
indicates that there are several ones (this mode is useful in Korean). The default value
is-a s ;

e -l line# : maximum number of lines to be printed in the output file;

e -i subname : indicates that the recursive exploration must end when the program
enters in graph subname. This parameter can be used several times in order to specify
several stop graphs;

e -p s/f/d : s displays paths graph by graph; f (default) displays global paths; d
displays global paths with information on nested graph calls;

e -C SS=0xXXXX: replaces symbol SS when it appears between angle brackets by the
Unicode character whose hexadecimal number is OXXXXX

e -s "L[,R]" : specifies the left (L) and right (R) delimiters that will enclose items. By
default, no delimiters are specified;

e -sO "Str" : if the program must take outputs into account, this parameter specifies
the sequence Str that will be inserted between input and output. By default, there is
no separator;

o -f a/s :if the program must take outputs into account, this parameter specifies the
format of the lines that will be generated: in0 in1 out0 outl (s)orin0 out0 inl1 outl
(a). The default value is s;

e -v : prints information during the process (verbose mode);

e -rx "L,[R]" : specifies how cycles must be displayed. L and Rare delimiters. If we
consider the graph shown on Figure 11.1, here are the results for L="[" and R="]* ":

il fait [trés trés]*
il fait trés beau

11.15. FST2TXT 205

—[}—| il fait Dm{ heau D—@

Figure 11.1: Graph with a cycle

11.15 Fst2Txt

Fst2Txt [OPTIONS] <fst2>

This program applies a transducer to a text at the preprocessing stage, when the text has not
been cut into lexical units yet.

OPTIONS:
e -t TXT /--text=TXT :the text file to be modified, with extension .snt ;
e -a ALPH/--alphabet=ALPH : the alphabet file of the language of the text;

e -s /--start_on_space : this parameter indicates that the search will start at any
position in the text, even before a space. This parameter should only be used to carry
out morphological searches;

e -X /--dont_start_on_space : forbids the program to match expressions that start
with a space (default);

e -¢ /--char_by_char : works in character by character tokenization mode. This is
useful for languages like Thai;

e -w /--word_by_word : works in word by word tokenization mode (default);

Output options:

e -M/--merge : merge transducer outputs with text inputs (default);

e -R/--replace :replace texts inputs with corresponding transducer outputs.

This program modifies the input text file.

11.16 Fst2Unambig

Fst2Unambig [OPTIONS] <fst2>

This programs takes a .fst2 text automaton and produces an equivalent text file if the
automaton is linear (i.e. with no ambiguity). See section 7.5, page 149.

OPTIONS:
e -0 TXT /--out=TXT :the output text file.

206 CHAPTER 11. USE OF EXTERNAL PROGRAMS
11.17 Grf2Fst2

Grf2Fst2 [OPTIONS] graph

This program compiles a grammar into a .fst2 file (for more details see section 6.2). The
parameter graph denotes the complete path of the main graph of the grammar, without
omitting the extension .grf

OPTIONS:
e -y /--loop_check : enables error checking (loop detection);
e -n /--no_loop_check : disables error checking (default);

e -a ALPH/--alphabet=ALPH : specifies the alphabet file to be used for tokenizing
the content of the grammar boxes into lexical units;

e -c /--char_by_char :tokenization will be done character by character. If neither -c
nor -a option is used, lexical units will be sequences of any Unicode letters.

e -d DIR /--pkgdir=DIR : specifies the repository directory to use (see section 5.2.2,
page 76).

e -e /--no_empty_graph_warning : no warning will be emitted when a graph matches
the empty word. This option is used by MultiFlex in order not to scare users with

meaningless error messages when they design an inflection grammar that matches the
empty word.

The result is a file with the same name as the graph passed to the program as a parameter,
but with extension .fst2 . This file is saved in the same folder as graph .

11.18 ImplodeFst2

ImplodeFst2 [OPTIONS] <txtauto>
This program computes and stores in OUTthe compact form of the text automaton <txtauto>

OPTIONS:

e -0 OUT/--output=OUT : output file. By default, OUTis made of <txtauto> with
-imp before the extension like: foo-imp.fst2

11.19. LOCATE 207
11.19 Locate

Locate [OPTIONS] <fst2>

This program applies a grammar to a text and constructs an index of the occurrences found.

OPTIONS:

-t TXT /--text=TXT :complete path of the text file, without omitting the .snt ex-
tension;

-a ALPH /--alphabet=ALPH : complete path of the alphabet file;

-m DICS/--morpho=DICS : this optional parameter indicates which morphological
dictionaries are to be used, if needed by some .fst2 dictionaries. DICS represents a
list of .bin files (with full paths) separated with semi-colons;

-s /--start_on_space : this parameter indicates that the search will start at any
position in the text, even before a space. This parameter should only be used to carry
out morphological searches;

-X /--dont_start_on_space : forbids the program to match expressions that start
with a space (default);

-c /--char_by_char : works in character by character tokenization mode. This is
useful for languages like Thai;

-w /--word_by_word : works in word by word tokenization mode (default);

-d DIR /--sntdir=DIR : puts produced files in DIR instead of the text directory.
Note that DIR must end with a file separator (\ or/).

Search limit options:

-l /--all :looks for all matches (default);

-n N /--number_of_matches=N :stops after the first Nmatches.

Matching mode options:

-S /--shortest_matches ;
-L /--longest_matches (default);

-A /--all_matches

Output options:

-l /--ignore :ignore transducer outputs (default);

208 CHAPTER 11. USE OF EXTERNAL PROGRAMS

e -M/--merge : merge transducer outputs with text inputs;

e -R /--replace : replace texts inputs with corresponding transducer outputs.

Ambiguous output options:

e -b /--ambiguous_outputs : allows the production of several matches with same
input but different outputs (default);

e -z /--n0_ambiguous_outputs : forbids ambiguous outputs. In case of ambiguous
outputs, one will be arbitrarily keeped, depending on the internal state of the program.

Variable error options

These options have no effect if the output mode is set with --ignore ; otherwise, they rule
the behavior of the Locate program when an output is found that contains a reference to a
variable that is not correctly defined.

e -X /--exit_on_variable_error : kills the program,;

e -Y /--ignore_variable_errors : acts as if the variable has an empty content (de-
fault);

e -Z /--backtrack_on_variable_errors : stop exploring the current path of the
grammar.

This program saves the references to the found occurrences in a file called concord.ind
The number of occurrences, the number of units belonging to those occurrences, as well
as the percentage of recognized units within the text are saved in a file called concord.n
These two files are stored in the directory of the text.

11.20 MergeTextAutomaton

MergeTextAutomaton <txtauto>

This program reconstructs text automaton <txtauto> taking into account the manual mod-
ifications. If the program finds a file sentenceN.grf ~ in the same directory as <txtauto> ,
it replaces the automaton of sentence N with the one represented by sentenceN.grf . The
<txtauto> file is replaced by the new text automaton. The old text automaton is backed
up in a file called text.fst2.bck

11.21. MULTIFLEX 209
11.21 MultiFlex

MultiFlex [OPTIONS] <dela>

This program carries out the automatic inflection of a DELA dictionary containing simple
(see section 3.1.2) or compound word lemmas (see chapter 10).

OPTIONS:
e -0 DELAF /--output=DELAF : output DELAF file;
e -a ALPH/--alphabet=ALPH : alphabet file;

e -d DIR /--directory=DIR : the directory containing Morphology and Equivalences
files and inflection graphs for single and compound words.

Note that .fst2 inflection transducers will automatically be built from corresponding .grf
files if absent or older than .grf files.

11.22 Normalize
Normalize [OPTIONS] <text>

This program carries out a normalization of text separators. The separators are space, tab,
and newline. Every sequence of separators that contains at least one newline is replaced by
a unique newline. All other sequences of separators are replaced by a single space.

This program also checks the syntax of lexical tags found in the text. All sequences in curly
brackets should be either the sentence delimiter {S} , the stop marker {STOP}, or valid
entries in the DELAF format ({aujourd’hui,.ADV}).

Parameter <text> represents the complete path of the text file. The program creates a
modified version of the text that is saved in a file with extension .snt .

OPTIONS:
e -n /--no_carridge_return : every separator sequence will be turned into a single
space;
o -1 XXX /--replacement_rules=XXX : specifies the normalization rule file to be used.

See section 12.11.5 for details about the format of this file. By default, the program only
replaces{ and } by [and].

WARNING: if you specify a normalization rule file, its rules will be applied prior to anything
else. So, you have to be very careful if you manipulate separators in such rules.

210 CHAPTER 11. USE OF EXTERNAL PROGRAMS
11.23 PolyLex

PolyLex [OPTIONS] <list>

This program takes a file containing unknown words <list> and tries to analyse each of
the words as a compound obtained by concatenating simple words. The words that have at
least one analysis are removed from the file of unknown words and the dictionary lines that
correspond to the analysis are appended to file OUT

OPTIONS:
e -a ALPH/--alphabet=ALPH : the alphabet file to use;
e -d BIN /--dictionary=BIN : .bin dictionary to use;

e -0 OUT/--output=OUT : designates the file in which the produced dictionary lines
are to be printed; if that file already exists, the produced lines are appended at the end
of the file;

e -i INFO /--info=INFO : designates a text file in which the information about the
analysis has been produced.

Language options:
e -D /--dutch
e -G/--german
e -N/--norwegian
e -R/--russian
NOTE: for Dutch or Norwegian words, the program tries to read a text file containing a list

of forbidden words. This file is supposed to be named ForbiddenWords.txt (see section
12.11.6) and stored in the same directory than BIN.

11.24 Reconstrucao

Reconstrucao [OPTIONS] <index>

This program generates a normalization grammar designed to be applied before the con-
struction of an automaton for a Portuguese text. The <index> file represents a concordance
which has to be produced by applying in MERGE mode to the considered text a grammar
that extracts all forms to be normalized. This grammar is called V-Pro-Suf , and is stored
in the /Portuguese/Graphs/Normalization directory.

OPTIONS:

11.25. REG2GRF 211
e -a ALPH/--alphabet=ALPH : the alphabet file to use;

e -1 ROOT/--root=ROOQOT : the inverse .bin dictionary to use to find forms in the fu-
ture and conditional given their canonical forms. It has to be obtained by compressing
the dictionary of verbs in the future and conditional with the parameter --flip (see
section 11.2);

e -d BIN /--dictionary=BIN : the .bin dictionary to use;

e -p PRO/--pronoun_rules=PRO : the .fst2 grammar describing pronoun rewrit-
ing rules;

e -n PRO/--nasal_pronoun_rules=PRO :the .fst2 grammar describing nasal pro-

noun rewriting rules;

e -0 OUT/--output=OUT : the name of the .grf graph to be generated.

11.25 Reg2Grf

Reg2Grf <txt>

This program constructs a .grf file corresponding to the regular expression written in file
<txt> . The parameter <txt> represents the complete path to the file containing the regular
expression. This file needs to be a Unicode text file. The program takes into account all

characters up to the first newline. The result file is called regexp.grf and is saved in the
same directory as <txt> .

11.26 SortTxt
SortTxt [OPTIONS] <txt>

This program carries out a lexicographical sorting of the lines of file <txt> . <txt> repre-
sents the complete path of the file to be sorted.

OPTIONS:
e -n /--no_duplicates : remove duplicate lines (default);
e -d /--duplicates : remove duplicate lines;

e - /--reverse :sortin descending order;

e -0 XXX /--sort_order=XXX :sorts using the alphabet of the order defined by file
XXX If this parameter is missing, the sorting is done according to the order of Unicode
characters;

o -| XXX /--line_info=XXX : backup the number of lines of the result file in file XXX

212 CHAPTER 11. USE OF EXTERNAL PROGRAMS
e -t /-thai : option for sorting Thai text.

The input text file is modified. By default, the sorting is performed in the order of Unicode
characters, removing duplicate lines.

11.27 Table2Grf

Table2Grf [OPTIONS] <table>

This program automatically generates graphs from a lexicon-grammar <table> and a tem-
plate graph.

OPTIONS:
e -1 GRF /--reference_graph=GRF :name of the template graph;

e -0 OUT/--output=OUT : name of the result main graph;

e -5 XXX /--subgraph_pattern=XXX : if this optional parameter if specified, all the
produced subgraphs will be named according to this pattern. In order to have un-
ambiguous names, we recommend to include @%n the parameter (remind that @%
will be replaced by the line number of the entry in the table). For instance, if you
set the pattern parameter to ‘subgraph-@%.grf ’, subgraph names will be such as

‘subgraph-0013.grf ’. By default, subgraph names look like "result_0013.grf ,
where "result.grf " designates the result main graph.

11.28 TagsetNormkFst2

TagsetNormFst2 [OPTIONS] <txtauto>

This program normalizes the specified .fst2 text automaton according to a tagset de-
scription file, discarding undeclared dictionary codes and incoherent lexical entries. Inflec-

tional features are unfactorized so that {rouge,.A:fs:ms} will be divided into the 2 tags
{rouge,.A:fs} and {rouge,.A:ms} . The text automaton is modified.
OPTIONS:

o -t TAGSET /--tagset=TAGSET : name of the tagset description file.

11.29 TEI2Txt

TEI2Txt [OPTIONS] <xml>
Produces a raw text file from the given <xml> TEI file.

OPTIONS:

e -0 TXT /--output=TXT :name of the output text file. By default, the output file has
the same name than the input one, replacing .xml by .txt

11.30. TOKENIZE 213
11.30 Tokenize

Tokenize [OPTIONS] <txt>

This program tokenizes a tet text into lexical units. <txt> the complete path of the text file,
without omitting the .snt extension.

OPTIONS:
e -a ALPH/--alphabet=ALPH :alphabet file;

e ¢ /--char_by_char : indicates whether the program is applied character by char-
acter, with the exceptions of the sentence delimiter {S} , the stop marker {STOP} and
lexical tags like {today,.ADV} which are considered to be single units;

e -w/--word_by_word :with this option, the program considers a unit to be either a se-
quence of letters (the letters are defined by file alphabet), or a character which is not
a letter, or the sentence separator {S} , or a lexical label like {aujourd’hui,. ADV}
This is the default mode.

The program codes each unit as a whole. The list of units is saved in a text file called
tokens.txt . The sequence of codes representing the units now allows the coding of the
text. This sequence is saved in a binary file named text.cod . The program also produces
the following four files:

e tok_by_freq.txt : text file containing the units sorted by frequency;
e tok_by_alph.txt : text file containing the units sorted alphabetically;

e stats.n : text file containing information on the number of sentence separators, the
number of units, the number of simple words and the number of numbers;

e enter.pos : binary file containing the list of newline positions in the text. The coded
representation of the text does not contain newlines, but spaces. Since a newline counts
as two characters and a space as a single one, it is necessary to know where newlines
occur in the text when the positions of occurrences located by the Locate program are
to be synchronized with the text file. File enter.pos is used for this by the Concord
program. Thanks to this, when clicking on an occurrence in a concordance, it is cor-
rectly selected in the text. File enter.pos is a binary file containing the list of the
positions of newlines in the text.

All produced files are saved in the text directory.

214 CHAPTER 11. USE OF EXTERNAL PROGRAMS
11.31 Txt2Fst2

Txt2Fst2 [OPTIONS] <txt>

This program constructs an automaton of a text. <txt> represents the complete path of a
text file without omitting the .snt extension.

OPTIONS:
e -a ALPH/--alphabet=ALPH :alphabet file;

e -C /--clean :indicates whether the rule of conservation of the best paths (see section
7.2.4) should be applied;

e -n XXX /--normalization_grammar=XXX :name of a normalization grammar that
is to be applied to the text automaton.

If the text is separated into sentences, the program constructs an automaton for each sen-
tence. If this is not the case, the program arbitrarily cuts the text into sequences of 2000
lexical units and produces an automaton for each of these sequences.

The result is a file called text.fst2 which is saved in the directory of the text.

NOTE: The program will also try to use the tags.ind file, if any (see section 12.7.3).

11.32 XMLizer
XMLizer [OPTIONS] <txt>

This program takes the raw text file <txt> and produces a corresponding basic TEI or XML
file. The difference between TEI and XML is that TEI files will contain a TEI header.

OPTIONS:
e -X /--xml : produces a XML file;
e -t /--tei :produces a TEI file (default);

e -n XXX /--normalization=XXX : specify the normalization rule file to be used (see
section 12.11.5);

e -0 OUT/--output=OUT :optional output file name (default: file.txt > file.xml),
e -a ALPH/--alphabet=ALPH : alphabet file;

e -s SEG/--segmentation_grammar=SEG :sentence delimitation grammar to be used.
This grammar should be like the Sentence.grf ~ one used during the preprocessing
of a corpus, but it can include the special tag {P} to indicate paragraph bounds.

Chapter 12

File formats

This chapter presents the formats of files read or generated by Unitex. The formats of the
DELAS and DELAF dictionaries have already been presented in sections 3.1.1 and 3.1.2.

NOTE: In this chapter the symbol § represents the newline symbol. Unless otherwise indi-
cated, all text files described in this chapter are encoded in Unicode Little-Endian.

12.1 Unicode Little-Endian encoding

All text files processed by Unitex have to be encoded in Unicode Little-Endian. This en-
coding allows the representation of 65536 characters by coding each of them in 2 bytes. In
Little-Endian, the bytes are in lo-byte hi-byte order. If this order is reversed, we speak of
Big-Endian. A text file encoded in Unicode Little-Endian starts with the special character
with the hexadecimal value FEFF. The newline symbols have to be encoded by the two
characters 000D and 000A.

Consider the following text:

Unitex 4
p-version ¢

Here is its representation in Unicode Little-Endian:

header U n i t e X q 8
FFFE | 5500 | 6EO0 | 6900 | 7400 | 6500 | 7800 | ODOOOAOQO B203
- v e r S i o) n q
2D00 | 7600 | 6500 | 7200 | 7300 | 6900 | 6F00 6E00 0DO00AOQO

Table 12.1: Hexadecimal representation of a Unicode text

The hi-bytes and lo-bytes have been reversed, which explains why the start character is
encoded as FFFE in stead of FEFF, and 000D and OOOAare 0D00 and OAQO respectively.

215

216 CHAPTER 12. FILE FORMATS
12.2 Alphabet files

There are two kinds of alphabet files: a file which defines the characters of a language, and a
file that indicates the sorting preferences. The first is designed under the name alphabet, the
second under the name sorted alphabet.

12.2.1 Alphabet

The alphabet file is a text file that describes all characters of a language, as well as the corre-
spondances between capitalized and non-capitalized letters. This file is called Alphabet.txt
and is found in the root of the directory of a language. Its presence is obligatory for Unitex
to function.

Example: the English alphabet file has to be in the directory .../English/

Each line of the alphabet file must have one of the following three forms, followed by a
newline symbol:

o #7t2 . 4 hash symbol followed by two characters X and Y which indicate that all
characters between X and Y are letters. All these characters are considered to be in
non-capitalized and capitalized form at the same time. This method is used to define
the alphabets of Asian languages like Korean, Chinese or Japanese where there is no
distinction between upper- and lower-case, and where the number of characters makes
a complete enumeration tedious;

e Eé&: two characters X and Y indicate that X and Y are letters and that X is a capital-
ized equivalent of the non-capitalized Y form.

e U: a unique character X defines X as a letter in capitalized and non-capitalized form.
This form is used to define a single Asian character.

For certain languages like French, it is possible that a lower-case letter corresponds to mul-
tiple upper-case letters. For example, &, in practice, can have the upper-case form E or E. To
express this, it suffices to use multiple lines. The reverse is equally true: a capitalized letter
can correspond to multiple lower-case letters. Thus, E can be the capitalization of e, €, e,
€ or €. Here is an excerpt of the French alphabet file which defines different properties of
letter e:

Eeq
Eéq
Eéq
Eéq
Eeq
Eéq
Eeq
Eéq
Eeq

12.3. GRAPHS 217
12.2.2 Sorted alphabet

The sorted alphabet file defines the sorting priorities of the letters of a language. It is used
by the SortTxt program. Each line of that file defines a group of letters. If a group of letters
A is defined before a group of letters B, every letter of group A is inferior to every letter in
group B.

The letters of a group are only distinguished if necessary. For example if the group of letters
eéeéé has been defined, the word ébahi should be considered ’smaller’ than estuaire
and also ‘smaller” than été . Since the letters that follow e and € determine the order of the
words, it is not necessary to compare letters € and € since they are of the same group. On
the other hand, if the words chantés and chantes are to be sorted, chantes should be
considered as ‘smaller’. It is therefore necessary to compare the letters e and € to distin-
guish these words. Since the letter e appears first in the group e€eég, it is considered to be
‘smaller’ than chantés . The word chantes should therefore be considered to be ‘smaller’
than the word chantés .

The sorted alphabet file allows the definition of equivalent characters. It is therefore possible
to ignore the different accents as well as capitalization. For example, if the letters b, ¢, and
d are to be ordered without considering capitalization and the cedilla, it is possible to write
the following lines:

BbY

CcCceS
DAY

This file is optional. If no sorted alphabet file is specified, the SortTxt program sorts in the
order of the Unicode encoding.

12.3 Graphs

This section presents the two graph formats: the graphic format .grf and the compiled
format .fst2

12.3.1 Format .grf

A .grf file is a text file that contains presentation information in addition to information
representing the contents of the boxes and the transitions of the graph. A .grf file begins
with the following lines:

#Unigraph ¢

SIZE 1313 950 ¢

FONT Times New Roman: 129
OFONT Times New Roman:B 124
BCOLOR 16777219

FCOLOR §

ACOLOR 12632256
SCOLOR 16711680

CHAPTER 12. FILE FORMATS

CCOLOR 25%
DBOXES
DFRAME §
DDATE f
DFILE y q
DDIR yq
DRIG nq
DRST
FITS 100 q
PORIENT LY

#9

The first line #Unigraph is a comment line. The following lines define the parameter values
of the graph presentation:

SIZE x y : defines the width x and the hight y of a graph in pixels;

FONT name:xyz : defines the font used for displaying the contents of the boxes. name
represents the name of the mode. x indicates if the text should be in bold face or not.
If x is B, it indicates that it should be bold. For non-bold face, x should be a space. In
the same way, y has value | if the text should be italic, a space if not. z represents the
size of the text;

OFONT name:xyz : defines the mode used for displaying transducer outputs. Param-
eters name, X, y, and z are defined in the same way as FONT,

BCOLOR x defines the background color of the graph. "x” represents the color in RGB
format;

FCOLOR x defines the foreground color of the graph. 'x” represents the color in RGB
format;

ACOLOR x defines the color inside the boxes that correspond to the calls of sub-
graphs. X represents the color in RGB format;

SCOLOR x defines the color used for writing in comment boxes (boxes that are not
linked up with any others). X represents the color in RGB format;

CCOLOR xdefines the color used for designing selected boxes. X represents the color
in RGB format;

DBOXES x this line is ignored by Unitex. It is conserved to ensure compatibility with
Intex graphs;

DFRAME x there will be a frame around the graph if X is y, not if it is n;

DDATE x: puts the date at the bottom of the graph if X is y, not if it is n;

12.3. GRAPHS 219

e DFILE x : puts the name of the file at the bottom of the graph depending on whether
X isy or n;

e DDIR x: prints the complete path of the graph wether X is y or n. This option has no
effect if the DFILE option is set to n;

e DRIG x: displays the graph from right to left or left to right depending on whether x
isy orn;

e DRST x: this line is ignored by Unitex. It isconserved to ensure compatibility with
Intex graphs;

e FITS x : this line is ignored by Unitex. It isconserved to ensure compatibility with
Intex graphs;

e PORIENT x: this line is ignored by Unitex. It isconserved to ensure compatibility
with Intex graphs;

: this line is ignored by Unitex. It serves to indicate the end of the header information.

The lines after the header give the contents and the position of the boxes in the graph. The
following example corresponds to a graph recognizing a number:

39

"<E>" 84 248 1 2 ¢

" 272 248 0

S"142+3+4+5+6+7+8+9+0" 172 248 1 1 ¢

The first line after the header indicates the number of boxes in the graph, immediately fol-
lowed by a newline. This number can not be lower than 2, since a graph always has an
initial and a final state.

The following lines define the boxes of the graph. The boxes are numbered starting at 0. By
convention, state 0 is the initial state and state 1 is the final state. The contents of the final
state is always empty.

Each box in the graph is defined by a line that has the following format:
contents X Y N transitions §

contents is a sequence of characters enclosed in quotation marks that represents the contents
of the box. This sequence can sometimes be preceded by an s if the graph is imported from
Intex; this character is then ignored by Unitex. The contents of the sequence is the text that
has been entered in the editing line of the graph editor. Table 12.2 shows the encoding of
two special sequences that are not encoded in the same way as they are entered into the
.grf files:

220 CHAPTER 12. FILE FORMATS
Sequence in the graph editor | Sequence in the .grf file
n \II
\" W

Table 12.2: Encoding of special sequences

NOTE: The characters between < and > or between { and } are not interpreted. Thus the
+ character in sequence "le <A+Conc>" is not interpreted as a line separator, since the
pattern <A+Conc> is interpreted with priority.

X and Y represent the coordinates of the box in pixels. Figure 12.1 shows how these coordi-
nates are interpreted by Unitex.

(0,0)

 J

x.y) @

y

Y

Figure 12.1: Interpretation of the coordinates of boxes

N represents the number of outgoing transitions of the box. This number is always 0 for the
final state.

The transitions are defined by the number of their target box.

Every line of the box definition ends with a newline.

12.3.2 Format .fst2

An fst2 file is a text file that describes a set of graphs. Here is an example of an .fst2
file:

0000000002 9
-1 NP

12.3. GRAPHS 221
11 9

12222 ¢

133 ¢

tq
fq

-2 Adj g
615141 ¢
tq

fq

%<EX
%the/DET ¢
%<A>/ADJY
%<NS

%nice

@pretty q

%small q

fq

The first line represents the number of graphs that are encoded in the file. The beginning
of each graph is identified by a line that indicates the number and the name of the graph
(-1 NP and -2 Adj in the file above).

The following lines describe the states of the graph. If the state is final, the line starts with
the t character and with the : character if not. For each state, the list of transitions is a
possibly empty sequence of pairs of integers:

e the first integer indicates the number of the label or sub-graph that corresponds to the
transition. Labels are numbered starting at 0. Sub-graphs are represented by nega-
tive integers, which explains why the numbers preceding the names of the graphs are
negative;

e the second integer represents the number of the result state after the transition. In each
graph, the states are numbered starting at 0. By convention state 0 is the initial state.

Each state definition line terminates with a space. The end of each graph is marked by a line
containing an f followed by a space and a newline.

Labels are defined after the last graph. If the line begins with the @character, the contents
of the label is to be searched without allowing case variations. This information is not used
if the label is not a word. If the line starts with a % capitalization variants are authorized. If
a label carries a transducer output sequence, the input and output sequences are separated
by the / character (example: the/DET). By convention, the first label is always the empty
word (<E>), even if that label is never used for any transition.

The end of the file is indicated by a line containing the f character followed by a newline.

222 CHAPTER 12. FILE FORMATS
12.4 Texts

This section presents the different files used to represent texts.

12.4.1 .txt files

Axt files are text files encoded in Unicode Little-Endian. These files should not contain
any opening or closing braces, except for those used to mark a sentence separator ({S}) or a
valid lexical tag ({aujourd’hui,. ADV}). The newline needs to be encoded with the two
special characters with hexadecimal values 000D and 000A.

12.4.2 .snt Files

.snt files are .txt files that have been processed by Unitex. These files should not contain
any tabs. They should also not contain multiple consecutive spaces or newlines. The only
allowed braces in .snt files are those of the sentence delimiter {S} and those of lexical
labels ({aujourd’hui,. ADV})-

12.4.3 File text.cod

The text.cod file is a binary file containing a sequence of integers that represent the text.
Each integer i reflects the token with index i in the tokens.txt file. These integers are
encoded in four bytes.

NOTE: Tokens are numbered starting at 0.

12.4.4 The tokens.txt file

The tokens.txt file is a text file that contains the list of all lexical units of the text. The
first line of this file indicates the number of units found in the file. Units are separated by a
newline. Whenever a sequence is found in the text with capitalization variants, each variant
is encoded as a distinct unit.

NOTE: Newlines that might be in the .snt file are encoded like spaces. Therefore there is
no unit encoding the newline.

12.4.5 The tok_by_alph.txt and tok_by_freq.txt files

These two files are text files that contain the list of lexical units sorted alphabetically or by
frequence.

In the tok_by_alph.txt file, each line is composed by a unit, followed by a tab and the
number of occurrences of the unit within the text.

The lines of the tok_by_freq.txt file are formed after the same principle, but the number
of occurrences is placed after the tab and the unit.

12.5. TEXT AUTOMATON 223
12.4.6 The enter.pos file

This file is a binary file containing the list of positions of the newline symbol in the .snt
tile. Each position is the index in the text.cod file where a newline has been replaced by a
space. These positions are integers that are encoded in 4 bytes.

12.5 Text Automaton

12.5.1 The text.fst2 file

The text.fst2 file is a special .fst2 file that represents the text automaton. In that file,
each sub-graph represents a sentence automaton. The areas reserved for the names of the
sub-graphs are used to store the sentences from which the sentence automata have been
constructed.

With the exception of the first label which is always the empty word (<E>), the labels have
to be either lexical units or entries in the DELAF format in braces.

Example: Here is the file that corresponds to the text He is drinking orange juice.

0000000001 ¢

-1 He is drinking orange juice. q
1121 ¢

13242 ¢

536373 ¢
18494104115 ¢
1125135 ¢

146 ¢

t 9

fq

%<E|

%{He,he.N:s:p} ¢

%{He,he.PRO+Nomin:3ms} ¢

%f{is,be.V:P3s} ¢

%fis,i.N:p} q

%({drinking,drinking.A} q
%{drinking,drinking.N:s} q
%({drinking,drink.V:G} q
%q{orange,orange.A} q
%{orange,orange.N+Conc:s} q
%q{orange,orange.N:s} q

%{orange juice,orange juice.N+XN+zl:s} q
%({juice,juice.N+Conc:s} q
%f{juice,juice.V:W:P1s:P2s:P1p:P2p:P3p} q
%.9

fq

224 CHAPTER 12. FILE FORMATS
12.5.2 The cursentence.grf file

The cursentence.grf file is generated by Unitex during the display of a sentence au-
tomaton. The Fst2Grf program constructs a .grf file from the text.fst2 file that repre-
sents a sentence automaton.

12.5.3 The sentenceN.grf file

Whenever the user modifies a sentence automaton, that automaton is saved under the name
sentenceN.grf , where Nrepresents the number of the sentence.

12.5.4 The cursentence.txt file

During the extraction of the sentence automaton, the text of the sentence is saved in the file
called cursentence.txt . That file is used by Unitex to display the text of the sentence
under the automaton. That file contains the text of the sentence, followed by a newline.

12.6 Concordances

12.6.1 The concord.ind file

The concord.ind file is the index of the occurrences found by the program Locate during
the application of a grammar. It is a text file that contains the starting and ending position
of each occurrence, possibly accompanied by a sequence of letters if the construction of the
concordance took into account the possible transducer outputs of the grammar. Here is an
example of such a file:

#MY
59 63 the[ADJ= greater] part q
67 71 the beautiful hills q

87 91 the pleasant town q
123 127 the noble seats q
157 161 the fabulous Dragon q
189 193 the Civil Wars q

455 459 the feeble interference q
463 467 the English Council q
568 572 the national convulsions q
592 596 the inferior gentry q
628 632 the English constitution q

698 702 the petty kings q
815 819 the certain hazard q
898 902 the great Barons ¢
940 944 the very edge ¢

The first line indicates in which transduction mode the concordance has been constructed.
The three possible values are:

12.6. CONCORDANCES 225

e #| :transducer outputs have been ignored;

e #M: transducer outputs have been inserted before the corresponding inputs (MERGE
mode);

e #R: transducer outputs have replaced the recognized sequences (REPLACE mode)).

Each occurrence is described in one line. The lines start with the start and end position of
the occurrence. These positions are given in lexical units.

If the file has the heading line #l , the end position of each occurrence is immediately fol-
lowed by a newline. Otherwise, it is followed by a space and a sequence of characters. In
REPLACE mode, that sequence corresponds to the output produced for the recognized se-
quence. In MERGE mode, it represents the recognized sequences into which the outputs
have been inserted. In MERGE or REPLACE mode, this sequence is displayed in the con-
cordance. If the outputs have been ignored, the contents of the occurrence is extracted from
the text file.

12.6.2 The concord.txt file

The concord.txt file is a text file that represents a concordance. Each occurrence is en-
coded in a line that is composed of three character sequences separated by a tab, represent-
ing the left context, the occurrence (possibly modified by transducer outputs) and the right
context.

12.6.3 The concord.html file

The concord.html file is an HTMLfile that represents a concordance. This file is encoded
in UTF-8.

The title of the page is the number of occurrences it describes. The lines of the concor-
dance are encoded as lines where the occurrences are considered to be hypertext lines. The
reference associated to each of these lines has the following form:

X and Y represent the start and end position of the occurrence in characters in the file
name_of_text.snt . Z represents the number of the phrase in which this occurrence ap-
pears.

All spaces that are at the left and right edges of lines are encoded by a non breaking space
(in HTML), which allows the preservation of the alignment of the utterances even
if one of them has a left context with spaces.

NOTE: If the concordance has been constructed with the glossanet parameter, the HTML
file has the same structure, except for the links. In these concordances, the occurrences are
real links pointing at the web server of the GlossaNet application. For more information on
GlossalNet, consult the link on the Unitex web site.

226 CHAPTER 12. FILE FORMATS

Here is an example of a file:

<html lang=en> ¢

<head> ¢
9
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>6 matches</title> q
</head> ¢
<body> q
<table border="0" width="100%"><td nowrap> q
 q
on, there extended i
 q
 extended in ancient
 q
 Scott {S}IN THAT PL
 q
STRICT of merry Engl
 q
S}HN THAT PLEASANT D
 q
 which is watered by
 q
<ffont> ¢
</td></table></body> q
</html> ¢

Figure 12.2 shows the page that corresponds to the file below.

] concordance: Di.. 5° @ [

MLITEE, L'AUTEE -
TRE COMME DOMESTIQUE]
_, Etait hahitée
"IN COMME MAiTRE
1'an des membres
la maison portant —

Ll L]

Figure 12.2: Example of a concordance

12.6.4 The diff.html file

The diff.html file is an HTMLfile that presents the differences between two concordances.
This file is encoded in UTF-8. Here is an example of file (new lines have been introduced for
presentation convenience):

<html>

<head>

<meta http-equiv="Content-Type" content="text/html;
charset=UTF-8">

12.7. TEXT DICTIONARIES

<style type="text/css">

a.blue {color:blue; text-decoration:underline;}

a.red {color:red; text-decoration:underline;}

a.green {color:green; text-decoration:underline;}

</style>

</head>

<body>

<h4>

Blue: identical sequences

Red: similar but different sequences

Green: sequences that occur in only
one of the two concordances

<table border="1" cellpadding="0" style="font-family. Courier new;
font-size: 12">

<tr><td width="450">ed in ancient times
<u>a large forest</u>, covering the greater par</td>

<td width="450">ed in ancient times

<u>a largeforest</u>, covering the greater par</td>

</tr>

<tr><td width="450">ge forest, covering
<u>the greater part</u> of the beautiful hills
</td>

<td width="450"></td>

</tr>

</table>

</body>

</html>

12.7 Text dictionaries

The Dico program produces several files that represent text dictionaries.

12.7.1 dlf and dlc

227

dif anddlc are simple and compound word dictionaries in the DELAF format (see section

3.1.1).

12.7.2 err

This file is made of unkown words, one per line.

12.7.3 tags.ind

This file has the same format than a concord.ind one obtained in MERGE or REPLACE

mode, but its header is #T. Note that the outputs DO NOT BEGIN with a slash.

228 CHAPTER 12. FILE FORMATS
12.8 Dictionaries

The compression of the DELAF dictionaries by the Compress program produces two files:
a .bin file that represents the minimal automaton of the inflected forms of the dictionaries,
and a .inf file that contains the compressed forms required for the construction of the
dictionaries from the inflected forms. This section describes the format of these two file
types, as well as the format of the CHECK_DIC.TXT file, which contains the result of the
verification of a dictionary.

12.8.1 The .bin files

A .bin file is a binary file that represents an automaton. The first 4 bytes of the file represent
an integer that indicates the size of the file in bytes. The states of the automaton are encoded
in the following way:

e the first two bytes indicate if the state is final as well as the number of its outgoing
transitions. The highest bit is 0 if the state is final, 1 if not. The other 15 bits encode the
number of transitions.

Example: a non-final state with 17 transitions is encoded by the hexadecimal sequence
8011

e if the state is final, the three following bytes encode the index in the .inf file of the
compressed form to be used to reconstruct the dictionary lines for this inflected form.

Example: if the state refers to the compressed form with index 25133, the correspond-
ing hexadecimal sequence is 00622D

e each leaving transition is then encoded in 5 bytes. The first 2 bytes encode the character
that labels the transition, and the three following encode the byte position of the result
state in the .bin file. The transitions of a state are encoded next to each other.

Example: a transition that is labeled with the Aletter and goes to the state of which the
description starts at byte 50106, is represented by the hexadecimal sequence 004100C3BA.

By convention, the first state of the automaton is the initial state.

12.8.2 The .inf files

A .inf fileis a text file that describes the compressed files that are associated to a .bin file.
Here an example of a .inf file:

0000000006 9
_100\0\7.N

12.8. DICTIONARIES 229

.PREPY

_3.PREPY

.PREP, 3.PREP ¢
1-1.N+Hum:mp §

3er 1.N+AN+Hum:fs ¢

The first line of the file indicates the number of compressed forms that it contains. Each line
can contain one or more compressed forms. If there are multiple forms, they are separated
by commas. Each compressed form is made up of a sequence required to reconstruct a
canonical knowing an inflected form, followed by a sequence of grammatical, semantic and
inflection codes that are associated to the entry.

The mode of compression of the canonical form varies in function of the inflected form. If
the two forms are identical, the compressed form contains only the grammatical, semantic
and inflectional information as in:

.N+Hum:ms

If the forms are different, the compression program cuts up the two forms in units. These
units can be a space, a hyphen, or a sequence of characters that contains neither a space nor
a hyphen. This way of cutting up units allows the program to efficiently take into account
the inflected forms of the compound words.

If the inflected and the canonical form do not have the same number of units, the program
encodes the canonical form by the number of characters to be removed from the inflected
form followed by the characters to append. For instance, the line below is a line in the initial
dictionary:

James Bond,007.N

Since the sequence James Bond contains three units and 007 only one, the canonical form
is encoded with _10\0\0O\7 . The _ character indicates that the two forms do not have the
same number of units. The following number (here 10) indicates the number of characters
to be removed. The sequence \O\O\7 indicates that the sequence 007 should be appended.
The digits are preceeded by the \ character so they will not be confused with the number of
characters to be removed.

Whenever the two forms have the same number of units, the units are compressed two
by two. Each pair consists of a unit the inflected form and the corresponding unit in the
canonical form. If each of the two units is a space or a hyphen, the compressed form of the
unit is the unit itself, as in the following line:

0-1.N:p

which is the output for battle-axes,battle-axe.N:p

230 CHAPTER 12. FILE FORMATS

This maintains a certain readability of the .inf file when the dictionary contains compound
words.

Whenever one or both of the units in a pair is neither a space nor a hyphen, the compressed
form is composed of the number of characters to be removed followed by the sequence of
characters to be appended. Thus, the dictionary line:

premiére partie,premier parti.N+AN+Hum:fs
is encoded by the line:
3er 1.N+AN+Hum:fs

The 3er code indicates that 3 characters are to be removed from the sequence premiére
and the characters er are to be appended to obtain premier . The 1 indicates that only
one character needs to be removed from partie to obtain parti . The number 0 is used
whenever it needs to be indicated that no letter should be removed.

12.8.3 Dictionary information file

In the "Apply lexical resources" frame, it is possible for some dictionaries to get some infor-
mation with a right click. Such information is attached to a biniou.bin or biniou.fst2
dictionary by the mean of a raw text file named biniou.txt ~ , located in the same directory.

12.8.4 The CHECK_DIC.TXT file

This file is produced by the dictionary verification program CheckDic . It is a text file that
contains information about the analysed dictionary and has four parts.

The first part is the possibly empty list of all syntax errors found in the dictionary: absence
of the inflected or the canonical form, the grammatical code, empty lines, etc. Each error is
described by the number of the line, a message describing the error, and the contents of the
line. Here is an example of a message:

Line 12451: no point found
garden,N:s

The second and third parts display the list of grammatical codes and/or semantic and inflec-
tional codes respectively. In order to prevent coding errors, the program reports encodings
that contain spaces, tabs, or non-ASCII characters. For instance, if a Greek dictionary con-
tains the ADVcode where the Greek A character is used instead of the Latin A character, the
program reports the following warning:

ADV warning: 1 suspect char (1 non ASCII char): (0391 D V)

12.8. DICTIONARIES 231

Non-ASCII characters are indicated by their hexadecimal character number. In the example
below, the code 0391 represents Greek A. Spaces are indicated by the SPACEsequence:

Km s warning: 1 suspect char (1 space): (K m SPACE s)

When the following dictionary is checked:

1,2 et 3!I,..INTJ

abracadabra,INTJ
supercalifragilisticexpialidocious,.INTJ
damned,. INTJ

the following CHECK_DIC.TXT file is obtained:

Line 1. unprotected comma in lemma q
1,2 et 3!.INTJ q

Line 2: no point found q
abracadabra,INTJ q

---- All chars used in forms ---- q

(0020)
I (0021)
, (002C)
1 (0031)
2 (0032)
3 (0033)
| (0049)
J (004A)
N (004E)
T (0054)
a (0061)
b (0062)
c (0063)
d (0064)
e (0065)
f (0066)
g (0067)
i (0069)
| (006C)
m (006D)
n (006E)
o (006F)
p (0070)

A _A_A4_A4_A4A_A4_A_A4_4_A2_4_4_4_4_4_4._4._4._4_4_4._4a._2

232 CHAPTER 12. FILE FORMATS

r (0072) ¢
s (0073) ¢
t (0074) ¢
u (0075) ¢
x (0078) ¢
g
2 grammatical/semantic codes used in dictionary ---- q
9
INTJ ¢
INTJ warning: 1 suspect char (1 space): (SPACE | N T J) q
g
0 inflectional code used in dictionary ----- q
g

12.9 ELAG files

12.9.1 tagset.def file
See section 7.3.6, page 140.

12.9.2 .lstfiles
.LST FILES ARE NOT UNICODE FILES.

A st file contains a list of .grf file names. These files are supposed to be located in the
ELAG directory corresponding to the current working language. Here is the elag.Ist file
used for French:

PPVs/PpviL.grf 9
PPVs/PpvLE.grf q
PPVs/PpvLUL.grf 4
PPVs/PpvPR.grf q
PPVs/PpvSeq.grf 4
PPVs/SE.grf §
PPVs/postpos.grf q

12.9.3 .elg files

.elg files contain compiled ELAG rules. These files are in the .fsSt2 format.

12.9.4 .rul files
.RUL FILES ARE NOT UNICODE FILES.

A .rul file contains the different .elg files that compose an ELAG rule set. It contains one
part per .elg file. Each part lists the ELAG grammars that correspond to a given .elg file.

12.10. CONFIGURATION FILES 233

.elg file names are surrounded with angles brackets. The lines that start with a tabulation
are considered as comments by the Elag program. Here is the elag.rul file used for
French:

PPVs/PpviL.elg 9
PPVs/PpvLE.elg 9
PPVs/PpvLUl.elg g
<elag.rul-0.elg> q
PPVs/PpvPR.elg ¢
PPVs/PpvSeqg.elg g
PPVs/SE.elg g
PPVs/postpos.elg 4
<elag.rul-1.elg> q

12.10 Configuration files

12.10.1 The Config file

Whenever the user modifies his preferences for a given languages, these modifications are
saved in a text file named "Config’ which can be found in the directory of the current lan-
guage. The file has the following syntax (the order of lines can vary):

#Unitex configuration file of 'paumier’ for 'English’ q
#Fri Oct 10 15:18:06 CEST 2008 ¢
TEXT\ FONT\ NAME=Courier New ¢

TEXT\ FONT\ STYLE=09

TEXT\ FONT\ SIZE=10 ¢

CONCORDANCE\ FONT\ NAME=Courier ne®
CONCORDANCE\ FONT\ HTML\ SIZE=1®
INPUT\ FONT\ NAME=Times New Romarf
INPUT\ FONT\ STYLE=0¢

INPUT\ FONT\ SIZE=10 ¢

OUTPUT\ FONT\ NAME=Arial Unicode MS ¢
OUTPUT\ FONT\ STYLE=X

OUTPUT\ FONT\ SIZE=129

DATE=true 9

FILE\ NAME=true ¢

PATH\ NAME=false ¢

FRAME=true §

RIGHT\ TO\ LEFT=false ¢

BACKGROUND\ COLOR=41

FOREGROUND\ COLOR=-1677721%
AUXILIARY\ NODES\ COLOR=-3289651 §
COMMENT\ NODES\ COLOR=-6553b6
SELECTED\ NODES\ COLOR=-1677696%

234 CHAPTER 12. FILE FORMATS

PACKAGE\ NODES\ COLOR=-230297§
CONTEXT\ NODES\ COLOR=-16711934
CHAR\ BY\ CHAR=false ¢
ANTIALIASING=false ¢

HTML\ VIEWERY

MAX\ TEXT\ FILE\ SIZE=2097152 ¢

ICON\ BAR\ POSITION=West q

PACKAGE\ PATH=D\:\\repository q
MORPHOLOGICAL\ DICTIONARY=D\:\\\MyUnitex\\English\Dela\\zz.bin q
MORPHOLOGICAL\ NODES\ COLOR=-3911728
MORPHOLOGICAL\ USE\ OF\ SPACE=falseq

The first two lines are comment lines. The following three lines indicate the name, the style
and the size of the font used to display texts, dictionaries, lexical units, sentences in text
automata, etc.

The CONCORDANCE FONT NANMECONCORDANCE FONT HTML Spakameters define
the name, the size and the font to be used when displaying concordances in HTML. The size
of the font has a value between 1 and 7.

The INPUT FONT ... and OUTPUT FONT ... parameters define the name, the style and
the size of the fonts used for displaying the paths and the transducer outputs of the graphs.

The following 10 parameters correspond to the parameters given in the headings of the
graphs. Table 12.3 describes the correspondances.

Parameters in the Config file | Parameters in the .grf file

DATE DDATE

FILE NAME DFILE

PATH NAME DDIR
FRAME DFRAME

RIGHT TO LEFT DRIG
BACKGROUND COLOR BCOLOR
FOREGROUND COLOR FCOLOR
AUXILIARY NODES COLOR ACOLOR
COMMENT NODES COLOR SCOLOR
SELECTED NODES COLOR CCOLOR

Table 12.3: Meaning of the parameters

The PACKAGE NODESarameter defines the color to be used for displaying calls to sub-
graphs located in the repository.

The CONTEXT NODHSrameter defines the color to be used for displaying boxes that cor-
respond to context bounds.

12.10. CONFIGURATION FILES 235

The CONTEXT NODAHESdicates if the current language must be tokenized character by char-
acter or not.

The ANTIALIASING parameter indicates whether graphs as well as sentence automata are
displayed by default with the antialiasing effect.

The HTML VIEWEPRarameter indicates the name of the navigator to be used for displaying
concordances. If no navigator name is defined, concordances are displayed in a Unitex
window.

The MAX TEXT FILE SIZE parameter is deprecated.

The ICON BAR POSITIONparameter indicates the default position of icon bars in graph
frames.

The PACKAGE PATHarameter specifies the location of the repository.

The MORPHOLOGICAL DICTIONARYarameter specifies the list of morphological dictio-
naries to use, separated with semi-colons.

The MORPHOLOGICAL NODES COl@Rmeter specifies the color to use to render the $<
and $> tags.

The MORPHOLOGICAL USE OF SPAgdrameter indicates if the Locate program is al-
lowed to start matching on spaces. Default is false.

12.10.2 The system_dic.def file

The system_dic.def file is a text file that describes the list of system dictionaries that are
applied by default. This file can be found in the directory of the current language. Each line
corresponds to a name of a .bin file. The system dictionaries are in the system directory, and

in that directory in the (current language)/Dela sub-directory. Here is an example of
this file:

delacf.bin ¢

delaf.bin q

12.10.3 The user_dic.def file

The user_dic.def file is a text file that describes the list of dictionaries the user has de-

fined to be applied by default. This file is in the directory of the current language and has the

same format as the system_dic.def file. The dictionaries need to be in the (current language)/Dela
sub-directory of the personal directory of the user.

236 CHAPTER 12. FILE FORMATS
12.10.4 The user.cfg file

Under Linux, Unitex expects the personal directory of the user to be called unitex and
expects it to be in his root directory (SHOME Under Windows, it is not always possible to
associate a directory to a user per default. To compensate for that, Unitex creates a .cfg file
for each user that contains the path to his personal directory. This file is saved under the
name (user login).cfg in the Unitex/Users system sub-directory.

WARNING: THIS FILE IS NOT IN UNICODE

WARNING (2): THE PATH OF THE PERSONAL DIRECTORY IS NOT FOLLOWED BY A
NEWLINE.

12.11 Various other files

For each text, Unitex creates multiple files that contain information that are designed to be
displayed in the graphical interface. This section describes these files and some others.
12.11.1 The dlf.n, dlc.n et err.n files

These three files are text files that are stored in the text directory. They contain the number of
lines of the dIf ,dlc and err files respectively. These numbers are followed by a newline.
12.11.2 The stat_dic.n file

This file is a text file in the directory of the text. It has three lines that contain the number of
lines of the dIf ,dlc and err files.

12.11.3 The stats.n file

This file is in the text directory and contains a line with the following form:

3949 sentence delimiters, 169394 (9428 diff) tokens, 73788 (9399)
simple forms, 438 (10) digits q

The numbers indicated are interpreted in the following way:
e sentence delimiters : number of sentence separators ({S});

e tokens : total number of lexical units in the text. The number preceeding diff indi-
cates the number of different units;

e simple forms : the total number of lexical units in the text that are composed of
letters. The number in parentheses represents the number of different lexical units
that are composed of letters;

e digits : the total number of digits used in the text. The number in parentheses indi-
cates the number of different digits used (10 at most).

12.11. VARIOUS OTHER FILES 237
12.11.4 The concord.n file

The concord.n file is a text file in the directory of the text. It contains information on the
latest search of the text and looks like the following:

6 matches q
6 recognized units q
(0.004% of the text is covered) 9

The first line gives the number of found occurrences, and the second the name of units
covered by these occurrences. The third line indicates the ratio between the covered units
and the total number of units in the text.

12.11.5 Normalization rule file

This file is used by the Normalization and XMLizer programs. It represents replacement
rules. Each line stands for a rule, according to the following format (—— stands for the
tabulation character):

input sequence ~— output sequence

If you want to use the tabulation or the new line, you must protect them with a backslash
like this:

123\
— ONE_TWO_THREE_NEW_LINE

12.11.6 Forbidden word file

The PolyLex programs requires a forbidden word file for Dutch and Norwegian. This raw
text file is supposed to be named ForbiddenWords.txt . If must be in the user’s Dela
directory corresponding to the language to work on. Each line is supposed to contain one
forbidden word.

238 CHAPTER 12. FILE FORMATS

Appendix A - GNU General Public
License

This license can also be found in [32].

Version 2, June 1991
Copyright (© 1989, 1991 Free Software Foundation, Inc.

59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your free-
dom to share and change free software—to make sure the software is free for all its users.
This General Public License applies to most of the Free Software Foundation’s software and
to any other program whose authors commit to using it. (Some other Free Software Foun-
dation software is covered by the GNU Library General Public License instead.) You can
apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modity it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know their
rights.

239

240 CHAPTER 12. FILE FORMATS

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone un-
derstands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming
a work based on the Program, and copy and distribute such modifications or work
under the terms of Section 1 above, provided that you also meet all of these conditions:

(@) You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

12.11. VARIOUS OTHER FILES 241

(b) You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

(c) If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright
notice and a notice that there is no warranty (or else, saying that you provide a
warranty) and that users may redistribute the program under these conditions,
and telling the user how to view a copy of this License. (Exception: if the Program
itself is interactive but does not normally print such an announcement, your work
based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do
not apply to those sections when you distribute them as separate works. But when
you distribute the same sections as part of a whole which is a work based on the
Program, the distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to each and every
part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribu-
tion of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Pro-
gram (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in
object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following;:

(@) Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

(b) Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to
be distributed under the terms of Sections 1 and 2 above on a medium customar-
ily used for software interchange; or,

(c) Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

242

CHAPTER 12. FILE FORMATS

The source code for a work means the preferred form of the work for making modifica-
tions to it. For an executable work, complete source code means all the source code for
all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

. You may not copy, modify, sublicense, or distribute the Program except as expressly

provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain in
full compliance.

. You are not required to accept this License, since you have not signed it. However,

nothing else grants you permission to modify or distribute the Program or its deriva-
tive works. These actions are prohibited by law if you do not accept this License.
Therefore, by modifying or distributing the Program (or any work based on the Pro-
gram), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Program or works based on it.

. Each time you redistribute the Program (or any work based on the Program), the re-

cipient automatically receives a license from the original licensor to copy, distribute or
modify the Program subject to these terms and conditions. You may not impose any
further restrictions on the recipients” exercise of the rights granted herein. You are not
responsible for enforcing compliance by third parties to this License.

If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For ex-
ample, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a whole
is intended to apply in other circumstances.

12.11. VARIOUS OTHER FILES 243

10.

11.

It is not the purpose of this section to induce you to infringe any patents or other prop-
erty right claims or to contest validity of any such claims; this section has the sole
purpose of protecting the integrity of the free software distribution system, which is
implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

. If the distribution and/or use of the Program is restricted in certain countries either

by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

. The Free Software Foundation may publish revised and/or new versions of the Gen-

eral Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify
a version number of this License, you may choose any version ever published by the
Free Software Foundation.

If you wish to incorporate parts of the Program into other free programs whose dis-
tribution conditions are different, write to the author to ask for permission. For soft-
ware which is copyrighted by the Free Software Foundation, write to the Free Software
Foundation; we sometimes make exceptions for this. Our decision will be guided by
the two goals of preserving the free status of all derivatives of our free software and of
promoting the sharing and reuse of software generally.

NO WARRANTY

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTH-
ERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PRO-
VIDE THE PROGRAM “AS 1S” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

244 CHAPTER 12. FILE FORMATS

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAM-
AGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAM-
AGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES
SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE
WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix: How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the pub-
lic, the best way to achieve this is to make it free software which everyone can redistribute
and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place
- Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) yyyy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show
w'.

This is free software, and you are welcome to redistribute it under certain condi-

tions; type ‘show ¢’ for details.

12.11. VARIOUS OTHER FILES 245

The hypothetical commands show w and show ¢ should show the appropriate parts
of the General Public License. Of course, the commands you use may be called something
other than show wand show c; they could even be mouse-clicks or menu items—whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision” (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into propri-
etary programs. If your program is a subroutine library, you may consider it more useful to
permit linking proprietary applications with the library. If this is what you want to do, use
the GNU Library General Public License instead of this License.

246 CHAPTER 12. FILE FORMATS

Appendix B - GNU Lesser General
Public License

This license can also be found in [33].

GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc. 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts as the successor of the
GNU Library Public License, version 2, hence the version number 2.1.]

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public Licenses are intended to guarantee your
freedom to share and change free software—to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some specially designated
software packages—typically libraries—of the Free Software Foundation and other authors
who decide to use it. You can use it too, but we suggest you first think carefully about
whether this license or the ordinary General Public License is the better strategy to use in
any particular case, based on the explanations below.

When we speak of free software, we are referring to freedom of use, not price. Our
General Public Licenses are designed to make sure that you have the freedom to distribute
copies of free software (and charge for this service if you wish); that you receive source code
or can get it if you want it; that you can change the software and use pieces of it in new free
programs; and that you are informed that you can do these things.

To protect your rights, we need to make restrictions that forbid distributors to deny you
these rights or to ask you to surrender these rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the library or if you modity it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must
give the recipients all the rights that we gave you. You must make sure that they, too, receive

247

248 CHAPTER 12. FILE FORMATS

or can get the source code. If you link other code with the library, you must provide com-
plete object files to the recipients, so that they can relink them with the library after making
changes to the library and recompiling it. And you must show them these terms so they
know their rights.

We protect your rights with a two-step method: (1) we copyright the library, and (2) we
offer you this license, which gives you legal permission to copy, distribute and/or modify
the library.

To protect each distributor, we want to make it very clear that there is no warranty for
the free library. Also, if the library is modified by someone else and passed on, the recipients
should know that what they have is not the original version, so that the original author’s
reputation will not be affected by problems that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any free program. We
wish to make sure that a company cannot effectively restrict the users of a free program
by obtaining a restrictive license from a patent holder. Therefore, we insist that any patent
license obtained for a version of the library must be consistent with the full freedom of use
specified in this license.

Most GNU software, including some libraries, is covered by the ordinary GNU Gen-
eral Public License. This license, the GNU Lesser General Public License, applies to certain
designated libraries, and is quite different from the ordinary General Public License. We
use this license for certain libraries in order to permit linking those libraries into non-free
programs.

When a program is linked with a library, whether statically or using a shared library, the
combination of the two is legally speaking a combined work, a derivative of the original
library. The ordinary General Public License therefore permits such linking only if the entire
combination fits its criteria of freedom. The Lesser General Public License permits more lax
criteria for linking other code with the library.

We call this license the "Lesser" General Public License because it does Less to protect the
user’s freedom than the ordinary General Public License. It also provides other free software
developers Less of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many libraries. However, the
Lesser license provides advantages in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest
possible use of a certain library, so that it becomes a de-facto standard. To achieve this, non-
free programs must be allowed to use the library. A more frequent case is that a free library
does the same job as widely used non-free libraries. In this case, there is little to gain by
limiting the free library to free software only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free programs enables a
greater number of people to use a large body of free software. For example, permission to
use the GNU C Library in non-free programs enables many more people to use the whole
GNU operating system, as well as its variant, the GNU/Linux operating system.

Although the Lesser General Public License is Less protective of the users’ freedom, it
does ensure that the user of a program that is linked with the Library has the freedom and
the wherewithal to run that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay
close attention to the difference between a "work based on the library" and a "work that uses

12.11. VARIOUS OTHER FILES 249

the library". The former contains code derived from the library, whereas the latter must be
combined with the library in order to run.

GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other program which con-
tains a notice placed by the copyright holder or other authorized party saying it may be
distributed under the terms of this Lesser General Public License (also called "this License").
Each licensee is addressed as "you".

A "library" means a collection of software functions and /or data prepared so as to be con-
veniently linked with application programs (which use some of those functions and data) to
form executables.

The "Library", below, refers to any such software library or work which has been dis-
tributed under these terms. A "work based on the Library" means either the Library or
any derivative work under copyright law: that is to say, a work containing the Library or
a portion of it, either verbatim or with modifications and/or translated straightforwardly
into another language. (Hereinafter, translation is included without limitation in the term
"modification".)

"Source code" for a work means the preferred form of the work for making modifications
toit. For a library, complete source code means all the source code for all modules it contains,
plus any associated interface definition files, plus the scripts used to control compilation and
installation of the library.

Activities other than copying, distribution and modification are not covered by this Li-
cense; they are outside its scope. The act of running a program using the Library is not
restricted, and output from such a program is covered only if its contents constitute a work
based on the Library (independent of the use of the Library in a tool for writing it). Whether
that is true depends on what the Library does and what the program that uses the Library
does.

1. You may copy and distribute verbatim copies of the Library’s complete source code as
you receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty; and distribute a copy
of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming
a work based on the Library, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating that you changed
the files and the date of any change.

¢) You must cause the whole of the work to be licensed at no charge to all third parties
under the terms of this License.

250 CHAPTER 12. FILE FORMATS

d) If a facility in the modified Library refers to a function or a table of data to be supplied
by an application program that uses the facility, other than as an argument passed when the
facility is invoked, then you must make a good faith effort to ensure that, in the event an
application does not supply such function or table, the facility still operates, and performs
whatever part of its purpose remains meaningful.

(For example, a function in a library to compute square roots has a purpose that is en-
tirely well-defined independent of the application. Therefore, Subsection 2d requires that
any application-supplied function or table used by this function must be optional: if the
application does not supply it, the square root function must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of
that work are not derived from the Library, and can be reasonably considered independent
and separate works in themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you distribute the same
sections as part of a whole which is a work based on the Library, the distribution of the
whole must be on the terms of this License, whose permissions for other licensees extend to
the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribution of
derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library
(or with a work based on the Library) on a volume of a storage or distribution medium does
not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead
of this License to a given copy of the Library. To do this, you must alter all the notices that
refer to this License, so that they refer to the ordinary GNU General Public License, version
2, instead of to this License. (If a newer version than version 2 of the ordinary GNU General
Public License has appeared, then you can specify that version instead if you wish.) Do not
make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary
GNU General Public License applies to all subsequent copies and derivative works made
from that copy.

This option is useful when you wish to copy part of the code of the Library into a pro-
gram that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section
2) in object code or executable form under the terms of Sections 1 and 2 above provided that
you accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange.

If distribution of object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place satisfies the
requirement to distribute the source code, even though third parties are not compelled to
copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed
to work with the Library by being compiled or linked with it, is called a "work that uses the
Library". Such a work, in isolation, is not a derivative work of the Library, and therefore

12.11. VARIOUS OTHER FILES 251

falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library creates an executable
that is a derivative of the Library (because it contains portions of the Library), rather than a
"work that uses the library". The executable is therefore covered by this License. Section 6
states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file that is part of the
Library, the object code for the work may be a derivative work of the Library even though
the source code is not. Whether this is true is especially significant if the work can be linked
without the Library, or if the work is itself a library. The threshold for this to be true is not
precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and acces-
sors, and small macros and small inline functions (ten lines or less in length), then the use
of the object file is unrestricted, regardless of whether it is legally a derivative work. (Exe-
cutables containing this object code plus portions of the Library will still fall under Section
6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code
for the work under the terms of Section 6. Any executables containing that work also fall
under Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or link a "work that
uses the Library" with the Library to produce a work containing portions of the Library, and
distribute that work under terms of your choice, provided that the terms permit modifica-
tion of the work for the customer’s own use and reverse engineering for debugging such
modifications.

You must give prominent notice with each copy of the work that the Library is used in
it and that the Library and its use are covered by this License. You must supply a copy of
this License. If the work during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference directing the user to the
copy of this License. Also, you must do one of these things:

a) Accompany the work with the complete corresponding machine-readable source code
for the Library including whatever changes were used in the work (which must be dis-
tributed under Sections 1 and 2 above); and, if the work is an executable linked with the
Library, with the complete machine-readable "work that uses the Library", as object code
and/or source code, so that the user can modify the Library and then relink to produce a
modified executable containing the modified Library. (It is understood that the user who
changes the contents of definitions files in the Library will not necessarily be able to recom-
pile the application to use the modified definitions.)

b) Use a suitable shared library mechanism for linking with the Library. A suitable mech-
anism is one that (1) uses at run time a copy of the library already present on the user’s
computer system, rather than copying library functions into the executable, and (2) will op-
erate properly with a modified version of the library, if the user installs one, as long as the
modified version is interface-compatible with the version that the work was made with.

c) Accompany the work with a written offer, valid for at least three years, to give the
same user the materials specified in Subsection 6a, above, for a charge no more than the cost
of performing this distribution.

252 CHAPTER 12. FILE FORMATS

d) If distribution of the work is made by offering access to copy from a designated place,
offer equivalent access to copy the above specified materials from the same place.

e) Verify that the user has already received a copy of these materials or that you have
already sent this user a copy.

For an executable, the required form of the "work that uses the Library" must include
any data and utility programs needed for reproducing the executable from it. However, as a
special exception, the materials to be distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler, kernel,
and so on) of the operating system on which the executable runs, unless that component
itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other propri-
etary libraries that do not normally accompany the operating system. Such a contradiction
means you cannot use both them and the Library together in an executable that you dis-
tribute.

7. You may place library facilities that are a work based on the Library side-by-side in a
single library together with other library facilities not covered by this License, and distribute
such a combined library, provided that the separate distribution of the work based on the
Library and of the other library facilities is otherwise permitted, and provided that you do
these two things:

a) Accompany the combined library with a copy of the same work based on the Library,
uncombined with any other library facilities. This must be distributed under the terms of
the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a work
based on the Library, and explaining where to find the accompanying uncombined form of
the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as
expressly provided under this License. Any attempt otherwise to copy, modify, sublicense,
link with, or distribute the Library is void, and will automatically terminate your rights
under this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain in full
compliance.

9. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Library or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Library (or any work based on the Library), you indicate
your acceptance of this License to do so, and all its terms and conditions for copying, dis-
tributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipi-
ent automatically receives a license from the original licensor to copy, distribute, link with or
modify the Library subject to these terms and conditions. You may not impose any further
restrictions on the recipients” exercise of the rights granted herein. You are not responsible
for enforcing compliance by third parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for
any other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they do

12.11. VARIOUS OTHER FILES 253

not excuse you from the conditions of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations,
then as a consequence you may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by all those who receive
copies directly or indirectly through you, then the only way you could satisfy both it and
this License would be to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular cir-
cumstance, the balance of the section is intended to apply, and the section as a whole is
intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other prop-
erty right claims or to contest validity of any such claims; this section has the sole purpose
of protecting the integrity of the free software distribution system which is implemented by
public license practices. Many people have made generous contributions to the wide range
of software distributed through that system in reliance on consistent application of that sys-
tem; it is up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Library
under this License may add an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the
Lesser General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version
number of this License which applies to it and "any later version", you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Library does not specify a license version number,
you may choose any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distri-
bution conditions are incompatible with these, write to the author to ask for permission. For
software which is copyrighted by the Free Software Foundation, write to the Free Software
Foundation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WAR-
RANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EX-
CEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY KIND,

254 CHAPTER 12. FILE FORMATS

EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS
WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MOD-
IFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO
YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CON-
SEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE LI-
BRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING REN-
DERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAIL-
URE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use to the
public, we recommend making it free software that everyone can redistribute and change.
You can do so by permitting redistribution under these terms (or, alternatively, under the
terms of the ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach them
to the start of each source file to most effectively convey the exclusion of warranty; and each
file should have at least the "copyright" line and a pointer to where the full notice is found.

<one line to give the library’s name and a brief idea of what it does.> Copyright (C)
<year> <name of author>

This library is free software; you can redistribute it and/or modify it under the terms
of the GNU Lesser General Public License as published by the Free Software Foundation;
either version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with
this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school, if
any, to sign a "copyright disclaimer” for the library, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the library ‘Frob’ (a library for
tweaking knobs) written by James Random Hacker.

12.11. VARIOUS OTHER FILES 255

<signature of Ty Coon>, 1 April 1990 Ty Coon, President of Vice
That’s all there is to it!

256 CHAPTER 12. FILE FORMATS

Appendix C - Lesser General Public
License For Linguistic Resources

This license was designed by the University of Marne-la-Vallée, and it has received the ap-
proval of the Free Software Foundation ([1]).

Preamble

The licenses for most data are designed to take away your freedom to share and change
it. By contrast, this License is intended to guarantee your freedom to share and change free
data—to make sure the data are free for all their users.

This license, the Lesser General Public License for Linguistic Resources, applies to some
specially designated linguistic resources — typically lexicons, grammars, thesauri and textual
corpora.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION

0. This License Agreement applies to any Linguistic Resource which contains a notice
placed by the copyright holder or other authorized party saying it may be distributed
under the terms of this Lesser General Public License for Linguistic Resources (also
called "this License"). Each licensee is addressed as "you".

A "linguistic resource" means a collection of data about language prepared so as to be
used with application programs.

The "Linguistic Resource", below, refers to any such work which has been distributed
under these terms. A "work based on the Linguistic Resource” means either the Lin-
guistic Resource or any derivative work under copyright law: that is to say, a work
containing the Linguistic Resource or a portion of it, either verbatim or with modifica-
tions and/or translated straightforwardly into another language. (Hereinafter, trans-
lation is included without limitation in the term "modification".)

"Legible form" for a linguistic resource means the preferred form of the resource for
making modifications to it.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running a program using the Linguistic

257

258

CHAPTER 12. FILE FORMATS

Resource is not restricted, and output from such a program is covered only if its con-
tents constitute a work based on the Linguistic Resource (independent of the use of
the Linguistic Resource in a tool for writing it). Whether that is true depends on what
the program that uses the Linguistic Resource does.

. You may copy and distribute verbatim copies of the Linguistic Resource as you receive

it, in any medium, provided that you conspicuously and appropriately publish on
each copy an appropriate copyright notice and disclaimer of warranty; keep intact all
the notices that refer to this License and to the absence of any warranty; and distribute
a copy of this License along with the Linguistic Resource.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

. You may modify your copy or copies of the Linguistic Resource or any portion of it,

thus forming a work based on the Linguistic Resource, and copy and distribute such
modifications or work under the terms of Section 1 above, provided that you also meet
all of these conditions:

(a) The modified work must itself be a linguistic resource.

(b) You must cause the files modified to carry prominent notices stating that you
changed the files and the date of any change.

() You must cause the whole of the work to be licensed at no charge to all third
parties under the terms of this License.

These requirements apply to the modified work as a whole. If identifiable sec-
tions of that work are not derived from the Linguistic Resource, and can be rea-
sonably considered independent and separate works in themselves, then this Li-
cense, and its terms, do not apply to those sections when you distribute them as
separate works. But when you distribute the same sections as part of a whole
which is a work based on the Linguistic Resource, the distribution of the whole
must be on the terms of this License, whose permissions for other licensees ex-
tend to the entire whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to con-
trol the distribution of derivative or collective works based on the Linguistic Re-
source.

In addition, mere aggregation of another work not based on the Linguistic Re-
source with the Linguistic Resource (or with a work based on the Linguistic Re-
source) on a volume of a storage or distribution medium does not bring the other
work under the scope of this License.

3. A program that contains no derivative of any portion of the Linguistic Resource, but is

designed to work with the Linguistic Resource (or an encrypted form of the Linguistic
Resource) by reading it or being compiled or linked with it, is called a "work that uses

12.11. VARIOUS OTHER FILES 259

the Linguistic Resource”. Such a work, in isolation, is not a derivative work of the
Linguistic Resource, and therefore falls outside the scope of this License.

However, combining a "work that uses the Linguistic Resource" with the Linguistic
Resource (or an encrypted form of the Linguistic Resource) creates a package that is
a derivative of the Linguistic Resource (because it contains portions of the Linguistic
Resource), rather than a "work that uses the Linguistic Resource". If the package is a
derivative of the Linguistic Resource, you may distribute the package under the terms
of Section 4. Any works containing that package also fall under Section 4.

4. As an exception to the Sections above, you may also combine a "work that uses the
Linguistic Resource" with the Linguistic Resource (or an encrypted form of the Lin-
guistic Resource) to produce a package containing portions of the Linguistic Resource,
and distribute that package under terms of your choice, provided that the terms per-
mit modification of the package for the customer’s own use and reverse engineering
for debugging such modifications.

You must give prominent notice with each copy of the package that the Linguistic
Resource is used in it and that the Linguistic Resource and its use are covered by this
License. You must supply a copy of this License. If the package during execution
displays copyright notices, you must include the copyright notice for the Linguistic
Resource among them, as well as a reference directing the user to the copy of this
License. Also, you must do one of these things:

(@) Accompany the package with the complete corresponding machine-readable leg-
ible form of the Linguistic Resource including whatever changes were used in
the package (which must be distributed under Sections 1 and 2 above); and, if the
package contains an encrypted form of the Linguistic Resource, with the com-
plete machine-readable "work that uses the Linguistic Resource", as object code
and/or source code, so that the user can modify the Linguistic Resource and then
encrypt it to produce a modified package containing the modified Linguistic Re-
source.

(b) Use a suitable mechanism for combining with the Linguistic Resource. A suit-
able mechanism is one that will operate properly with a modified version of the
Linguistic Resource, if the user installs one, as long as the modified version is
interface-compatible with the version that the package was made with.

(c) Accompany the package with a written offer, valid for at least three years, to give
the same user the materials specified in Subsection 4a, above, for a charge no
more than the cost of performing this distribution.

(d) If distribution of the package is made by offering access to copy from a designated
place, offer equivalent access to copy the above specified materials from the same
place.

(e) Verify that the user has already received a copy of these materials or that you
have already sent this user a copy.

260

CHAPTER 12. FILE FORMATS

If the package includes an encrypted form of the Linguistic Resource, the required
form of the "work that uses the Linguistic Resource" must include any data and util-
ity programs needed for reproducing the package from it. However, as a special ex-
ception, the materials to be distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of proprietary
libraries that do not normally accompany the operating system. Such a contradiction
means you cannot use both them and the Linguistic Resource together in a package
that you distribute.

. You may not copy, modify, sublicense, link with, or distribute the Linguistic Resource

except as expressly provided under this License. Any attempt otherwise to copy,
modify, sublicense, link with, or distribute the Linguistic Resource is void, and will
automatically terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

. You are not required to accept this License, since you have not signed it. However,

nothing else grants you permission to modify or distribute the Linguistic Resource or
its derivative works. These actions are prohibited by law if you do not accept this Li-
cense. Therefore, by modifying or distributing the Linguistic Resource (or any work
based on the Linguistic Resource), you indicate your acceptance of this License to do
so, and all its terms and conditions for copying, distributing or modifying the Linguis-
tic Resource or works based on it.

Each time you redistribute the Linguistic Resource (or any work based on the Linguis-
tic Resource), the recipient automatically receives a license from the original licensor
to copy, distribute, link with or modify the Linguistic Resource subject to these terms
and conditions. You may not impose any further restrictions on the recipients’ exercise
of the rights granted herein. You are not responsible for enforcing compliance by third
parties with this License.

. If, as a consequence of a court judgment or allegation of patent infringement or for any

other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Linguistic Resource at
all. For example, if a patent license would not permit royalty-free redistribution of
the Linguistic Resource by all those who receive copies directly or indirectly through
you, then the only way you could satisfy both it and this License would be to refrain
entirely from distribution of the Linguistic Resource.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply, and the section as a whole

12.11. VARIOUS OTHER FILES 261

is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free resource distribution system which
is implemented by public license practices. Many people have made generous con-
tributions to the wide range of data distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute resources through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

9. If the distribution and/or use of the Linguistic Resource is restricted in certain coun-
tries either by patents or by copyrighted interfaces, the original copyright holder who
places the Linguistic Resource under this License may add an explicit geographical
distribution limitation excluding those countries, so that distribution is permitted only
in or among countries not thus excluded. In such case, this License incorporates the
limitation as if written in the body of this License.

10. The Free Software Foundation may publish revised and/or new versions of the Lesser
General Public License for Linguistic Resources from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to address new
problems or concerns.

Each version is given a distinguishing version number. If the Linguistic Resource spec-
ifies a version number of this License which applies to it and "any later version", you
have the option of following the terms and conditions either of that version or of any
later version published by the Free Software Foundation. If the Linguistic Resource
does not specify a license version number, you may choose any version ever published
by the Free Software Foundation.

11. If you wish to incorporate parts of the Linguistic Resource into other free programs
whose distribution conditions are incompatible with these, write to the author to ask
for permission.

NO WARRANTY

12. BECAUSE THE LINGUISTIC RESOURCE IS LICENSED FREE OF CHARGE,
THERE IS NO WARRANTY FOR THE LINGUISTIC RESOURCE, TO THE EX-
TENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED
IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PRO-
VIDE THE LINGUISTIC RESOURCE "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE LINGUISTIC RESOURCE IS WITH YOU. SHOULD

262 CHAPTER 12. FILE FORMATS

THE LINGUISTIC RESOURCE PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

13. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO
IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY
WHO MAY MODIFY AND/OR REDISTRIBUTE THE LINGUISTIC RESOURCE
AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING
ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE LINGUISTIC RE-
SOURCE (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BE-
ING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE LINGUISTIC RESOURCE TO OPERATE WITH
ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Bibliography

[1] Free Software Foundation. http://www.fsf.org . 12.11.6

[2] Anna ANASTASSIADIS-SYMEONIDIS, Tita KYRIACOPOULOU, Elsa SKLAVOUNOU, Ias-
son THILIKOS, and Rania VOSKAKI. A system for analysing texts in modern greek:
representing and solving ambiguities. In Proceedings of COMLEX 2000, Workshop on
Computational Lexicography and Multimedia Dictionaries. Patras, 2000. 3.7

[3] Jean-Claude ANSCOMBRE. Pourquoi un moulin a vent n’est pas un ventilateur. Langue
Francgaise, 86, 1990. 10.1

[4] Laurie BAUER. English Word-Formation. Cambridge University Press, 1983. 10.1

[5] Emile BENVENISTE. Fondements syntaxiques de la composition nominale. Formes nouvelles
de la composition nominale, pages 145-176. Gallimard, Paris, 1974. 10.1

[6] Olivier BLANC and Anne DISTER. Automates lexicaux avec structure de traits. In Actes
RECITAL 2004,2004. 7.3

[7] Xavier BLANCO. Noms composés et traduction francais-espagnol. Linguvisticee Investi-
gationes, 21(1), 1997. Amsterdam-Philadelphia : John Benjamins Publishing Company.
3.7

[8] Xavier BLANCO. Les dictionnaires électroniques de 1’espagnol (DELASs et DELACs).
Lingvisticae Investigationes, 23(2), 2000. Amsterdam-Philadelphia : John Benjamins Pub-
lishing Company. 3.7

[9] Jean-Paul BOONS, Alain GUILLET, and Christian LECLERE. La structure des phrases

simples en frangais : classes de constructions transitives. Technical report, LADL, Paris,
1976. 8.1

[10] Jean-Paul BOONS, Alain GUILLET, and Christian LECLERE. La structure des phrases sim-
ples en frangais : constructions intransitives. Droz, Geneve, 1976. 8.1

[11] Firefox. Web browser. http://www.mozilla.com/firefox/ . 482
[12] Netscape. Web browser. http://www.netscape.com . 482

[13] Pierre CADIOT. A entre deux noms : vers la composition nominale. Lexique, 11:193-240,
1992. 10.1

263

http://www.fsf.org
http://www.mozilla.com/firefox/
http://www.netscape.com

264 BIBLIOGRAPHY

[14] Folker CAROLI Les verbes transitifs a complément de lieu en allemand. Linguvistica In-
vestigationes, 8(2):225-267, 1984. Amsterdam-Philadelphia : John Benjamins Publishing
Company. 8.1

[15] A. CHROBOT, B. COURTOIS, M. HAMMANI-MC CARTHY, M. GROSS, and K. ZELLAGUI.
Dictionnaire electronique DELAC anglais : noms composés. Technical Report 59,
LADL, Université Paris 7, 1999. 3.7

[16] Unicode Consortium. http://www.unicode.org .22

[17] Matthieu CONSTANT and Anastasia YANNACOPOULOU. Le dictionnaire électronique
du grec moderne: Conception et développement d’outils pour son enrichissement et
sa validation. In Studies in Greek Linguistics, Proceedings of the 23rd annual meeting of the
Department of Linguistics. Faculty of Philosophy, Aristotle University of Thessaloniki,
2002. 3.7

[18] Danielle CORBIN. Hypotheses sur les frontieres de la composition nominale. Cahiers de
grammaire, 17:26-55, 1992. Université de Toulouse Le Mirail. 10.1

[19] Blandine COURTOIS. Formes ambigués de la langue francaise. Linguvisticee Investiga-
tiones, 20(1):167-202, 1996. Amsterdam-Philadelphia : John Benjamins Publishing Com-
pany. 3.7

[20] Blandine Courtois and Max Silberztein, editors. Les dictionnaires électroniques du frangais.
Larousse, Langue frangaise, vol. 87,1990. 3.7,10.2.1,10.2.2

[21] Anne DISTER, Nathalie FRIBURGER, and Denis MAUREL. Améliorer le découpage en
phrases sous INTEX. In Anne Dister, editor, Revue Informatique et Statistique dans les
Sciences Humaines, volume Actes des 3émes Journées INTEX, pages 181-199, 2000. 2.5.2

[22] Pamela DOWNING. On the Creation and Use of English Compound Nouns. In Proceed-
ings of CICLING-2002, volume 53, pages 810-842. Linguistic Society of America, 1977.
10.1

[23] Dana-Marina DUMITRIU and Sébastien PAUMIER. Requétes linguistiques sur aligne-
ments multilingues. In Directia Terminologie si Inginerie Lingvistica (DTIL'08), February
2008. ISBN: 978-9-291220-37-3. 9

[24] Inkscape. Vector Graphics Editor. http://www.inkscape.org . 541

N

[25] Anibale ELIA. Le verbe italien. Les complétives dans les phrases a un complément.
Schena/Nizet, Fasano/Paris, 1984. 8.1

[26] Anibale ELIA. Lessico-grammatica dei verbi italiani a completiva. Tavole e indice generale.
Liguori, Napoli, 1984. 8.1

[27] Anibale ELIA and Simoneta VIETRI. Electronic dictionaries and linguistic analysis of
italian large corpora. In Actes des bes Journées internationales d’Analyse statistique des
Données Textuelles. Ecole Polytechnique fédérale de Lausanne, 2000. 3.7

http://www.unicode.org
http://www.inkscape.org

BIBLIOGRAPHY 265

[28] Anibale ELIA and Simoneta VIETRI. L[’analisi automatica dei testi e i dizionari elet-
tronici. In E. Burattini and R. Cordeschi, editors, Manuale di Intelligenza Artificiale per le
Scienze Umane. Roma:Carocci, 2002. 3.7

[29] A Simple English Axis Generator. http://nlp.cs.nyu.edu/GMA/docs/
HOWTO-axis. 11.3

[30] Jacqueline GIRY-SCHNEIDER. Les nominalisations en frangais. L'opérateur faire dans le lex-
ique. Droz, Genéve-Paris, 1978. 8.1

[31] Jacqueline GIRY-SCHNEIDER. Les prédicats nominaux en frangais. Les phrases simples a
verbe support. Droz, Geneve-Paris, 1987. 8.1

[32] GNU. General Public License. http://www.gnu.org/licenses/gpl.html . 1.,
12.11.6

[33] GNU. Lesser General Public License. http://www.gnu.org/licenses/Igpl.
html . 1.1,12.11.6

[34] Gaston GROsSS. Définition des noms composés dans un lexique-grammaire. Langue
Frangaise, 87,1990. 10.1

[35] Gaston GROSS. Les expressions figées en frangais. Noms composés et autres locutions.
Ophrys, Paris, 1996. 3.7, 10.1

[36] Maurice GROSS. Méthodes en syntaxe. Hermann, Paris, 1975. 8.1

[37] Maurice GROSS. Grammaire transformationnelle du frangais. 3 - Syntaxe de I'adverbe. AS-
STRIL, Paris, 1986. 3.7, 8.1

[38] Alain GUILLET and Christian LECLERE. La structure des phrases simples en frangais : les
constructions transitives locatives. Droz, Geneve, 1992. 8.1

[39] Benoit HABERT and Christian JACQUEMIN. Noms composés, termes, dénominations

complexes: problématiques linguistiques et traitements automatiques. Traitement Au-
tomatique des Langues, 2:5-41,1993. 10.1

[40] IGM. Lesser General Public License for Linguistic Resources. http://igm.
univ-mlv/~unitex/Igplir.html .11

[41] Text Encoding Initiative. http://www.tei-c.org .91

[42] Christian JACQUEMIN. Spotting and Discovering Terms through Natural Language Process-
ing. MIT Press, 2001. 7

[43] Gaby KLARSFLED and Mary HAMMANI-MC CARTHY. Dictionnaire électronique du
ladl pour les mots simples de 1’anglais (DELASa). Technical report, LADL, Université
Paris 7, 1991. 3.7

[44] Cvetana KRSTEV, Dusko VITAS, and Agata SAVARY. Prerequisites for a Comprehensive
Dictionary of Serbian Compounds. LNCS, 4139:552-563, 2006. 10.2

http://nlp.cs.nyu.edu/GMA/docs/HOWTO-axis
http://nlp.cs.nyu.edu/GMA/docs/HOWTO-axis
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/lgpl.html
http://igm.univ-mlv/~unitex/lgpllr.html
http://igm.univ-mlv/~unitex/lgpllr.html
http://www.tei-c.org

266 BIBLIOGRAPHY

[45] Tita KYRIACOPOULOU. Les dictionnaires électroniques: la flexion verbale en grec moderne,
1990. These de doctorat. Université Paris 8. 3.7

[46] Tita KYRIACOPOULOU. Un systeme d’analyse de textes en grec moderne: représenta-
tion des noms composés. In Actes du 5eme Colloque International de Linguistique Grecque,
13-15 septembre 2001. Sorbonne, Paris, 2002. 3.7

[47] Tita KYRIACOPOULOU, Safia MRABTI, and AnastasiaYANNACOPOULOU. Le diction-
naire électronique des noms composés en grec moderne. Linguvisticae Investigationes,
25(1):7-28, 2002. Amsterdam-Philadelphia : John Benjamins Publishing Company. 3.7

[48] Jacques LABELLE. Le traitement automatique des variantes linguistiques en francais:
I'exemple des concrets. Linguisticae Investigationes, 19(1):137-152, 1995. Amsterdam-
Philadelphia : John Benjamins Publishing Company. 3.7

[49] Eric LAPORTE and Anne MONCEAUX. Elimination of lexical ambiguities by gram-
mars : The ELAG system. Linguistice Investigationes, 22:341-367, 1998. Amsterdam-
Philadelphia : John Benjamins Publishing Company. 7, 7.3

[50] Ville LAURIKARI. TRE home page. http://laurikari.net/tre/ . 1.1,47

[51] Judith N. LEVI. The Syntax and Semantics of Complex Nominals. Academic Press, New
York-London, 1978. 10.1

[52] XAlign(Alignement multilingue) LORIA (2006). http://led.loria.fr/outils/
ALIGN/align.html .9

[53] Annie MEUNIER. Nominalisation d’adjectifs par verbes supports, 1981. These de doctorat.
Université Paris 7. 8.1

[54] Sun Microsystems. Java. http://java.sun.com . 1.2

[55] Christian MOLINIER and Frangoise LEVRIER. Grammaire des adverbes: description des
formes en -ment. Droz, Geneve, 2000. 8.1

[56] Anne MONCEAUX. Le dictionnaire des mots simples anglais : mots nouveaux et vari-
antes orthographiques. Technical Report 15, IGM, Université de Marne-la-Vallée, 1995.
3.7

[57] OpenOftfice.org. http://www.openoffice.org . 1,822

[58] Dong-Ho PAK. Lexique-grammaire comparé frangais-coréen. Syntaxe des constructions com-
plétives. PhD thesis, UQAM, Montréal, 1996. 8.1

[59] Soun-Nam PARK. La construction des verbes neutres en coréen, 1996. These de doctorat.
Université Paris 7. 8.1

[60] Sébastien PAUMIER and Dana-Marina DUMITRIU. Editable text alignments and pow-
erful linguistic queries. In Matthieu Constant, Takuya Nakamura, Michele De Gioia,
and Sara Vecchiato, editors, 27th International Conference on Lexis and Grammar (LGC'08),
pages 117-125, September 2008. 9, 9.2

http://laurikari.net/tre/
http://led.loria.fr/outils/ALIGN/align.html
http://led.loria.fr/outils/ALIGN/align.html
http://java.sun.com
http://www.openoffice.org

BIBLIOGRAPHY 267

[61] Adam PRZEPIORKOWSKI and Marcin WOLINSKI. The Unbearable Lightness of Tag-
ging: A Case Study in Morphosyntactic Tagging of Polish. In Proceedings of the 4th
International Workshop on Linguistically Interpreted Corpora, EACL 2003, 2003. 10.1.1,
10.2.2

[62] Roger-Bruno RABENNILAINA. Le verbe malgache. AUPELF-UREEF et Université Paris 13,
Paris, 1991. 8.1

[63] Agata SAVARY. Recensement et description des mots composés - méthodes et applications,
2000. These de doctorat. Université de Marne-la-Vallée. 3.7,10.1.1,10.1.2

[64] Agata SAVARY. A formalism for the computational morphology of multi-word units.
Archives of Control Sciences, 15(3):437-449, 2005. 10,10.1.2,10.2

[65] Max SILBERZTEIN. Les groupes nominaux productifs et les noms composés lexical-
isés. Linguvisticae Investigationes, 27(2):405-426, 1999. Amsterdam-Philadelphia : John
Benjamins Publishing Company. 3.7, 10.1

[66] Carlos SUBIRATS-RUGGEBERG. Sentential complementation in Spanish. A lexico-
grammatical study of three classes of verbs. John Benjamins, Amsterdam/Philadelphia,
1987. 8.1

[67] Thomas TREIG. Complétives en allemand. classification. Technical Report 7, LADL,
1977. 8.1

[68] Lidia VARGA. Classification syntaxique des verbes de mouvement en hongrois dans
l'optique d'un traitement automatique. In F. Kiefer, G. Kiss, and J. Pajzs, editors, Papers
in Computational Lexicography (COMPLEX), pages 257-265, Budapest, Research Institute
for Linguistics, Hungarian Academy of Sciences, 1996. 8.1

[69] Simoneta VIETRI. On the study of idioms in italian. In Sintassi e morfologia della lingua
italiana, Congresso internazionale della Societa di Linguistica Italiana. Roma:Bulzoni, 1984.
3.7

[70] Dusko VITAS, Svetla KOEVA, Cvetana KRSTEV, and Ivan OBRADOVIC. Tour du monde
through the dictionaries. In Matthieu Constant, Takuya Nakamura, Michele De Gioia,
and Sara Vecchiato, editors, 27th International Conference on Lexis and Grammar (LGC'08),
pages 249-256, September 2008. 9

	Introduction
	What's new from version 1.2 ?
	Content

	Installation of Unitex
	Licenses
	Java runtime environment
	Installation on Windows
	Installation on Linux and Mac OS X
	First use
	Adding new languages
	Uninstalling Unitex

	Loading a text
	Selecting a language
	Text formats
	Editing text files
	Opening a text
	Preprocessing a text
	Normalization of separators
	Splitting into sentences
	Normalization of non-ambiguous forms
	Splitting a text into tokens
	Applying dictionaries
	Analysis of compound words in Dutch, German, Norwegian and Russian

	Opening a tagged text

	Dictionaries
	The DELA dictionaries
	The DELAF format
	The DELAS Format
	Dictionary Contents

	Checking dictionary format
	Sorting
	Automatic inflection
	Inflection of simple words
	Inflection of compound words
	Inflection of semitic languages

	Compression
	Applying dictionaries
	Priorities
	Application rules for dictionaries
	Dictionary graphs
	Morphological dictionary graphs

	Bibliography

	Searching with regular expressions
	Definition
	Tokens
	Lexical masks
	Special symbols
	References to information in the dictionaries
	Grammatical and semantic constraints
	Inflectional constraints
	Negation of a lexical mask

	Concatenation
	Union
	Kleene star
	Morphological filters
	Search
	Configuration of the search
	Presentation of the results

	Local grammars
	The local grammar formalism
	Algebraic grammars
	Extended algebraic grammars

	Editing graphs
	Creating a graph
	Sub-Graphs
	Manipulating boxes
	Transducers
	Using Variables
	Copying lists
	Special Symbols
	Toolbar Commands

	Display options
	Sorting the lines of a box
	Zoom
	Antialiasing
	Box alignment
	Display options, fonts and colors

	Exporting graphs
	Inserting a graph into a document
	Printing a Graph

	Advanced use of graphs
	Types of graphs
	Inflection transducers
	Preprocessing graphs
	Graphs for normalizing the text automaton
	Syntactic graphs
	ELAG grammars
	Parameterized graphs

	Compilation of a grammar
	Compilation of a graph
	Approximation with a finite state transducer
	Constraints on grammars
	Error detection

	Contexts
	Right contexts
	Left contexts

	The morphological mode
	Why ?
	The rules
	Morphological dictionaries
	Dictionary entry variables

	Exploring grammar paths
	Graph collections
	Rules for applying transducers
	Insertion to the left of the matched pattern
	Application while advancing through the text
	Priority of the leftmost match
	Priority of the longest match
	Transducer outputs with variables

	Applying graphs to texts
	Configuration of the search
	Concordance
	Modification of the text
	Extracting occurrences
	Comparing concordances

	Text automaton
	Displaying text automaton
	Construction
	Construction rules for text automata
	Normalization of ambiguous forms
	Normalization of clitical pronouns in Portuguese
	Keeping the best paths

	Resolving Lexical Ambiguities with ELAG
	Grammars For Resolving Ambiguities
	Compiling ELAG Grammars
	Resolving Ambiguities
	Grammar collections
	Window For ELAG Processing
	Description of the tag sets
	Grammar Optimization

	Manipulation of text automata
	Displaying sentence automata
	Modifying the text automaton
	Display configuration

	Converting the text automaton into linear text

	Lexicon-grammar
	Lexicon-grammar tables
	Conversion of a table into graphs
	Principle of parameterized graphs
	Format of the table
	Parameterized graphs
	Automatic generation of graphs

	Text alignment
	Loading texts
	Aligning texts
	Pattern matching

	Compound word inflection
	Multi-Word Units
	Formal Description of the Inflectional Behavior of Multi-word Units
	Lexicalized vs. Grammar-Based Approach to Morphological Description

	Formalism for the Computational Morphology of MWUs
	Morphological Features of the Language
	Decomposition of a MWU into Units
	Inflection paradigm of a MWU

	Integration in Unitex
	Complete Example in English
	Complete Example in French
	Complete Example in Serbian

	Use of external programs
	CheckDic
	Compress
	Concord
	ConcorDiff
	Convert
	Dico
	Elag
	ElagComp
	Evamb
	ExplodeFst2
	Extract
	Flatten
	Fst2Grf
	Fst2List
	Fst2Txt
	Fst2Unambig
	Grf2Fst2
	ImplodeFst2
	Locate
	MergeTextAutomaton
	MultiFlex
	Normalize
	PolyLex
	Reconstrucao
	Reg2Grf
	SortTxt
	Table2Grf
	TagsetNormFst2
	TEI2Txt
	Tokenize
	Txt2Fst2
	XMLizer

	File formats
	Unicode Little-Endian encoding
	Alphabet files
	Alphabet
	Sorted alphabet

	Graphs
	Format .grf
	Format .fst2

	Texts
	.txt files
	.snt Files
	File text.cod
	The tokens.txt file
	The tok_by_alph.txt and tok_by_freq.txt files
	The enter.pos file

	Text Automaton
	The text.fst2 file
	The cursentence.grf file
	The sentenceN.grf file
	The cursentence.txt file

	Concordances
	The concord.ind file
	The concord.txt file
	The concord.html file
	The diff.html file

	Text dictionaries
	dlf and dlc
	err
	tags.ind

	Dictionaries
	The .bin files
	The .inf files
	Dictionary information file
	The CHECK_DIC.TXT file

	ELAG files
	tagset.def file
	.lst files
	.elg files
	.rul files

	Configuration files
	The Config file
	The system_dic.def file
	The user_dic.def file
	The user.cfg file

	Various other files
	The dlf.n, dlc.n et err.n files
	The stat_dic.n file
	The stats.n file
	The concord.n file
	Normalization rule file
	Forbidden word file

	Appendix A - GNU General Public License
	Appendix B - GNU Lesser General Public License
	Appendix C - Lesser General Public License For Linguistic Resources

