Verification of time-critical systems : abstraction, reduction and distribution based on Timed Aggregate Graph

Amal Chamakh

Laboratoire d'Informatique de Paris Nord UNIVERSITÉ PARIS 13, SORBONNE PARIS CITÉ

February 11, 2016

Introduction

- Complicated systems routinely built today
- Failures are costly
- Verification techniques needed

Introduction

- Complicated systems routinely built today
- Failures are costly
- Verification techniques needed

Formal verification

- Mathematical model of the system (i.e.: Petri Nets)
- Specification : write correctness requirements
- ullet Analysis and verification : check that model satisfies specification o prove or disprove the correctness claim
 - → Model checking

Model checking

Principle

- **①** Design the system with a model ${\mathcal M}$ and design a property φ
- Analyse the result:
 - If yes, OK
 - If no, refine $\mathcal M$ using σ and go to (1).

Model checking

Principle

- **①** Design the system with a model ${\mathcal M}$ and design a property arphi
- Analyse the result:
 - If yes, OK
 - If no, refine \mathcal{M} using σ and go to (1).

Approach

State space traversal

Model checking

Principle

- **①** Design the system with a model ${\mathcal M}$ and design a property φ
- Analyse the result:
 - If yes, OK
 - If no, refine \mathcal{M} using σ and go to (1).

Approach

State space traversal

State space explosion problem

Exponential w.r.t size of the description

State space explosion problem

To tackle the state space explosion problem

- On-the-fly construction
- Partial order reduction
- Stuttering equivalence
- Modularity
- Symbolic representations (e.g., BDDs)

Petri Nets

Consists of places and transitions, connected by arcs. Tokens can be placed in places and manipulated by firing of transitions.

- Places (circles): represent possible states of the system
- Transitions (squares): are events or actions which cause the change of state
- Tokens (black dots): ressources
- State/Marking: a distribution of tokens over places

Petri Nets

Consists of places and transitions, connected by arcs. Tokens can be placed in places and manipulated by firing of transitions.

- Places (circles): represent possible states of the system
- Transitions (squares): are events or actions which cause the change of state
- Tokens (black dots): ressources
- State/Marking: a distribution of tokens over places

Time Petri Nets (TPN)

Temporal condition of transitions firing

- Each transition is associated with a time interval [e(t), I(t)]
- Implicit clock v(t) per enabled transition t
- An enabled transition t is firable if v(t) lies in [e(t), I(t)]
- A state of the TPN (configuration) is a couple (m, V)

ñ

$$\begin{cases} m_0 = (1,0,1) \\ V_0 = (0,\perp,0) \end{cases}$$

Elapsing of time

$$\left\{ \begin{array}{ll} m_0 = (1,0,1) & \xrightarrow{0.5} \left\{ \begin{array}{ll} (1,0,1) \\ (0.5,\perp,0.5) \end{array} \right. \end{array} \right.$$

Elapsing of time

Firing of transitions

$$\left\{ \begin{array}{ll} m_0 = (1,0,1) & \xrightarrow{0.5} \left\{ \begin{array}{ll} (1,0,1) & \xrightarrow{\mathbf{t_1}} \left\{ \begin{array}{ll} (0,1,1) \\ (0.5,\perp,0.5) \end{array} \right. \end{array} \right. \xrightarrow{\mathbf{t_1}} \left\{ \begin{array}{ll} (0,1,1) \\ (\perp,0,0.5) \end{array} \right.$$

Elapsing of time

Firing of transitions

$$\left\{ \begin{array}{ll} m_0 = (1,0,1) & \xrightarrow{0.5} \left\{ \begin{array}{ll} (1,0,1) & \xrightarrow{\mathbf{t_1}} \left\{ \begin{array}{ll} (0,1,1) \\ (0.5,\perp,0.5) \end{array} \right. \end{array} \right. \xrightarrow{\mathbf{t_1}} \left\{ \begin{array}{ll} (0,1,1) \\ (\perp,0,0.5) \end{array} \right.$$

Newly enabled transition VS persistent transition

Elapsing of time

Firing of transitions

$$\left\{ \begin{array}{ll} m_0 = (1,0,1) & \xrightarrow{0.5} \left\{ \begin{array}{ll} (1,0,1) & \xrightarrow{\mathbf{t_1}} \left\{ \begin{array}{ll} (0,1,1) \\ (0.5,\perp,0.5) \end{array} \right. \end{array} \right. \xrightarrow{\mathbf{t_1}} \left\{ \begin{array}{ll} (0,1,1) \\ (\perp,0,0.5) \end{array} \right.$$

Newly enabled transition VS persistent transition

Infinite State Space Systems

Elapsing of time

Firing of transitions

$$\left\{\begin{array}{ll} m_0 = (1,0,1) & \xrightarrow{0.5} \left\{\begin{array}{ll} (1,0,1) & \xrightarrow{t_1} \left\{\begin{array}{ll} (0,1,1) \\ (0.5,\perp,0.5) \end{array}\right. & \xrightarrow{t_1} \left\{\begin{array}{ll} (0,1,1) \\ (\perp,0,0.5) \end{array}\right. \right.$$

Newly enabled transition VS persistent transition

Infinite State Space Systems

- Build a finite abstraction of the infinite state space
 - State Class Graph (SCG) [Berthomieu'83] TINA
 - Region Graph (RG) [Alur'93] —> Zone Based Graph (ZBG)
 [Gardey'03] Romeo

Timed Aggregate Graph (TAG)

Principle

- Nodes are aggregates: elapsing of time is hidden
- A dynamic time interval for each enabled transition
 - $\delta(a)$ =minimum time at a
 - $\Delta(a)$ =maximum time at a
- Arcs are labeled with transitions only

Timed Aggregate a = (m, E, M)

- m : current marking
- $E = \{(t, \alpha_t, \beta_t), tenabledtransitionbya.m\}$

Timed aggregate

$$a_0: \left\{ egin{array}{ll} m=(1,0,1) \ E=\{(t_1,2,4),(t_3,1,3)\} \ Meet=\left(egin{array}{cc} -&[2:4] \ [1:3] & - \end{array}
ight) \end{array}
ight.$$

$$\left\{ \begin{array}{ll} m_0 = (1,0,1) & \xrightarrow{0.5} \left\{ \begin{array}{ll} (1,0,1) & \xrightarrow{1} \left\{ \begin{array}{ll} (1,0,1) & \xrightarrow{1} \\ (0.5,\perp,0.5) \end{array} \right. \right. \right.$$

g

$(t, \alpha_t, \beta_t) \in a.E$

- $\mathbb{M}(t,t') = [\alpha^{\mathbb{M}(t,t')} : \beta^{\mathbb{M}(t,t')}]$
- t is firable at a, denoted by $a \stackrel{t}{\sim}$, iff
 - $\forall t'$ enabled by $a, \alpha^{\bigcap (t,t')} \leq \beta^{\bigcap (t',t)}$

New marking

$$m' = m - Pre(t) + Post(t)$$

New marking

$$m' = m - Pre(t) + Post(t)$$

Dynamic firing intervals

- if t' is newly enabled at a'
 - $\alpha_{t'} \leftarrow t'_{min}$ $\beta_{t'} \leftarrow t'_{max}$

Dynamic firing intervals

if t' is not newly enabled at a'

The more the system can stay at a, the less it can stay at a'

$$\bullet \ \alpha'_{t'} = \left\{ \begin{array}{l} 0 \ \text{if} \ t' \ \text{firable at} \ a \\ Max(\alpha^{\bigcap (t',t'')} - \beta^{\bigcap (t'',t')}), \ \text{otherwise} \\ \forall t'' \ \text{enabled at} \ a \end{array} \right.$$

•
$$\beta'_{t'} = Min(\beta_{t'}, (\beta^{\bigcap (t',t)} - \alpha^{\bigcap (t,t')}))$$

$$\mathbb{M}$$

$$\mathbb{M}'(t_1,t_2) \leftarrow \left\{ \begin{array}{l} [t_{1,\mathit{min}}:t_{1,\mathit{max}}] \ \textit{if} \ t_1 \ \textit{is newly enabled} \\ [\alpha'_{t_1}:\beta'_{t_1}] \ \textit{if} \ t_1 \ \textit{is old and} \ t_2 \ \textit{is new} \\ \mathbb{M}(t_1,t_2) \ \textit{if} \ t_1 \ \textit{and} \ t_2 \ \textit{are both old} \end{array} \right.$$

$$\begin{cases} (t_1, 1, 1), (t_2, 2, 2), (t_3, 0, 1) \} \\ - & [1:1] & [1:1] \\ [2:2] & - & [2:2] \\ [0:1] & [0:1] & - \end{cases}$$

a = (m, E, Meet)

$$\{(t_1, 1, 1), (t_2, 2, 2), (t_3, 0, 1)\}$$

$$\begin{pmatrix}
- & [1:1] & [1:1] \\
[2:2] & - & [2:2] \\
[0:1] & [0:1] & -
\end{pmatrix}$$

t_2 is not fireable

$$\{(t_1,1,1),(t_2,2,2),(t_3,0,1)\}$$

$$\begin{pmatrix}
-&[1:1]&[1:1]\\[2:2]&-&[2:2]\\[0:1]&[0:1]&-
\end{pmatrix}$$

t₂ is not fireable

Firing

```
 \begin{cases} \{(t_1, 1, 1), (t_2, 2, 2), (t_3, 0, 1)\} \\ - & [1:1] & [1:1] \\ [2:2] & - & [2:2] \\ [0:1] & [0:1] & - \end{cases} 
 \downarrow t_3 
 \{(t_1, 0, 1), (t_2, 1, 2), (t_3, 0, 1)\} 
 \begin{pmatrix} - & [1:1] & [0:1] \\ [2:2] & - & [1:2] \\ [0:1] & [0:1] & - \end{cases}
```


$\{(t_1,1,1),(t_2,2,2),(t_3,0,1)\}$ $\begin{pmatrix} - & [1:1] & [1:1] \\ [2:2] & - & [2:2] \\ [0:1] & [0:1] & - \end{pmatrix}$ $\downarrow t_3$

t_2 is not fireable

```
\{(t_1,0,1),(t_2,1,2),(t_3,0,1)\}
\begin{pmatrix}
-&[1:1]&[0:1]\\
[2:2]&-&[1:2]\\
[0:1]&[0:1]&-
\end{pmatrix}
```


 $\{(t_1,1,1),(t_2,2,2),(t_3,0,1)\}$

```
\begin{pmatrix} - & [1:1] & [1:1] \\ [2:2] & - & [2:2] \\ [0:1] & [0:1] & - \end{pmatrix}
t2 is firable now
                                                   \{(t_1,0,1),(t_2,1,2),(t_3,0,1)\}
                                                    \begin{pmatrix} - & [1:1] & [0:1] \\ [2:2] & - & [1:2] \\ [0:1] & [0:1] & - \end{pmatrix}
t_1[1;1]
              t<sub>2</sub>[2; 2]
                             t_3[0;1]
                                                    \{(t_1,1,1),(t_2,1,1),(t_3,0,1)\}
```

 $\{(t_1,1,1),(t_2,2,2),(t_3,0,1)\}$

```
\begin{pmatrix} - & [1:1] & [1:1] \\ [2:2] & - & [2:2] \\ [0:1] & [0:1] & - \end{pmatrix}
t2 is firable now
                                                        \{(t_1,0,1),(t_2,1,2),(t_3,0,1)\}

\begin{pmatrix}
- & [1:1] & [0:1] \\
[2:2] & - & [1:2] \\
[0:1] & [0:1] & -
\end{pmatrix}

                               t_3[0;1]
t_1[1;1]
                t<sub>2</sub>[2; 2]
                                                        \{(t_1,1,1),(t_2,1,1),(t_3,0,1)\}
                                                        \begin{pmatrix} - & [1:1] & [1:1] \\ [1:1] & - & [1:2] \\ [0:1] & [0:1] & - \end{pmatrix}
```


Timed Aggregates Graph: Example

aggregate	Е	Meet
a ₀	$\{\langle t_1, 1, 1 \rangle, \langle t_2, 2, 2 \rangle, \langle t_3, 0, 1 \rangle\}$	
a ₁	$\{\langle t_1, 0, 1 \rangle, \langle t_2, 1, 2 \rangle, \langle t_3, 0, 1 \rangle\}$	$ \begin{pmatrix} - & [1:1] & [0:1] \\ [2:2] & - & [1:2] \\ [0:1] & [0:1] & - \end{pmatrix} $
a ₂	$\{\langle t_1, 1, 1 \rangle\}, \langle t_2, 1, 1 \rangle, \langle t_3, 0, 1 \rangle$	
a ₃	$\{\langle t_1,0,1\rangle,\langle t_2,0,1\rangle,\langle t_3,0,1\rangle\}$	
a ₄	$\{\langle t_1,0,0\rangle,\langle t_2,2,2\rangle,\langle t_3,0,1\rangle\}$	$ \begin{pmatrix} - & [0:0] & [0:1] \\ [2:2] & - & [2:2] \\ [0:1] & [0:1] & - \end{pmatrix} $
a ₅	$\{\langle t_1, 1, 1 \rangle, \langle t_2, 0, 0 \rangle, \langle t_3, 0, 1 \rangle\}$	$ \left \begin{array}{cccc} - & [1:1] & [1:1] \\ [0:0] & - & [0:1] \\ [0:1] & [0:1] & - \end{array} \right $
a ₆	$\{\langle t_1,0,0\rangle,\langle t_2,2,2\rangle,\langle t_3,0,0\rangle\}$	$ \begin{pmatrix} - & [0:0] & [1:1] \\ [2:2] & - & [2:2] \\ [0:1] & [0:0] & - \end{pmatrix} $
a ₇	$\{\langle t_1, 1, 1 \rangle, \langle t_2, 2, 2 \rangle, \langle t_3, 0, 0 \rangle\}$	$ \left \begin{array}{cccc} - & [1:1] & [1:1] \\ [2:2] & - & [2:2] \\ [0:0] & [0:0] & - \end{array} \right $
a ₈	$\{\langle t_1, 1, 1 \rangle, \langle t_2, 0, 0 \rangle, \langle t_3, 0, 0 \rangle\}$	$ \begin{pmatrix} - & [1:1] & [1:1] \\ [0:0] & - & [1:2] \\ [0:0] & [0:1] & - \end{pmatrix} $
ag	$\{\langle t_1, 1, 1 \rangle, \langle t_2, 1, 1 \rangle, \langle t_3, 0, 0 \rangle\}$	$ \begin{pmatrix} - & [1:1] & [1:1] \\ [1:1] & - & [2:2] \\ [0:0] & [0:1] & - \end{pmatrix} $

Theoretical results

- The TAG associated with a bounded TPN is finite
- Each timed sequence of a TPN corresponds to an untamed sequence of the TAG, and vice versa
- Algorithm for building an explicit run from a path on the TAG
- The maximal and the minimal access time /firing time of a marking/transition
- On-The-Fly verification of reachability timed properties by exploring the TAG

Experimental results

	SCG (with Tina)	ZBG (with Romeo)	TAG-TPN
Parameters	(nodes / arcs)	(nodes / arcs)	(nodes / arcs)
Nb. prod/cons	TPN model of producer/consumer		
1	34 / 56	34 / 56	34 / 56
2	748 / 2460	593 / 1 922	740 / 2438
3	4604 / 21891	3240 / 15200	4553 / 21443
4	14086 / 83375	9504 / 56038	13878 / 80646
5	31657 / 217423	20877 / 145037	30990 / 207024
6	61162 / 471254	39306 / 311304	60425 / 449523
7	107236 / 907 708	67224 / 594795	106101 / 856050

Experimental results

	SCG (with Tina)	ZBG (with Romeo)	TAG-TPN
Parameters	(nodes / arcs)	(nodes / arcs)	(nodes / arcs)
Nb. pro- cesses	Fischer protocol		
1	4 / 4	4 / 4	4 / 4
2	18 / 29	19 / 32	20 / 32
3	65 / 146	66 / 153	74 / 165
4	220 / 623	221 / 652	248 / 712
5	727 / 2536	728 / 2 615	802 / 2825
6	2378 / 9154	2379 / 10098	2564 / 10728
7	7737 / 24744	7738 / 37961	8178 / 39697
8	25080 / 102242	25081 / 139768	26096 / 144304

Experimental results

	SCG (with Tina)	ZBG (with Romeo)	TAG-TPN
Parameters	(nodes / arcs)	(nodes / arcs)	(nodes / arcs)
Nb. pro- cesses	Train crossing		
1	11 / 1 4	11 / 1 4	11 / 14
2	123 / 218	114 / 200	123 / 218
3	3101 / 7754	2817 / 6944	2879 / 7280
4	134501 / 436896	122290 / 391244	105360 / 354270

Partial-order reduction

- exploiting the commutativity of concurrently executed transitions
- result in the same state when executed in different orders
- reducing the size of the state-space

Modularity and Distribution

- Two (or many) TPNs sharing many transitions = one joint TPN
- Modular construction of the TAG: a TAG for each modular TPN ⇒ one synchronized TAG for the joint TPN
- In multicore systems, distributing the whole construction based on modularity

Conclusion and Perspectives

- Timed Aggregate Graph
 - A finite abstraction for bounded Time Petri nets state space
 - Preserves reachable markings and timed traces
 - Allowing on the fly verification of timed reachability properties
 - Comparable to Tina/Romeo Tools performances

Conclusion and Perspectives

- Timed Aggregate Graph
 - A finite abstraction for bounded Time Petri nets state space
 - Preserves reachable markings and timed traces
 - Allowing on the fly verification of timed reachability properties
 - Comparable to Tina/Romeo Tools performances
- Next Steps
 - Improve the implementation w.r.t. construction time
 - Develop dedicated verification algorithms
 - Reachability properties
 - Full TCTL ?
 - Further reductions
 - Depending on the property
 - Partial Order
 - Aggregate the TAG's aggregates ?
 - Extend to Timed automata

THANK YOU