Verification of time-critical systems :
abstraction, reduction and distribution based on

Timed Aggregate Graph

Amal Chamakh

Laboratoire d'Informatique de Paris Nord
UNIVERSITE PARIS 13, SORBONNE PARIS CITE

February 11, 2016

Introduction

@ Complicated systems routinely built today
o Failures are costly

@ Verification techniques needed

Introduction

@ Complicated systems routinely built today
o Failures are costly

@ Verification techniques needed

Formal verification
© Mathematical model of the system (i.e.: Petri Nets)
@ Specification : write correctness requirements

© Analysis and verification : check that model satisfies
specification — prove or disprove the correctness claim

— Model checking

Model checking

Principle
@ Design the system with a model M and design a property ¢
@ M = ¢?if no, a counter-example o
© Analyse the result:

e If yes, OK
e If no, refine M using o and go to (1).

Model checking

Principle
@ Design the system with a model M and design a property ¢
@ M = ¢?if no, a counter-example o
© Analyse the result:

e If yes, OK
e If no, refine M using o and go to (1).

Approach

@ State space traversal

Model checking

Principle
@ Design the system with a model M and design a property ¢
@ M = ¢?if no, a counter-example o

© Analyse the result:

e If yes, OK
e If no, refine M using o and go to (1).

Approach
@ State space traversal

State space explosion problem
Exponential w.r.t size of the description

State space explosion problem

To tackle the state space explosion problem
@ On-the-fly construction
o Partial order reduction
@ Stuttering equivalence
e Modularity
@ Symbolic representations (e.g., BDDs)

Petri Nets

Consists of places and transitions, connected by arcs. Tokens can be
placed in places and manipulated by firing of transitions.

@ Places (circles): represent possible states of the system

e Transitions (squares): are events or actions which cause the
change of state

@ Tokens (black dots): ressources
@ State/Marking: a distribution of tokens over places

p1

=
<!

Petri Nets

Consists of places and transitions, connected by arcs. Tokens can be
placed in places and manipulated by firing of transitions.

@ Places (circles): represent possible states of the system

e Transitions (squares): are events or actions which cause the
change of state

@ Tokens (black dots): ressources
@ State/Marking: a distribution of tokens over places

p1 p1

S . . f

Time Petri Nets (TPN)

Temporal condition of transitions firing
e Each transition is associated with a time interval [e(t), /(t)]
o Implicit clock v(t) per enabled transition ¢
@ An enabled transition t is firable if v(t) lies in [e(t), /()]
@ A state of the TPN (configuration) is a couple (m, V)

P3

1
i oo F

t3 [1; 3]

TPN: Change of state (Strong Semantics)

P3

;
i oo F

t3 [1,3]

mo = (1,0,1)
{ Vo = (0, 1,0)

TPN: Change of state (Strong Semantics)

P3

;
i oo F

t3 [1,3]

Elapsing of time

TPN: Change of state (Strong Semantics)

P1
@\‘ p3
t2 0;2] E/ /ZI ti[2;4] @
‘\O t3 [1;3]
P2
Elapsing of time Firing of transitions

TPN: Change of state (Strong Semantics)

P1
@\‘ p3

t 0;2] [/ /] t[2:4] @

‘\CD t3 [1,3]
P2
Elapsing of time Firing of transitions
mo = (1,0,1) 0.5 (1,0,1) t (0,1,1)
{ Vo=(0,L,00 ~ "\ (051,05 "\ (L,0,05)

Newly enabled transition VS persistent transition

TPN: Change of state (Strong Semantics)

P1
@\‘ p3

t 0;2] [/ /] t[2:4] @

‘\CD t3 [1,3]
P2
Elapsing of time Firing of transitions
mo = (1,0,1) 0.5 (1,0,1) t (0,1,1)
{ Vo=(0,L,00 ~ "\ (051,05 "\ (L,0,05)

Newly enabled transition VS persistent transition

Infinite State Space Systems

TPN: Change of state (Strong Semantics)

p3

;
i oo F

t3 [1,3]

Elapsing of time Firing of transitions
mo = (1,0,1) 0.5 (1,0,1) t (0,1,1)
{ Vo=(0,L,00 ~ "\ (051,05 "\ (L,0,05)

Newly enabled transition VS persistent transition

Infinite State Space Systems
@ Build a finite abstraction of the infinite state space
o State Class Graph (SCG) [Berthomieu'83] — rina
o Region Graph (RG) [Alur'93] —> Zone Based Graph (ZBG)
[Gardey'03] — romeo

Timed Aggregate Graph (TAG)

Principle
@ Nodes are aggregates: elapsing of time is hidden
@ A dynamic time interval for each enabled transition
e 6(a)=minimum time at a
e A(a)=maximum time at a

@ Arcs are labeled with transitions only

Timed Aggregate a = (m, E, 1)

© m : current marking
@ E = {(t,ar, B:), tenabledtransitionbya.m}
© TL(ti, t;) = [a(s.¢)s Bie.;)] when t; met t; for the last time

Timed aggregate

E/é\ % m=(1,0,1)
t [0;2] t[2:4] o : E= {(t17274)_7(t3; 1, 3)}
\g/] t3%|;3] Meet = < 13 [2;4])

{ mo:(((i,j)_,l) &{ (1,0,1) g{ (110,1) . { E:la:(il)

Fireability

Fireability

o M(t,¢') = [aLee) ; ML)
o tis firable at a, denoted by a-~L,, iff
o Vt' enabled by a, a/TL(t:t) < gITL(¥')

10

Computing the successor aggregate

Computing the successor aggregate

New marking
m' = m — Pre(t) + Post(t)

Computing the successor aggregate

New marking
m' = m — Pre(t) + Post(t)

Dynamic firing intervals

e if t’ is newly enabled at &

@ vy — tllnm

/
C /81" < tmax

11

Computing the successor aggregate

H | H

Dynamic firing intervals
if t' is not newly enabled at &’
The more the system can stay at a, the less it can stay at &’
0 if t’ firable at a
° a, = Max(ama(t/’t") — Bm*(t”’t')), otherwise
Vt” enabled at a

o B,I_»/ = I\/ﬁn(ﬂtl7 (Bm(tlvt) — am(t,t')))

Computing the successor aggregate

[t1,min © t1,max] if t1 is newly enabled

M/ (t1, &) { [of, : BL,] if t1 is old and t, is new

TM.(t1, t2) if t; and t, are both old

13

Fireability
{(t1,1,1),(t2,2,2),(t3,0,1)}

- [1:1] [1:7]
([2:2] - [2:2])
[0:1] [0:1] -

a = (m, E, Meet)

gy

t[1;1] ©[22] t3[0;1]

14

{(t1,1,1),(t2,2,2),(t3,0,1)}

- [1u1] [1:1]
22 - [2:2
([0:1] [0:1] -)

t> is not fireable

gy

t[1;1] ©[22] t3[0;1]

14

Fireability
{(t1,1,1),(t2,2,2),(t3,0,1)}

- [1:1] [1:7]
[2:2] - ([2:2]
([()il] oa -)

t> is not fireable

gy

t[1;1] ©[22] t3[0;1]

14

Firing
{(t1,1,1),(t2,2,2),(t3,0,1)}

- [1:1] [1:7]
([2:2] - [2:2])
[0:1] [0:1] -

s

{(t1,0,1), (2, 1,2),(t3,0,1)}

pL P2 p3 - [1:1] [0:1]
([2:2) — [1:2])
@ @ @ [0:1] [0:1] -

t[1;1] ©[22] t3[0;1]

14

Timed Aggregate Graph: Construction example

{(t1,1,1),(t2,2,2),(t3,0,1)}

- [1:1] [1:7]
([2:2] - [2:2])
[0:1] [0:1] -

t> is not fireable lt3
{(t1,0,1),(t2,1,2),(t3,0,1)}

pL P2 p3 — [1:1] [0:1]
[2:2] - [1:2
FAR (e

t[1;1] ©[22] t3[0;1]

14

Timed Aggregate Graph: Construction example

{(t1,1,1),(t2,2,2),(t3,0,1)}

- [1:1] [1:7]
([2:2] - [2:2])
[0:1] [0:1] -

s

{(t1,0,1), (2, 1,2),(t3,0,1)}

pL P2 p3 - [1:1] [0:1]

[2:2) — [1:2]

AR (e ™)
£

{(t1,1,1),(t2,1,1),(t3,0,1)}

- [1:1] [1:7]
([1:1] — [1:2])
[0:1] [0:1] -

t[1;1] ©[22] t3[0;1]

14

Timed Aggregate Graph: Construction example

{(t1,1,1),(t2,2,2),(t3,0,1)}

- [1:1] [1:7]
([2:2] - [2:2])
[0:1] [0:1] -

to is firable now l%
{(t1,0,1),(t2,1,2),(t3,0,1)}

pL P2 p3 - [1:1] [0:1]

[2:2) — [1:2]

AR (e ™)
£

{(t1,1,1),(t2,1,1),(t3,0,1)}

= 1] [n:1
([1.1] - [1:2])
[0:1] [0:1 -

t[1;1] ©[22] t3[0;1]

14

Timed Aggregate Graph: Construction example

{(t1,1,1),(t2,2,2),(t3,0,1)}

- [1:1] [1:7]
([2:2] - [2:2])
[0:1] [0:1] -

to is firable now l%
{(t1,0,1),(t2,1,2),(t3,0,1)}

pL P2 p3 - [1:1] [0:1]

[2:2) — [1:2]

AR (e ™)
£

{(t1,1,1),(t2,1,1),(t3,0,1)}

- [1:1] [1:1]
([1:1] - [1:2])
[0:1 [0:2 -

t[1;1] ©[22] t3[0;1]

14

Timed Aggregate Graph: Construction example

{(t1,1,1),(t2,2,2),(t3,0,1)}

- [1:1] [1:7]
([2:2] - [2:2])
[0:1] [0:1] -

s

{(t1,0,1), (2, 1,2),(t3,0,1)}

pL P2 p3 - [1:1] [0:1]

[2:2) — [1:2]

AR (e ™)
£

{(t1,1,1),(t2,1,1),(t3,0,1)}

- [1:1] [1:7]
([1:1] — [1:2])
[0:1] [0:1] -

t[1;1] ©[22] t3[0;1]

{(t1,0,1),(t2,0,1),(t3,0,1)}

- [1:1] [0:1]
([1:1] — [0:1])
/1‘3) [0:1] [0:1 -

14

Timed Aggregate Graph: Construction example

{(t1,1,1),(t2,2,2),(t3,0,1)}

- [1:1] [1:1]
[2:2] - [2:2]
([0:1] o:1 -) {(t1,1,1), (22,0,0), (25,0, 1)}
B oo o)
{(tl.O,1),(t2.1.2),(t3,0,1)} [0 1] [0 1] =

Py p2 p3 - [1:1] [0:1]
[2:2) — [1:2]
& E gj 01 [0:1 - {(12,0,1), (22,0, 1) (t5,0,1)}
ltl - [1:1] [0:1]
[1:1] - [0:1]
{(tl,l,l),(tg, 1, 1),(t3,0, 1)} /t3‘ [0 . 1] [0 . 1] _

- [1:1] [1:7]
([1:1] — [1:2])
[0:1] [0:1] -

t[1;1] ©[22] t3[0;1]

14

Timed Aggregate Graph: Construction example

{(t1,1,1),(t2,2,2),(t3,0,1)}

- [1:1] [1:7]
[2:2] - [2:2] t
[0: 1] [0: 1] = \{(t17171)7(t27070)7(t37071)}
E 0:0] o {fl) f H
{(1,0,1), (t2,1,2), (t5,0,1)} L:1 [:1 -

Py p2 p3 - [1:1] [0:1] Ttl
[2:2) — [1:2]
&' gj gj 0:1 [p:1 - {(11,0,1), (£2,0,1), (£2,0,1)}
ltl - [1:1] [0:1]
[1:1] - [0:1]
{(th 1, 1)’ (t2a 1, 1)’ (t3a 0, 1)} — [0 2 1] [0 8 1] -

i1 iy s
([1:1] - [1:2])
0:1 [0:1 -

t[1;1] ©[22] t3[0;1]

14

Timed Aggregates Graph: Example

aggregate E Meet
- [1:7]

20 | {{t1.1)(.2,2), (85,0,1)} ([2 2 -
[0:1] [0:1]
- [1:7]

a {(8.0,1), (82, 1,2), (8,0,1)} | [[2:2] -
[0:1] [0:1]
- [1:7]

a {(t1,1,1)}, (2,1, 1), (t5,0,1) <[1 B
[0:1] [0:1]
- [1:7]

as {(t1,0,1),(t2,0,1), (5,0, 1)} | {[1:1] ~—
[0:1] [0:1]
— [0:0]

ay {(t1,0,0), (t2,2,2), (t,0, 1)} | [[2:2] —
[0:1] [0:1]
- [1:7]

| (8L, (620,00, (6,0,1)} ([0 o -
[0:1] [0:1]
— [0:0]

s | {(8,0,0),(12,2,2), (55,0,0)} ([2 g -
[0:1] [0:0]
- [1:7]

a7 {(t1,1,1),(t,2,2),(t5,0,0)} ([2: 2] -
[0:0] [0:0]
- [1:7]

a | {(t,1.1), (£2,0,0), (t5,0,0} ([0 0 -
[0:0] [0:1]
- [1:7]

2 | {11 (611, (6,00} | (i1 —
[0:0] [0:1]

15

Theoretical results

@ The TAG associated with a bounded TPN is finite

e Each timed sequence of a TPN corresponds to an untamed
sequence of the TAG, and vice versa

@ Algorithm for building an explicit run from a path on the TAG

@ The maximal and the minimal access time /firing time of a
marking/transition

@ On-The-Fly verification of reachability timed properties by
exploring the TAG

16

Experimental results

SCG (with Tina) ZBG (with Romeo) TAG-TPN
Parameters (nodes / arcs) (nodes / arcs) (nodes / arcs)
Nb. TPN model of producer/consumer
prod/cons
1 34 / 56 34 /56 34 / 56
2 748 / 2460 593 / 1922 740 / 2438
3 4604 / 21891 3240 / 15200 4553 / 21443
4 14086 / 83375 9504 / 56038 13878 / 80646
5 31657 / 217423 20877 / 145037 30990 / 207024
6 61162 / 471254 39306 / 311304 60425 / 449523
7 107236 / 907 708 67224 / 594795 106101 / 856050

17

Experimental results

SCG (with Tina) ZBG (with Romeo) TAG-TPN
Parameters (nodes / arcs) (nodes / arcs) (nodes / arcs)
Nb. pro- Fischer protocol
cesses
1 4/4 4/4 4/4
2 18 / 29 19 / 32 20 / 32
3 65 / 146 66 / 153 74] 165
4 220 / 623 221 / 652 248 [/ 712
5 727 / 2536 728 / 2 615 802 / 2825
6 2378 / 9154 2379 / 10098 2564 / 10728
7 7737 | 24744 7738 / 37961 8178 / 39697
8 25080 / 102242 25081 / 139768 26096 / 144304

18

Experimental results

SCG (with Tina) ZBG (with Romeo) TAG-TPN
Parameters (nodes / arcs) (nodes / arcs) (nodes / arcs)
Nb. pro- Train crossing
cesses
1 11/14 11/14 11 /14
2 123 / 218 114 / 200 123 / 218
3 3101 / 7754 2817 / 6944 2879 / 7280
4 134501 / 436896 122290 / 391244 105360 / 354270

10

Partial-order reduction
P
t3

@

t

@)
(2)
@)

@ exploiting the commutativity of concurrently executed transitions
@ result in the same state when executed in different orders

@ reducing the size of the state-space

20

Modularity and Distribution

@ Two (or many) TPNs sharing many transitions = one joint TPN

@ Modular construction of the TAG : a TAG for each modular
TPN = one synchronized TAG for the joint TPN

@ In multicore systems, distributing the whole construction based
on modularity

21

Conclusion and Perspectives

o Timed Aggregate Graph

A finite abstraction for bounded Time Petri nets state space
Preserves reachable markings and timed traces

Allowing on the fly verification of timed reachability properties
Comparable to Tina/Romeo Tools performances

29

Conclusion and Perspectives

o Timed Aggregate Graph

A finite abstraction for bounded Time Petri nets state space
Preserves reachable markings and timed traces

Allowing on the fly verification of timed reachability properties
Comparable to Tina/Romeo Tools performances

@ Next Steps
o Improve the implementation w.r.t. construction time
o Develop dedicated verification algorithms

o Reachability properties
o Full TCTL?

o Further reductions

o Depending on the property
o Partial Order
o Aggregate the TAG's aggregates ?

o Extend to Timed automata

29

THANK YOU

	Conclusion and Perspectives

