
Incremental learning of relational action models in noisy
environments

Christophe Rodrigues, Pierre Gérard, and Céline Rouveirol

LIPN/A3, University of Paris 13, email: firstname.lastname@lipn.univ-paris13.fr

Abstract. In the Relational Reinforcement Learning framework, we propose an
algorithm that learns an action model (or an approximation of the transition func-
tion) in order to predict the resulting state of an action in a given situation. This
algorithm learns incrementally a set of first order rules in a noisy environment
following a data-driven loop. Each time a new example is presented that con-
tradicts the current action model, the model is revised (by generalization and/or
specialization). As opposed to a previous version of our algorithm that operates
in a noise-free context, we introduce here a number of indicators attached to each
rule that allows to evaluate if the revision should take place immediately or should
be delayed. We provide an empirical evaluation on usual RRL benchmarks.

INTRODUCTION

In this paper1, we propose an algorithm that simultaneously tackles the problems of
incrementality and indeterminism in action model learning when using relational rep-
resentations for states and actions. A relational representation is expected to have better
generalization capabilities, improved scaling-up and transfer of solutions since it does
not rely on a number of attributes describing states nor on their order.

When a system is involved in a sensori-motor loop with its environment, it perceives
its state, chooses and performs an action before perceiving its new situation, acting
again and so on. Action models permit to anticipate the outcomes of any action in a
given state. Such models are necessary for planning and may be used in Reinforcement
Learning (RL) to speed up the overall learning of the optimal action [13].

This work takes place at the intersection of Relational Reinforcement Learning ([5],
see [14] for a review) and Planning in first order logics [12]. In both fields, automatically
acquiring action models from experience is a major concern.

The main originality of our work is that it tackles both incremental learning and
learning in non deterministic environments. In [11], we already proposed incremental
algorithms in the deterministic case, with a convergence proof. By incremental learn-
ing, we mean revising the model each time a new example contradicting the current
action model is presented to the system, without storing every example and periodi-
cally re-running batch learning. Incremental learning is suitable for designing adaptive
systems. In the deterministic case, the order of the provided examples might be mislead-
ing and yield inadequate generalization (or specialization) choices, in particular when

1 This work was partially supported by the ANR project HARRY.



2 Rodrigues, Gérard and Rouveirol

an action has disjunctive preconditions. The system therefore has to be provided with
mechanisms for reconsidering early inadequate decisions.

The deterministic assumption is quite a strong one as, in real world applications,
the outcomes of actions are often stochastic (noise, inadequate representations, partial
observability treated as stochasticity, etc.). Furthermore, indeterminism and incremen-
tality should be tackled together, considering that in a non deterministic context, the
order in which examples are presented to the system is even more critical.

On the one hand, several works in the Relational RL framework [2] or in the plan-
ning field [7, 1, 12, 17, 15] propose to learn action models incrementally, but they all
only consider deterministic environments. On the other hand, other works [10, 9, 18]
address stochasticity, but are limited to batch learning. Based on KWIK [8], [16] ad-
dresses stochastic problems but can hardly be considered as incremental : all examples
are stored and a new batch-learning is performed each time. Other related work do nei-
ther tackle incrementality nor indeterminism such as INTHELEX [6]. Figure 1 gives an
overview of related work.

Fig. 1. Incrementality together with indeterminism

In Section 1, we detail our learning framework by describing the relational first
order representation of the state and action spaces and introducing the general mech-
anisms of the algorithm presented in Section 2. Here, we provide an overview of the
proposed incremental generalization and specialization mechanisms. Before conclud-
ing, the algorithms are empirically tested on the regular RRL benchmark environment.

1 LEARNING PROBLEM

1.1 Action model

An action model is a theory of the transition function T : S ×A → Π(S) of a Markov
Decision Process (MDP) with a set S of possible states and a set A of possible actions.
Here, Π(S) denotes a probability distribution over the state space. Unlike in the deter-
ministic case, the outcomes of the same action in the same state might be different from
time to time, due to noise or other concerns.



Incremental learning of relational action models in noisy environments 3

An example x for the learning process is composed of a given state, a chosen action
and the resulting new state. We respectively note them as x.s, x.a and x.s′. The effect
x.e of an action describes what has changed in the state after applying the action, i.e.
x.e = δ(x.s, x.s′). Rather than strictly learning a model of the transition function, we
model what changes when the action applies, by taking advantage of x.s, x.a and x.e.
Let us denote this model T .

Due to the model complexity, we have chosen not to learn the whole distribution
probability over possible effects for a given action in a given state. We rather restrict
the model T to most likely outcomes. We assume in this paper this will be sufficient to
distinguish between noise and relevant information in most cases.

1.2 Relational representation

Examples. Examples are described by a Datalog-like language (no function symbol but
constants). Objects are denoted by constants (denoted in the following as a, b, f . . .).
Variables are denoted by upper-case letters (X , Y . . .). In a noise-free context, when
an agent emits an action, the effect part completely describes the effects of the action:
literals not affected by the action remain unchanged. The effect, as usual in a STRIPS-
like notation, is composed of two literal sets: x.e.add is the set of literals getting true
when the action is performed, and x.e.del is the set of literals getting false when the
action is applied. The examples can be noted x.s/x.a/x.e.add, x.e.del, with no negated
atoms in x.s, x.a and x.e.add, and x.e.del described as a conjunction of negated literals.

Fig. 2. In a simplified blocks world with only on and move predicates, states and action yielding
to example x1: on(a, f), on(b, f), on(c, a)/move(c, b)/on(c, b),¬on(c, a)

Rules. Most works in RRL use instance based methods [3] or decision trees [4] to si-
multaneously represent an action model and the value function associated to this model.
Existing instance based methods use predefined distances suited to the problems. Deci-
sion trees are top-down methods which – in the incremental case — highly rely on the
order of presentation of the examples, thus leading to over-specializations.

In this paper, we propose a rule-based representation of the action model T , because
inadequate generalization/specialization choices in an incremental context can be easily
reconsidered when actions are represented by independent rules and that no ad-hoc prior
knowledge is needed, as it is the case for instance based approaches.



4 Rodrigues, Gérard and Rouveirol

Each rule r is composed of a precondition r.p, an action r.a and an effect r.e.
The precondition is represented by a conjunction of positive literals, which have to be
satisfied so as to apply the rule. The action is a literal defining the performed action. As
for examples, the effect is composed of two literal sets, r.e.add and r.e.del. An action
r.a has no other effects but those described by r.e. In order to be well formed, a rule
r must be such that i) r.e.del ⊆ r.p ii) r.e.add ∩ r.p 6= ∅ iii) r.a and r.e must be
connected. Finally, all variables occurring in r.a should also occur in r.p and r.e, but
r.p and r.e may refer to objects/variables not occurring in r.a. Rules can be denoted
r.p/r.a/r.e.add, r.e.del. There is no negated literal in r.p, and each literal of r.e.del is
negated.

This extended STRIPS formalism we adopt in this work is more expressive than the
regular STRIPS language, as considered for instance in [15]. For a given action and
effect, it is possible to associate several preconditions, each expressed as a conjunction
of literals. This is not the case in [15], which only accepts conjunctive preconditions
for an action. Moreover, our formalism accepts action rules where variables/objects not
occurring in the action literals may occur in preconditions and/or effects. Learning here
includes learning the ”schema” of STRIPS-actions (number of rules, exact variables
involved in the action).

1.3 Matching and covering

The following matching relationships all make use of OI-subsumption (subsumption
under Object Identity) [6] as a generality relation. A formula G OI-subsumes a formula
S iff there exists a substitution σ such that Gσ ⊆ S, where σ is an injective substitution
(two different variables of the domain of σ are assigned to different terms). For instance,
p(X,Y ) does not OI-subsume p(a, a) becauseX and Y cannot be assigned to the same
constant.

The pre-matching relation sa∼ allows to decide whether a given rule may apply to
predict the outcomes of a given example. For any rule r, state s and action a, r sa∼ (s, a)
iff there exists injective substitutions σ and θ such that i) r.aσ = a ii) r.pσθ ⊆ s.

The post-matching relation ae∼ permits to decide whether a given rule may explain
a given state modification when a given action is performed. For any rule r, and action
a and effect e, r ae∼ (a, e) iff there exists an inverse substitution ρ−1, and two injective
substitutions σ and θ such that i) r.aρ−1σ = a ii) r.eρ−1σθ = e.

The above relations can be extended to matching between rules r and examples x,
by adequately taking into account x.s, x.a and x.e instead of s, a and e in the defini-
tions.

The covering relation ≈ permits to check whether an example can be accurately
predicted by the model. For any rule r and example x, r ≈ x iff r sa∼ (x.s, x.a) and
r
ae∼ (x.a, x.e) for the same injective substitutions σ and θ.

An example x contradicts a rule r (x � r) if r pre-matches (x.s, x.a) for σ and θ
substitutions, and r does not post-match (x.a, x.e) with the same substitutions. In such
a case, the rule incorrectly predicts the outcomes of the action.



Incremental learning of relational action models in noisy environments 5

2 INCREMENTAL RELATIONAL LEARNING OF AN ACTION
MODEL

2.1 Sketch of the algorithm

The system takes examples as defined in Section 1. The examples are presented incre-
mentally, each one possibly yielding an update of the action model. The method we
propose is example-driven and bottom-up. The starting point is thus an empty rule-set;
the interactions between the system and its environment produce rules by computing
least general generalization (lgg) under Object Identity between examples, and between
rules and examples. This approach is different from — descendant — decision trees.

General rules are produced as the lgg of two rules/examples. When a lgg takes place,
the resulting generalization keeps track of which rules/examples it comes from, each
rule r therefore has a list of ancestors r.anc. Each ancestor rule might have ancestors
as well, yielding a hierarchical structure.

This structure is used when specializing, in case an inadequate generalization is
detected (see below). In that case, the corresponding rule is removed and replaced by
one of its rule ancestors; specialization is called recursively until a trusted rule ancestor
is reached.

Example ancestors that have been rejected during specialization are re-injected in
the system for learning, and thus may lead to further revisions of the model. So as
not to explore the same over-generalizations again, a tabu list is associated with such
examples.

Let us suppose we observe a blocks world with three blocks and the floor f . By
observing several moving actions, let us suppose the system has learnt the two following
(correct) rules:

r1 : cl(X), cl(Y ), on(X,Z), bl(X), bl(Y ), bl(Z) /
move(X,Y ) / on(X,Y ),¬cl(Y ),¬on(X,Z), cl(Z)

for stacking the top X of a two blocks stack on a single block Y , provided that both X
and Y are clear of blocks and

r2 : on(X, f), cl(X), cl(Y ), on(Y, Z), bl(X), bl(Y ) /
move(X,Y ) / on(X,Y ),¬cl(Y ),¬on(X, f)

for stacking a block X initially on the floor on another block Y (X and Y should also
be clear of blocks). Let us now assume that the following noisy example occurs:

xn : on(a, f), cl(a), cl(c), on(c, b), on(b, f), bl(a), bl(b), bl(c) /
move(a, c) / on(a, c), cl(f),¬cl(c),¬on(a, f)

The (action,effects) of this example can be post-matched with r1, yielding the following
(incorrect) generalization

rg : cl(X), cl(Y ), on(X,Z), bl(Y ), bl(X) /
move(X,Y ) / on(X,Y ),¬cl(Y ),¬on(X,Z), cl(Z)

while r2 has to be specialized as it pre-matches the noisy example while not predicting
the observed effects.



6 Rodrigues, Gérard and Rouveirol

2.2 Conservative generalizations and specializations

Unlike in the deterministic case, examples may contradict each other, and a rule should
not be specialized as soon as it is contradicted a given example (that may be noisy).
Noisy examples may also induce over-generalizations. Thus, specializations and gener-
alizations should be ”cautious” and conservative. Therefore, we propose in the follow-
ing an algorithm that delays actual generalizations and specializations until sufficient
evidence has been collected. To that end, we attach basic estimates to each rule. They
are combined to help decision making about when to generalize/specialize. To each rule
r in T , we associate three basic estimates:

– r.nsa the number of examples pre-matched by the rule since its creation
– r.nae the number of post-matched examples
– r.nsae the number of covered examples

Initial values for r.nsa, r.nae and r.nsae is 1. (r.nae − r.nsae) is the number of times
a rule post-matched an example without pre-matching it: if the rule was requested to
predict (it wasn’t because it is too specific), it would have predicted well. If this value is
high wrt r.nae, it means that the rule could probably be generalized. The generalization
trend r.gen ∈ [0, 1] of a rule is defined as r.nae−r.nsae

r.nae
. A rule is generalized with an

example only if r.gen > θgen, where θgen is a threshold parameter of the system.. In
addition, such a modification is decided only if the rule has been sufficiently evaluated,
ie r.nae > θevl, where θevl is another parameter of the system.

Similarly, a rule should be specialized if it doesn’t prove to be accurate enough to
predict well. Rule accuracy r.acc is defined as r.nsae

r.nsa
. If accuracy drops below a given

threshold θspc, and if r.nsa > θevl, then r is specialized.

2.3 Covering and elimination of irrelevant rules

When a new example x is not covered by any rule, the algorithm updates T to make it
complete. If no relevant generalization is identified, the example is simply added as a
rule in the rule set, without ancestors.

This process ensures covering all examples including noisy ones, and may introduce
many irrelevant rules that might be difficult to generalize, and that the algorithm should
be able to identify and delete. So as to limit the complexity of the model, we bound the
number of rules in T with a parameter N . Any new but supernumerary rule replaces
another among most untrusted ones. To that end, a confidence estimate r.cnf is associ-
ated with each rule. To be trusted, a rule should have been evaluated often enough, and
its accuracy should be high. Therefore, r.cnf = 0 if r.nsa < θevl, and is equal to r.acc
otherwise.

2.4 Prediction with the model

The above mechanisms allow for contradictions between rules. As a result, when an
example is provided for prediction, more than one rule may pre-match the current state
and action. Among these rules, only one among the most confident ones is used to
compute the predicted effect.



Incremental learning of relational action models in noisy environments 7

3 EMPIRICAL STUDY

For the experimental study, we use a blocks world, used as a benchmark in most RRL
works. States and actions are described with literals and objects. Objects are either
blocks (a, b ...) or the floor f . Predicates on/2 and cl/1 are used to describe the blocks
layout. A predicate bl/1 states whether an object is a block. A block is moved on top of
an object using the action predicate move/2.

Examples are generated in sequence : each episode stops after 10 time steps or when
the goal is reached (stacking all blocks), sequential actions are randomly chosen. Every
ten learning examples, twenty random examples are generated and used to estimate the
accuracy of the model. The error is the percentage of unpredicted examples (at least
one effect literal is uncorrectly predicted). Results are averaged over five experiments.

So as to introduce indeterminism, a perception noise is added : the states as observed
by the system may be randomly altered. With probability ε, random predicates are added
to or removed from the state. The number of additions/removals is randomly chosen
between 1 and nε. Since the examples are provided in sequence, any noisy state st
affects two examples : xt and xt+1. This kind of noise offers a high variety of possible
irrelevant observations. This perceptual noise is different from the action-noise studied
in [9] where it only consists in sometimes letting a block drop onto the table instead of
getting stacked.

Figure 3 shows the evolution of the error along time steps, when the number of
blocks grows. The amount of noise is fixed : ε = 10%. Figure 4 shows the evolution of
the error along time steps, when the noise grows. The number of blocks is here fixed to
6. System parameters are θgen = θspc = 0.9, θevl = 3 and N = 20 (max number of
rules). Environment parameter nε is 2.

Fig. 3. 10% noise: 4, 6 and 8 blocks Fig. 4. 6 blocks: 0, 10 and 20% noise

The irregularity of the curves is due to the number of random samples used for
evaluation wrt the size of the environments. Thanks to good generalization capabilities,
error appears loosely dependent on the problem size. Our method is quite resistant to
high level of noise, but the convergence speed drops with 20% noise. Indeed, with such
an amount of noise, it is highly probable that when an action is observed, both initial
and resulting states are corrupted. Together with a noise affecting several literals, very
misleading and unlikely examples are presented for learning.



8 Rodrigues, Gérard and Rouveirol

4 CONCLUSION

We have proposed in this paper an algorithm that tackles both problems of noise and
full-incrementality for action model learning. Only very few examples are stored and
the model might be revised for each new example. Unlike the deterministic case, this
work is based on heuristics rather than careful enumerations. Simple estimates help
to perform conservative and delayed generalizations and specializations of rules. The
presented system proves to be efficient even with a fairly large amount of perception
noise, and when the size of the problem grows. Future work will aim at proposing a fully
incremental rule based system for regression, so as to approximate value-functions.

References

1. S. Benson. Inductive learning of reactive action models. In ICML 1995, pages 47–54, 1995.
2. T. Croonenborghs, J. Ramon, H. Blockeel, and M. Bruynooghe. Online learning and exploit-

ing relational models in reinforcement learning. In IJCAI, pages 726–731, 2007.
3. K. Driessens and J. Ramon. Relational instance based regression for relational reinforcement

learning. In ICML, pages 123–130, 2003.
4. K. Driessens, J. Ramon, and H. Blockeel. Speeding up relational reinforcement learning

through the use of an incremental first order decision tree algorithm. In ECML, LNAI 2167,
pages 97–108, 2001.

5. S. Dzeroski, L. De Raedt, and K. Driessens. Relational reinforcement learning. Machine
Learning, 43:7–52, 2001.

6. F. Esposito, G. Semeraro, N. Fanizzi, and S. Ferilli. Multistrategy theory revision: Induction
and abduction in INTHELEX. Machine Learning, 38(1-2):133–156, 2000.

7. Y. Gil. Learning by experimentation: Incremental refinement of incomplete planning do-
mains. In ICML, pages 87–95, 1994.

8. L. Li, M. L. Littman, and T. J. Walsh. Knows what it knows: a framework for self-aware
learning. In ICML, pages 568–575, 2008.

9. H. M. Pasula, L. S. Zettlemoyer, and Kaelbling L. Learning symbolic models of stochastic
domains. Journal of Artificial Intelligence Research (JAIR), 29:309–352, 2007.

10. H. M. Pasula, L. S. Zettlemoyer, and Pack Kaelbling L. Learning probabilistic planning
rules. In ICAPS, pages 146–163, 2004.

11. C. Rodrigues, P. Gérard, C. Rouveirol, and H. Soldano. Incremental learning of relational
action rules. In ICMLA. IEEE Computer Society to appear, 2010.

12. W. M. Shen. Discovery as autonomous learning from the environment. Machine Learning,
12(1-3):143–165, 1993.

13. R. S. Sutton. Integrated architectures for learning, planning, and reacting based on approxi-
mating dynamic programming. In ICML, pages 216–224, 1990.

14. M. Van Otterlo. The logic of adaptive behavior. PhD thesis, University of Twente, Enschede,
2008.

15. T. J. Walsh and M. L. Littman. Efficient learning of action schemas and web-service descrip-
tions. In AAAI, pages 714–719, 2008.

16. T. J. Walsh, I. Szita, M. Diuk, and M. L. Littman. Exploring compact reinforcement-learning
representations with linear regression. In UAI, pages 714–719, 2009.

17. X. Wang. Learning by observation and practice: An incremental approach for planning
operator acquisition. In ICML, pages 549–557, 1995.

18. Q. Yang, K. Wu, and Y Jiang. Learning action models from plan examples using weighted
max-sat. Artificial Intelligence, 171(2-3):107 – 143, 2007.


