Boolean bent functions in impossible cases: odd and plane dimensions

Laurent Poinsot

Université du Sud Toulon-Var

SAR/SSI 2006
1. **Boolean bent functions: traditional approach**
 - What is a Boolean bent function?
 - Applications for such functions

2. **Boolean bent functions: Group actions based approach**
 - Basics on group actions
 - Group actions "bent" functions
 - "Bent" functions in impossible cases
 - Application
Outline

1. Boolean bent functions: traditional approach
 - What is a Boolean bent function?
 - Applications for such functions

2. Boolean bent functions: Group actions based approach
 - Basics on group actions
 - Group actions "bent" functions
 - "Bent" functions in impossible cases
 - Application
Outline

1. Boolean bent functions: traditional approach
 - What is a Boolean bent function?
 - Applications for such functions

2. Boolean bent functions: Group actions based approach
 - Basics on group actions
 - Group actions "bent" functions
 - "Bent" functions in impossible cases
 - Application
Let $GF(2) = \{0, 1\}$ be the finite field with two elements. We denote by V_m any m-dimensional vector space over $GF(2)$. V_m will be interpreted as $GF(2)^m$, the vector space of m-tuples, or as $GF(2^m)$ the finite field with 2^m elements.
Some notations

Let $GF(2) = \{0, 1\}$ be the finite field with two elements. We denote by V_m any m-dimensional vector space over $GF(2)$. V_m will be interpreted as $GF(2)^m$, the vector space of m-tuples, or as $GF(2^m)$ the finite field with 2^m elements.
Let G be a finite Abelian group. For instance $G = V_m$, $G = \mathbb{Z}_m = \{0, 1, \ldots, m - 1\}$ or $G = GF(2^m)^\times$.

Definition

A Boolean function is a (mathematical) mapping f from G to V_n. A Boolean function $f : G \rightarrow V_n$ is called bent if its Fourier spectrum contains all the possible frequencies.
Let G be a finite Abelian group. For instance $G = V_m$, $G = \mathbb{Z}_m = \{0, 1, \ldots, m-1\}$ or $G = GF(2^m)^*$.

Definition

A **Boolean** function is a (mathematical) mapping f from G to V_n. A Boolean function $f : G \to V_n$ is called **bent** if its Fourier spectrum contains all the possible frequencies.
Let G be a finite Abelian group. For instance $G = V_m$, $G = \mathbb{Z}_m = \{0, 1, \ldots, m - 1\}$ or $G = GF(2^m)^*$.

Definition

A **Boolean** function is a (mathematical) mapping f from G to V_n. A Boolean function $f : G \to V_n$ is called **bent** if its Fourier spectrum contains all the possible frequencies.
A function $f : G \rightarrow V_n$ is called perfect nonlinear if for each nonzero α in G and for each $\beta \in V_n$,

$$|\{x \in G | f(\alpha + x) \oplus f(x) = \beta\}| = \frac{|G|}{2^n}.$$

Theorem (Dillon 1976, Rothaus 1974, Carlet & Ding 2004)

A function f is bent if and only if f is perfect nonlinear.
Boolean bent functions: Traditional Approach

Boolean bent functions: Group actions based approach

What is a bent functions?
Applications for such functions

Alternative definition: perfect nonlinearity

Definition

A function \(f : G \rightarrow V_n \) is called **perfect nonlinear** if for each nonzero \(\alpha \) in \(G \) and for each \(\beta \in V_n \),

\[
|\{x \in G | f(\alpha + x) \oplus f(x) = \beta\}| = \frac{|G|}{2^n}.
\]

Theorem (Dillon 1976, Rothaus 1974, Carlet & Ding 2004)

A function \(f \) is bent **if and only if** \(f \) is perfect nonlinear.
Example

The function $f : GF(2)^4 \rightarrow GF(2)$ defined by

$$f(x_1, x_2, x_3, x_4) = (x_1, x_2). (x_3, x_4) = x_1x_3 \oplus x_2x_4$$

is bent.
Nonexistence results: impossible cases

- **Odd dimension**: If \(m \) is an odd integer, there is no bent function \(f \) from \(V_m \) to \(V_n \) (for any \(n \));
- **Plane dimension**: For any integer \(m \), there is no bent function \(f \) from \(V_m \) to itself;
- Nevertheless in this contribution are constructed “bent” functions in these cases!
Nonexistence results: impossible cases

- **Odd dimension**: If m is an odd integer, there is no bent function f from V_m to V_n (for any n);
- **Plane dimension**: For any integer m, there is no bent function f from V_m to itself;
- Nevertheless in this contribution are constructed "bent" functions in these cases!
Nonexistence results: impossible cases

- **Odd dimension**: If m is an odd integer, there is no bent function f from V_m to V_n (for any n);

- **Plane dimension**: For any integer m, there is no bent function f from V_m to itself;

Nevertheless in this contribution are constructed "bent" functions in these cases!
Nonexistence results: impossible cases

- **Odd dimension**: If m is an odd integer, there is no bent function f from V_m to V_n (for any n);
- **Plane dimension**: For any integer m, there is no bent function f from V_m to itself;
- Nevertheless in this contribution are constructed ”bent” functions in these cases!
Outline

1. Boolean bent functions: traditional approach
 - What is a Boolean bent function?
 - Applications for such functions

2. Boolean bent functions: Group actions based approach
 - Basics on group actions
 - Group actions "bent" functions
 - "Bent" functions in impossible cases
 - Application
Boolean bent functions: Traditional Approach
Boolean bent functions: Group actions based approach

What is a bent functions?
Applications for such functions

- Cryptography;
- Mobile communications.
Cryptography;
Mobile communications.
What is a bent functions?

Applications for such functions

- Cryptography;
- Mobile communications.
Let M be the plaintext and f be a mapping. An encryption using a DES-like cryptosystem consists in the iterative process

$X_0 := M$;

$X_i := f(K_i + X_{i-1})$ for $n \geq i > 0$.

By definition the ciphertext is $C := X_n$.
Let M be the plaintext and f be a mapping. An encryption using a DES-like cryptosystem consists in the iterative process

- $X_0 := M$;
- $X_i := f(K_i + X_{i-1})$ for $n \geq i > 0$.

By definition the ciphertext is $C := X_n$.}

Laurent Poinsot

Boolean bent functions in impossible cases
Let M be the plaintext and f be a mapping. An encryption using a DES-like cryptosystem consists in the iterative process

\begin{itemize}
 \item $X_0 := M$;
 \item $X_i := f(K_i + X_{i-1})$ for $n \geq i > 0$.
\end{itemize}

By definition the ciphertext is $C := X_n$.
Cryptography (II/II) : Differential and linear attacks

- Biham & Shamir’s Differential attack takes advantage of a possible weakness of the DES-like cryptosystem in a first-order derivation;
- Matsui’s linear attack exploits the possible existence of an approximation of the entire cryptosystem by a linear function;
- The resistance of DES-like cryptosystem relies on the mapping f used.

The mappings f that offer the best resistance against the differential and linear attacks are exactly the bent functions.
Biham & Shamir’s Differential attack takes advantage of a possible weakness of the DES-like cryptosystem in a first-order derivation;

Matsui’s linear attack exploits the possible existence of an approximation of the entire cryptosystem by a linear function;

The resistance of DES-like cryptosystem relies on the mapping f used.

The mappings f that offer the best resistance against the differential and linear attacks are exactly the bent functions.
Cryptography (II/II) : Differential and linear attacks

- Biham & Shamir’s Differential attack takes advantage of a possible weakness of the DES-like cryptosystem in a first-order derivation;
- Matsui’s linear attack exploits the possible existence of an approximation of the entire cryptosystem by a linear function;
- The resistance of DES-like cryptosystem relies on the mapping f used.

The mappings f that offer the best resistance against the differential and linear attacks are exactly the bent functions.
Biham & Shamir’s Differential attack takes advantage of a possible weakness of the DES-like cryptosystem in a first-order derivation;

Matsui’s linear attack exploits the possible existence of an approximation of the entire cryptosystem by a linear function;

The resistance of DES-like cryptosystem relies on the mapping f used.

The mappings f that offer the best resistance against the differential and linear attacks are exactly the bent functions.
Biham & Shamir’s Differential attack takes advantage of a possible weakness of the DES-like cryptosystem in a first-order derivation;

Matsui’s linear attack exploits the possible existence of an approximation of the entire cryptosystem by a linear function;

The resistance of DES-like cryptosystem relies on the mapping f used.

The mappings f that offer the best resistance against the differential and linear attacks are exactly the bent functions.
Mobile communications (I/V) : Code Division Multiple Access (CDMA)

Definition

Two vectors \(u = (u_1, \ldots, u_m) \) and \(v = (v_1, \ldots, v_m) \) are called orthogonal if

\[
u \cdot v = \sum_{i=1}^{m} u_i v_i = 0.\]

For instance \(u = (1, 1, 1, -1) \) and \(v = (1, -1, 1, 1) \) are orthogonal.
Mobile communications (II/V) : CDMA

- V: set of mutually orthogonal vectors;
- Each sender S_x has a different, unique vector $x \in V$ called chip code.
 For instance, S_u has $u = (1, 1, 1, -1)$ and S_v has $v = (1, -1, 1, 1)$;
- **Objective**: Simultaneous transmission of messages by several senders on the same channel (*multiplexing*).
Mobile communications (II/V) : CDMA

- V : set of mutually orthogonal vectors;
- Each sender S_x has a different, unique vector $x \in V$ called chip code.
 For instance S_u has $u = (1, 1, 1, -1)$ and S_v has $v = (1, -1, 1, 1)$;
- Objective : Simultaneous transmission of messages by several senders on the same channel (multiplexing).
Mobile communications (II/V) : CDMA

- V : set of mutually orthogonal vectors ;
- Each sender S_x has a different, unique vector $x \in V$ called chip code.
 For instance S_u has $u = (1, 1, 1, -1)$ and S_v has $v = (1, -1, 1, 1)$;
- Objective : Simultaneous transmission of messages by several senders on the same channel (multiplexing).
Mobile communications (II/V) : CDMA

- V: set of mutually orthogonal vectors;
- Each sender S_x has a different, unique vector $x \in V$ called chip code.
 For instance S_u has $u = (1, 1, 1, -1)$ and S_v has $v = (1, -1, 1, 1)$;
- **Objective**: Simultaneous transmission of messages by several senders on the same channel (*multiplexing*).
Mobile communications (III/V) : CDMA

- S_u wants to send $d_u = (1, 0, 1)$ and S_v wants to send $d_v = (0, 0, 1)$;
- S_u computes its transmitted vector by coding d_u with the rules $0 \leftrightarrow -u$, $1 \leftrightarrow u$. He obtains $(u, -u, u)$;
- S_v computes $(-v, -v, v)$;
- The message sent on the channel is $(u - v, -u - v, u + v)$.
S_u wants to send $d_u = (1, 0, 1)$ and S_v wants to send $d_v = (0, 0, 1)$;

S_u computes its transmitted vector by coding d_u with the rules $0 \leftrightarrow -u$, $1 \leftrightarrow u$. He obtains $(u, -u, u)$;

S_v computes $(-v, -v, v)$;

The message sent on the channel is $(u - v, -u - v, u + v)$.
Su wants to send $d_u = (1, 0, 1)$ and Sv wants to send $d_v = (0, 0, 1)$;

Su computes its transmitted vector by coding d_u with the rules $0 \leftrightarrow -u$, $1 \leftrightarrow u$. He obtains $(u, -u, u)$;

Sv computes $(-v, -v, v)$;

The message sent on the channel is $(u - v, -u - v, u + v)$.
Su wants to send $d_u = (1, 0, 1)$ and Sv wants to send $d_v = (0, 0, 1)$;

Su computes its transmitted vector by coding d_u with the rules $0 \leftrightarrow -u$, $1 \leftrightarrow u$. He obtains $(u, -u, u)$;

Sv computes $(-v, -v, v)$;

The message sent on the channel is $(u - v, -u - v, u + v)$.
Mobile communications (III/V) : CDMA

- S_u wants to send $d_u = (1, 0, 1)$ and S_v wants to send $d_v = (0, 0, 1)$;
- S_u computes its transmitted vector by coding d_u with the rules $0 \leftrightarrow -u$, $1 \leftrightarrow u$. He obtains $(u, -u, u)$;
- S_v computes $(-v, -v, v)$;
- The message sent on the channel is $(u - v, -u - v, u + v)$.
A receiver gets the message \(M = (u - v, -u - v, u + v) \) and he needs to recover \(d_u \) and/or \(d_v \);

How to recover \(d_u \)?

- Take the first component of \(M \), \(u - v \) and compute the dot-product with \(u : (u - v).u = u.u - v.u = 4 \). Since this is positive, we can deduce that a one digit was sent;
- Take the second component of \(M \), \(-u - v \) and \((-u - v).u = -u.u - v.u = -4 \). Since this is negative, we can deduce that a zero digit was sent;
- Continuing in this fashion with the third component, the receiver successfully decodes \(d_u \);

Likewise, applying the same process with chip code \(v \), the receiver finds the message of \(S_v \).
A receiver gets the message $M = (u - v, -u - v, u + v)$ and he needs to recover d_u and/or d_v.

How to recover d_u?

- Take the first component of M, $u - v$ and compute the dot-product with u: $(u - v).u = u.u - v.u = 4$. Since this is positive, we can deduce that a one digit was sent;
- Take the second component of M, $-u - v$ and $(-u - v).u = -u.u - v.u = -4$. Since this is negative, we can deduce that a zero digit was sent;
- Continuing in this fashion with the third component, the receiver successfully decodes d_u;

Likewise, applying the same process with chip code v, the receiver finds the message of S_v.
Mobile communications (IV/V) : CDMA

- A receiver gets the message $M = (u - v, -u - v, u + v)$ and he needs to recover d_u and/or d_v;
- How to recover d_u?
 - Take the first component of M, $u - v$ and compute the dot-product with u : $(u - v).u = u.u - v.u = 4$. Since this is positive, we can deduce that a one digit was sent;
 - Take the second component of M, $-u - v$ and $(-u - v).u = -u.u - v.u = -4$. Since this is negative, we can deduce that a zero digit was sent;
 - Continuing in this fashion with the third component, the receiver successfully decodes d_u;
- Likewise, applying the same process with chip code v, the receiver finds the message of S_v.
A receiver gets the message $M = (u - v, -u - v, u + v)$ and he needs to recover d_u and/or d_v.

How to recover d_u?

- Take the first component of M, $u - v$ and compute the dot-product with $u : (u - v).u = u.u - v.u = 4$. Since this is positive, we can deduce that a one digit was sent;
- Take the second component of M, $-u - v$ and $(-u - v).u = -u.u - v.u = -4$. Since this is negative, we can deduce that a zero digit was sent;
- Continuing in this fashion with the third component, the receiver successfully decodes d_u;

Likewise, applying the same process with chip code v, the receiver finds the message of S_v.
A receiver gets the message $M = (u - v, -u - v, u + v)$ and he needs to recover d_u and/or d_v.

How to recover d_u?
- Take the first component of M, $u - v$ and compute the dot-product with u:

 $$(u - v).u = u.u - v.u = 4.$$
 Since this is positive, we can deduce that a one digit was sent.
- Take the second component of M, $-u - v$ and $(-u - v).u = -u.u - v.u = -4$. Since this is negative, we can deduce that a zero digit was sent.
- Continuing in this fashion with the third component, the receiver successfully decodes d_u.

Likewise, applying the same process with chip code v, the receiver finds the message of S_v.

Laurent Poinsot
Mobile communications (IV/V) : CDMA

- A receiver gets the message $M = (u - v, -u - v, u + v)$ and he needs to recover d_u and/or d_v.
- How to recover d_u?
 - Take the first component of M, $u - v$ and compute the dot-product with u:
 $$(u - v).u = u.u - v.u = 4.$$ Since this is positive, we can deduce that a one digit was sent.
 - Take the second component of M, $-u - v$ and compute:
 $$(-u - v).u = -u.u - v.u = -4.$$ Since this is negative, we can deduce that a zero digit was sent.
 - Continuing in this fashion with the third component, the receiver successfully decodes d_u.
- Likewise, applying the same process with chip code v, the receiver finds the message of S_v.

Laurent Poinsot
Mobile communications (IV/V) : CDMA

- A receiver gets the message $M = (u - v, -u - v, u + v)$ and he needs to recover d_u and/or d_v;
- How to recover d_u?
 - Take the first component of M, $u - v$ and compute the dot-product with $u : (u - v).u = u.u - v.u = 4$. Since this is positive, we can deduce that a one digit was sent;
 - Take the second component of M, $-u - v$ and $(-u - v).u = -u.u - v.u = -4$. Since this is negative, we can deduce that a zero digit was sent;
 - Continuing in this fashion with the third component, the receiver successfully decodes d_u;
- Likewise, applying the same process with chip code v, the receiver finds the message of S_v.

Laurent Poinsot
Mobile communications (IV/V) : CDMA

- A receiver gets the message $M = (u - v, -u - v, u + v)$ and he needs to recover d_u and/or d_v.
- How to recover d_u?
 - Take the first component of M, $u - v$ and compute the dot-product with $u : (u - v).u = u.u - v.u = 4$. Since this is positive, we can deduce that a one digit was sent;
 - Take the second component of M, $-u - v$ and $(-u - v).u = -u.u - v.u = -4$. Since this is negative, we can deduce that a zero digit was sent;
 - Continuing in this fashion with the third component, the receiver successfully decodes d_u;

- Likewise, applying the same process with chip code v, the receiver finds the message of S_v.

Laurent Poinsot
A receiver gets the message $M = (u - v, -u - v, u + v)$ and he needs to recover d_u and/or d_v;

How to recover d_u?
- Take the first component of M, $u - v$ and compute the dot-product with u: $(u - v).u = u.u - v.u = 4$. Since this is positive, we can deduce that a one digit was sent;
- Take the second component of M, $-u - v$ and $(-u - v).u = -u.u - v.u = -4$. Since this is negative, we can deduce that a zero digit was sent;
- Continuing in this fashion with the third component, the receiver successfully decodes d_u;

Likewise, applying the same process with chip code v, the receiver finds the message of S_v.
Let $f : \mathbb{Z}_m \to \{0, 1\}$ be a bent function. For each $\alpha \in \mathbb{Z}_m$, we define a vector:

$$u_\alpha = (f(\alpha), f(\alpha + 1), \ldots, f(\alpha + m - 1)).$$

In particular $u_0 = (f(0), f(1), \ldots, f(m - 1))$. Then $\{u_\alpha | \alpha \in \mathbb{Z}_m\}$ is a set of mutually orthogonal vectors.
Let $f : \mathbb{Z}_m \rightarrow \{0, 1\}$ be a bent function. For each $\alpha \in \mathbb{Z}_m$, we define a vector:

$$u_\alpha = (f(\alpha), f(\alpha + 1), \ldots, f(\alpha + m - 1)).$$

In particular $u_0 = (f(0), f(1), \ldots, f(m - 1))$. Then $\{u_\alpha | \alpha \in \mathbb{Z}_m\}$ is a set of mutually orthogonal vectors.
Let $f : \mathbb{Z}_m \rightarrow \{0, 1\}$ be a bent function. For each $\alpha \in \mathbb{Z}_m$, we define a vector:

$$u_\alpha = (f(\alpha), f(\alpha + 1), \ldots, f(\alpha + m - 1)).$$

In particular $u_0 = (f(0), f(1), \ldots, f(m - 1))$.

Then $\{u_\alpha | \alpha \in \mathbb{Z}_m\}$ is a set of mutually orthogonal vectors.
Let $f : \mathbb{Z}_m \to \{0, 1\}$ be a bent function. For each $\alpha \in \mathbb{Z}_m$, we define a vector:

$$u_\alpha = (f(\alpha), f(\alpha + 1), \ldots, f(\alpha + m - 1)) .$$

In particular $u_0 = (f(0), f(1), \ldots, f(m - 1))$. Then $\{u_\alpha | \alpha \in \mathbb{Z}_m\}$ is a set of mutually orthogonal vectors.
Outline

1. Boolean bent functions: traditional approach
 - What is a Boolean bent function?
 - Applications for such functions

2. Boolean bent functions: Group actions based approach
 - Basics on group actions
 - Group actions "bent" functions
 - "Bent" functions in impossible cases
 - Application
Let X be any nonempty set. We denote by $S(X)$ the symmetric group of X.

Definition

Let G be any group. An action of G on X is a group homomorphism Φ from G to $S(X)$.

Write $g.x$ instead of $\Phi(g)(x)$ for $g \in G$ and $x \in X$.

Examples

- A group G acts on itself by translation: $\alpha.x = \alpha + x$;
- Let G and H be two groups. G acts on $G \times H$ by $\alpha.(x, y) = (\alpha + x, y)$;
- Let W be a sub-vector space of V. W acts on V by translation: $\alpha.x = \alpha + x$;
- Let K be any field. Then K^* acts on K by $\alpha.x = \alpha x$.
Let X be any nonempty set. We denote by $S(X)$ the symmetric group of X.

Definition

Let G be any group. An action of G on X is a group homomorphism Φ from G to $S(X)$.

Write $g.x$ instead of $\Phi(g)(x)$ for $g \in G$ and $x \in X$.

Examples

- A group G acts on itself by translation : $\alpha.x = \alpha + x$;
- Let G and H be two groups. G acts on $G \times H$ by $\alpha.(x, y) = (\alpha + x, y)$;
- Let W be a sub-vector space of V. W acts on V by translation : $\alpha.x = \alpha + x$;
- Let \mathbb{K} be any field. Then \mathbb{K}^* acts on \mathbb{K} by $\alpha.x = \alpha x$.

Laurent Poinsot
Let X be any nonempty set. We denote by $S(X)$ the symmetric group of X.

Definition

Let G be any group. An action of G on X is a group homomorphism Φ from G to $S(X)$.

Write $g.x$ instead of $\Phi(g)(x)$ for $g \in G$ and $x \in X$.

Examples

- A group G acts on itself by translation: $\alpha.x = \alpha + x$;
- Let G and H be two groups. G acts on $G \times H$ by $\alpha.(x, y) = (\alpha + x, y)$;
- Let W be a sub-vector space of V. W acts on V by translation: $\alpha.x = \alpha + x$;
- Let K be any field. Then K^* acts on K by $\alpha.x = \alpha x$.
Let X be any nonempty set. We denote by $S(X)$ the symmetric group of X.

Definition

Let G be any group. An action of G on X is a group homomorphism Φ from G to $S(X)$.

Write $g.x$ instead of $\Phi(g)(x)$ for $g \in G$ and $x \in X$.

Examples

- A group G acts on itself by translation: $\alpha.x = \alpha + x$;
- Let G and H be two groups. G acts on $G \times H$ by $\alpha.(x, y) = (\alpha + x, y)$;
- Let W be a sub-vector space of V. W acts on V by translation: $\alpha.x = \alpha + x$;
- Let K be any field. Then K^* acts on K by $\alpha.x = \alpha x$.
Let X be any nonempty set. We denote by $S(X)$ the symmetric group of X.

Definition

Let G be any group. An action of G on X is a group homomorphism Φ from G to $S(X)$.

Write $g.x$ instead of $\Phi(g)(x)$ for $g \in G$ and $x \in X$.

Examples

- A group G acts on itself by translation : $\alpha.x = \alpha + x$;
- Let G and H be two groups. G acts on $G \times H$ by $\alpha.(x, y) = (\alpha + x, y)$;
- Let W be a sub-vector space of V. W acts on V by translation : $\alpha.x = \alpha + x$;
- Let K be any field. Then K^* acts on K by $\alpha.x = \alpha x$.

Laurent Poinsot
Let X be any nonempty set. We denote by $S(X)$ the **symmetric group** of X.

Definition

Let G be any group. An **action** of G on X is a group homomorphism Φ from G to $S(X)$.

Write $g.x$ instead of $\Phi(g)(x)$ for $g \in G$ and $x \in X$.

Examples

- A group G acts on itself by translation : $\alpha.x = \alpha + x$;
- Let G and H be two groups. G acts on $G \times H$ by $\alpha.(x, y) = (\alpha + x, y)$;
- Let W be a sub-vector space of V. W acts on V by translation : $\alpha.x = \alpha + x$;
- Let K be any field. Then K^* acts on K by $\alpha.x = \alpha x$.
Let X be any nonempty set. We denote by $S(X)$ the symmetric group of X.

Definition

Let G be any group. An action of G on X is a group homomorphism Φ from G to $S(X)$.

Write $g.x$ instead of $\Phi(g)(x)$ for $g \in G$ and $x \in X$.

Examples

- A group G acts on itself by translation: $\alpha.x = \alpha + x$;
- Let G and H be two groups. G acts on $G \times H$ by $\alpha.(x, y) = (\alpha + x, y)$;
- Let W be a sub-vector space of V. W acts on V by translation: $\alpha.x = \alpha + x$;
- Let K be any field. Then K^* acts on K by $\alpha.x = \alpha x$.

Laurent Poinsot
Outline

1. Boolean bent functions: traditional approach
 - What is a Boolean bent function?
 - Applications for such functions

2. Boolean bent functions: Group actions based approach
 - Basics on group actions
 - Group actions "bent" functions
 - "Bent" functions in impossible cases
 - Application
Alternative definition (recall)

A function $f : G \rightarrow V_n$ is bent if for each nonzero α in G and for each $\beta \in V_n$,

$$|\{x \in G | f(\alpha + x) \oplus f(x) = \beta\}| = \frac{|G|}{2^n}.$$
Definition

Let G be a finite Abelian group acting on a finite nonempty set X. A function $f : X \rightarrow V_n$ is G-bent if for each nonzero $\alpha \in G$ and for each $\beta \in V_n$,\[\left| \{ x \in X | f(\alpha.x) \oplus f(x) = \beta \} \right| = \frac{|X|}{2^n}. \]

In particular a classical bent function $f : G \rightarrow V_n$ should be called a G-bent function in this new framework, where the considered group action is the action of G on itself by translation.
Definition

Let G be a finite Abelian group acting on a finite nonempty set X. A function $f : X \rightarrow V_n$ is G-bent if for each nonzero $\alpha \in G$ and for each $\beta \in V_n$,

$$|\{x \in X| f(\alpha \cdot x) \oplus f(x) = \beta\}| = \frac{|X|}{2^n}.$$

In particular a classical bent function $f : G \rightarrow V_n$ should be called a G-bent function in this new framework, where the considered group action is the action of G on itself by translation.
Outline

1. Boolean bent functions : traditional approach
 - What is a Boolean bent function?
 - Applications for such functions

2. Boolean bent functions : Group actions based approach
 - Basics on group actions
 - Group actions "bent" functions
 - "Bent" functions in impossible cases
 - Application
Theorem
Let \(m \) and \(n \) be two odd integers. Then it is possible to construct a function \(f : V_{2m+n} \to \{0, 1\} \) which is \(V_n \)-bent.

Remark
Because \(m \) and \(n \) are odd integers there is no classical bent function from \(V_{2m+n} \) to \(\{0, 1\} \) or also from \(V_n \) to \(\{0, 1\} \).
Theorem

Let m and n be two odd integers. Then it is possible to construct a function $f : V_{2m+n} \rightarrow \{0, 1\}$ which is V_n-bent.

Remark

Because m and n are odd integers there is no classical bent function from V_{2m+n} to $\{0, 1\}$ or also from V_n to $\{0, 1\}$.
Theorem

Let m and n be two odd integers. Then it is possible to construct a function $f : V_{2m+n} \rightarrow \{0, 1\}$ which is V_n-bent.

Remark

Because m and n are odd integers there is no classical bent function from V_{2m+n} to $\{0, 1\}$ or also from V_n to $\{0, 1\}$.
Theorem

Let $f : \mathbb{F}_2^m \rightarrow \mathbb{F}_2^m$ be a field automorphism. Then f is $\mathbb{F}_2^m^*$-bent.

Proof

Let $x \in \mathbb{F}_2^m$ and $\alpha \in \mathbb{F}_2^m^*$, $\alpha \neq 1$. Let $\beta \in \mathbb{F}_2^m$.

\[
\begin{align*}
 f(\alpha \cdot x) \oplus f(x) &= \beta \\
 \iff f(\alpha x \oplus x) &= \beta \\
 \iff (\alpha \oplus 1)x &= f^{-1}(\beta) \\
 \iff x &= \frac{f^{-1}(\beta)}{\alpha \oplus 1}
\end{align*}
\]
Theorem
Let \(f : GF(2^m) \rightarrow GF(2^m) \) be a field automorphism. Then \(f \) is \(GF(2^m)^* \)-bent.

Proof
Let \(x \in GF(2^m) \) and \(\alpha \in GF(2^m)^* \), \(\alpha \neq 1 \). Let \(\beta \in GF(2^m) \).

\[
\begin{align*}
 f(\alpha x) \oplus f(x) & = \beta \\
 \iff f(\alpha x \oplus x) & = \beta \\
 \iff (\alpha \oplus 1)x & = f^{-1}(\beta) \\
 \iff x & = \frac{f^{-1}(\beta)}{(\alpha \oplus 1)}
\end{align*}
\]
Boolean bent functions: Group actions based approach

Basics on group actions
Group actions "bent" functions
"Bent" functions in impossible cases
Application

Plane dimension

Theorem

Let \(f : \mathbb{GF}(2^m) \rightarrow \mathbb{GF}(2^m) \) be a field automorphism. Then \(f \) is \(\mathbb{GF}(2^m)^* \)-bent.

Proof

Let \(x \in \mathbb{GF}(2^m) \) and \(\alpha \in \mathbb{GF}(2^m)^* \), \(\alpha \neq 1 \). Let \(\beta \in \mathbb{GF}(2^m) \).

\[
\begin{align*}
 f(\alpha.x) \oplus f(x) &= \beta \\
 \Leftrightarrow f(\alpha x \oplus x) &= \beta \\
 \Leftrightarrow (\alpha \oplus 1)x &= f^{-1}(\beta) \\
 \Leftrightarrow x &= \frac{f^{-1}(\beta)}{(\alpha \oplus 1)}
\end{align*}
\]

Laurent Poinsot

Boolean bent functions in impossible cases
Boolean bent functions: Traditional Approach

Boolean bent functions: Group actions based approach

Basics on group actions
Group actions "bent" functions
"Bent" functions in impossible cases
Application

Plane dimension

Theorem
Let $f : GF(2^m) \rightarrow GF(2^m)$ be a field automorphism. Then f is $GF(2^m)^*$-bent.

Proof
Let $x \in GF(2^m)$ and $\alpha \in GF(2^m)^*$, $\alpha \neq 1$. Let $\beta \in GF(2^m)$.

\[
\begin{align*}
 f(\alpha \cdot x) \oplus f(x) & = \beta \\
 \Leftrightarrow f(\alpha x \oplus x) & = \beta \\
 \Leftrightarrow (\alpha \oplus 1)x & = f^{-1}(\beta) \\
 \Leftrightarrow x & = \frac{f^{-1}(\beta)}{(\alpha \oplus 1)}
\end{align*}
\]
Plane dimension

Theorem

Let \(f : GF(2^m) \rightarrow GF(2^m) \) be a field automorphism. Then \(f \) is \(GF(2^m)^* \)-bent.

Proof

Let \(x \in GF(2^m) \) and \(\alpha \in GF(2^m)^* \), \(\alpha \neq 1 \). Let \(\beta \in GF(2^m) \).

\[
\begin{align*}
 f(\alpha.x) \oplus f(x) &= \beta \\
 \iff f(\alpha x \oplus x) &= \beta \\
 \iff (\alpha \oplus 1)x &= f^{-1}(\beta) \\
 \iff x &= \frac{f^{-1}(\beta)}{(\alpha \oplus 1)}
\end{align*}
\]
Plane dimension

Theorem

Let \(f : GF(2^m) \rightarrow GF(2^m) \) be a field automorphism. Then \(f \) is \(GF(2^m)^* \)-bent.

Proof

Let \(x \in GF(2^m) \) and \(\alpha \in GF(2^m)^*, \alpha \neq 1 \). Let \(\beta \in GF(2^m) \).

\[
\begin{align*}
f(\alpha \cdot x) \oplus f(x) &= \beta \\
\Leftrightarrow f(\alpha x \oplus x) &= \beta \\
\Leftrightarrow (\alpha \oplus 1)x &= f^{-1}(\beta) \\
\Leftrightarrow x &= \frac{f^{-1}(\beta)}{\alpha \oplus 1}
\end{align*}
\]
Outline

1. Boolean bent functions: traditional approach
 - What is a Boolean bent function?
 - Applications for such functions

2. Boolean bent functions: Group actions based approach
 - Basics on group actions
 - Group actions "bent" functions
 - "Bent" functions in impossible cases
 - Application
We call a **cyclic** bent function, a bent function $f : \mathbb{Z}_m \rightarrow \{0, 1\}$.

The only known examples of such cyclic bent functions occur when $m = 4$. It is widely conjectured that this is actually the only case.

Theorem

Let m be an even integer. Then it exists a $GF(2)^m$-bent function $f : \mathbb{Z}_{2^m} \rightarrow \{0, 1\}$.

If $m \neq 2$ then (it is conjectured that) f can not be a classical bent function.
We call a cyclic bent function, a bent function \(f : \mathbb{Z}_m \rightarrow \{0, 1\} \). The only known examples of such cyclic bent functions occur when \(m = 4 \). It is widely conjectured that this is actually the only case.

Theorem

Let \(m \) be an even integer. Then it exists a \(GF(2)^m \)-bent function \(f : \mathbb{Z}_{2^m} \rightarrow \{0, 1\} \).

If \(m \neq 2 \) then (it is conjectured that) \(f \) can not be a classical bent function.
We call a **cyclic** bent function, a bent function \(f : \mathbb{Z}_m \rightarrow \{0, 1\} \). The only **known** examples of such cyclic bent functions occur when \(m = 4 \). It is widely **conjectured** that this is actually the only case.

Theorem

Let \(m \) be an even integer. Then it exists a \(GF(2)^m \)-bent function \(f : \mathbb{Z}_{2^m} \rightarrow \{0, 1\} \).

If \(m \neq 2 \) then (it is conjectured that) \(f \) can not be a classical bent function.
We call a \textit{cyclic} bent function, a bent function $f : \mathbb{Z}_m \rightarrow \{0, 1\}$. The only \textbf{known} examples of such cyclic bent functions occur when $m = 4$. It is widely \textbf{conjectured} that this is actually the only case.

\textbf{Theorem}

Let m be an even integer. Then it exists a $GF(2)^m$-bent function $f : \mathbb{Z}_{2^m} \rightarrow \{0, 1\}$.

If $m \neq 2$ then (it is conjectured that) f can not be a classical bent function.
Proof

Definition of the group action of $GF(2)^m$ on \mathbb{Z}_{2^m}:

We transport the action by translation of $GF(2)^m$ on \mathbb{Z}_{2^m}:

$$\alpha . x = \Theta (\alpha \oplus \Theta^{-1}(x))$$

where Θ is the usual radix-two representation of an integer;

Let choose $g : GF(2)^m \rightarrow \{0, 1\}$ be a (traditional) bent function (such a function exists since m is an even integer). We define the function

$$f : \mathbb{Z}_{2^m} \rightarrow \{0, 1\}$$

$$x \mapsto g(\Theta^{-1}(x)).$$
Proof

Definition of the group action of $GF(2)^m$ on \mathbb{Z}_{2^m}:
We transport the action by translation of $GF(2)^m$ on \mathbb{Z}_{2^m}:

$$\alpha \cdot x = \Theta(\alpha \oplus \Theta^{-1}(x))$$

where Θ is the usual radix-two representation of an integer;

Let choose $g : GF(2)^m \rightarrow \{0, 1\}$ be a (traditional) bent function (such a function exists since m is an even integer). We define the function

$$f : \mathbb{Z}_{2^m} \rightarrow \{0, 1\}$$
$$x \mapsto g(\Theta^{-1}(x)).$$
Proof

- **Definition of the group action of** $GF(2)^m$ **on** \mathbb{Z}_{2^m} **:**

 We transport the action by translation of $GF(2)^m$ on \mathbb{Z}_{2^m}:

 $$\alpha \cdot x = \Theta(\alpha \oplus \Theta^{-1}(x))$$

 where Θ is the usual radix-two representation of an integer;

- Let choose $g : GF(2)^m \to \{0, 1\}$ be a (traditional) bent function (such a function exists since m is an even integer). We define the function

 $$f : \mathbb{Z}_{2^m} \to \{0, 1\}$$

 $$x \mapsto g(\Theta^{-1}(x)).$$
Definition of the group action of $GF(2)^m$ on \mathbb{Z}_{2^m}:
We transport the action by translation of $GF(2)^m$ on \mathbb{Z}_{2^m}:

$$\alpha . x = \Theta (\alpha \oplus \Theta^{-1}(x))$$

where Θ is the usual radix-two representation of an integer;

Let choose $g : GF(2)^m \rightarrow \{0, 1\}$ be a (traditional) bent function (such a function exists since m is an even integer). We define the function

$$f : \mathbb{Z}_{2^m} \rightarrow \{0, 1\}$$

$$x \mapsto g(\Theta^{-1}(x)).$$
Proof

- **Definition of the group action of** $GF(2)^m$ **on** \mathbb{Z}_{2^m} **:**

 We transport the action by translation of $GF(2)^m$ on $\mathbb{Z}_{2^m}:

 \[\alpha \cdot x = \Theta(\alpha \oplus \Theta^{-1}(x)) \]

 where Θ is the usual radix-two representation of an integer.

- **Let choose** $g : GF(2)^m \rightarrow \{0, 1\}$ **be a (traditional) bent function** (such a function exists since m is an even integer). **We define the function**

 \[f : \mathbb{Z}_{2^m} \rightarrow \{0, 1\} \]
 \[x \mapsto g(\Theta^{-1}(x)) \]
Proof (cont’d)

Let show that f is $GF(2)^m$-bent:

\[
\begin{align*}
 f(\alpha.x) \oplus f(x) &= \beta \\
 \iff g(\Theta^{-1}(\alpha.x)) \oplus g(\Theta^{-1}(x)) &= \beta \\
 \iff g(\Theta^{-1}(\Theta(\alpha \oplus \Theta^{-1}(x)))) \oplus g(\Theta^{-1}(x)) &= \beta \\
 \iff g(\alpha \oplus \Theta^{-1}(x)) \oplus g(\Theta^{-1}(x)) &= \beta \\
 \iff g(\alpha \oplus y) \oplus g(y) &= \beta.
\end{align*}
\]
Let show that f is $GF(2)^m$-bent:

\[
\begin{align*}
&f(\alpha.x) \oplus f(x) = \beta \\
\iff &g(\Theta^{-1}(\alpha.x)) \oplus g(\Theta^{-1}(x)) = \beta \\
\iff &g(\Theta^{-1}(\Theta(\alpha \oplus \Theta^{-1}(x))) \oplus g(\Theta^{-1}(x)) = \beta \\
\iff &g(\alpha \oplus \Theta^{-1}(x)) \oplus g(\Theta^{-1}(x)) = \beta \\
\iff &g(\alpha \oplus y) \oplus g(y) = \beta.
\end{align*}
\]
Let show that f is $GF(2)^m$-bent:

\[
f(\alpha . x) \oplus f(x) = \beta
\]

\[
\Leftrightarrow g(\Theta^{-1}(\alpha . x)) \oplus g(\Theta^{-1}(x)) = \beta
\]

\[
\Leftrightarrow g(\Theta^{-1}(\Theta(\alpha \oplus \Theta^{-1}(x))) \oplus g(\Theta^{-1}(x)) = \beta
\]

\[
\Leftrightarrow g(\alpha \oplus \Theta^{-1}(x)) \oplus g(\Theta^{-1}(x)) = \beta
\]

\[
\Leftrightarrow g(\alpha \oplus y) \oplus g(y) = \beta.
\]
Proof (cont’d)

Let show that f is $GF(2)^m$-bent:

\[
\begin{align*}
f(\alpha.x) \oplus f(x) & = \beta \\
\Leftrightarrow g(\Theta^{-1}(\alpha.x)) \oplus g(\Theta^{-1}(x)) & = \beta \\
\Leftrightarrow g(\Theta^{-1}(\Theta(\alpha \oplus \Theta^{-1}(x))) \oplus g(\Theta^{-1}(x)) & = \beta \\
\Leftrightarrow g(\alpha \oplus \Theta^{-1}(x)) \oplus g(\Theta^{-1}(x)) & = \beta \\
\Leftrightarrow g(\alpha \oplus y) \oplus g(y) & = \beta.
\end{align*}
\]

□
Let show that f is $GF(2)^m$-bent:

\[
f(\alpha.x) \oplus f(x) = \beta \\
\iff g(\Theta^{-1}(\alpha.x)) \oplus g(\Theta^{-1}(x)) = \beta \\
\iff g(\Theta^{-1}(\Theta(\alpha \oplus \Theta^{-1}(x)))) \oplus g(\Theta^{-1}(x)) = \beta \\
\iff g(\alpha \oplus \Theta^{-1}(x)) \oplus g(\Theta^{-1}(x)) = \beta \\
\iff g(\alpha \oplus y) \oplus g(y) = \beta.
\]
Proof (cont’d)

Let show that f is $GF(2)^m$-bent:

\[
\begin{align*}
f(\alpha \cdot x) \oplus f(x) &= \beta \\
\iff g(\Theta^{-1}(\alpha \cdot x)) \oplus g(\Theta^{-1}(x)) &= \beta \\
\iff g(\Theta^{-1}(\Theta(\alpha \oplus \Theta^{-1}(x))) \oplus g(\Theta^{-1}(x)) &= \beta \\
\iff g(\alpha \oplus \Theta^{-1}(x)) \oplus g(\Theta^{-1}(x)) &= \beta \\
\iff g(\alpha \oplus \Theta^{-1}(x)) \oplus g(\Theta^{-1}(x)) &= \beta.
\end{align*}
\]
Let show that f is $GF(2)^m$-bent:

$$f(\alpha.x) \oplus f(x) = \beta$$

$$\iff g(\Theta^{-1}(\alpha.x)) \oplus g(\Theta^{-1}(x)) = \beta$$

$$\iff g(\Theta^{-1}(\Theta(\alpha \oplus \Theta^{-1}(x))) \oplus g(\Theta^{-1}(x)) = \beta$$

$$\iff g(\alpha \oplus \Theta^{-1}(x)) \oplus g(\Theta^{-1}(x)) = \beta$$

$$\iff g(\alpha \oplus y) \oplus g(y) = \beta .$$

\hfill \Box