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a b s t r a c t

The left-regular multiplication is explicitly embedded in the notion of perfect nonlinearity.
But there existmany other group actions. By replacing translations by another group action
the new concept of group action-based perfect nonlinearity has been introduced. In this
paper we show that this generalized concept of nonlinearity is actually equivalent to a
new bentness notion that deals with functions defined on a finite Abelian group G that acts
on a finite set X and with values in the finite-dimensional vector space of complex-valued
functions defined on X.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The DES cryptosystem seems to be vulnerable to a differential attack [1] unless the system is designed so that the
difference of outputs from the S-boxes is ‘‘balanced’’ by using highly nonlinear Boolean functions. Among these functions,
perfect nonlinear ones [6] have been adopted by the designers of the AES. This well-known cryptographic concept hides
the assumption that the internal operation considered is the modulo-2 sum. But there are many other possible choices to
operate on bit strings, other group actions on the Abelian 2-group Zm2 . Then the notion of perfect nonlinearity can naturally
be extended by using other group actions. Actually if we consider two finite Abelian groups G and H such that G acts on a
finite nonempty set X , a function f : X → H is called G-perfect nonlinear [9,10] if for all nonzero α ∈ G the ‘‘difference’’
(also called ‘‘derivative’’ see Definition 15) x 7→ f (α · x)− f (x), where α · x is the action of α on x ∈ X , is balanced, or in other
words, its values are uniformly distributed over H . So this is exactly the notion of perfect nonlinearity in the finite Abelian
group setting where individual translations β 7→ α + β have been substituted by the ‘‘actions’’ x 7→ α · x.
In the traditional setting, perfect nonlinearity is closely related to bent functions [4,5,12]: a function φ : G → C is

called bent if the magnitude of its discrete Fourier transform is a constant equal to |G|, the cardinality of the (finite Abelian)
group G. In this paper we present a very natural way to extend this definition by consideringH-valued rather thanC-valued
functions (defined on G) where H is a Hermitian space, i.e., a finite-dimensional complex vector space equipped with an
inner-product: such a function φ is called Hermitian bent if the square of the norm (that comes from the inner-product) of
the vector inH corresponding to the Fourier transform of each component functions of φ is a constant equal to |G|. In other
words, we replace the complex modulus by the norm ofH with respect to its inner-product.
Finally we show that G-perfect nonlinearity can be characterized in terms of Hermitian bentness for a particular vector

spaceH . More formally we prove that a function f : X → H is G-perfect nonlinear (where G acts on X) if and only if for all
nontrivial character χ of H , the map φ(χ ◦ f ) : G→ C[X], where C[X] is the vector space of C-valued functions defined on
X , which is defined for α ∈ G by x 7→ χ ◦ f (α · x) ∈ C[X], is Hermitian bent.
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2. Bentness and perfect nonlinearity: The classical approach

The concept of bentnesswas originally and independently introduced byDillon [4] and Rothaus [12]. A function f : Zm2 →
Z2 is bent if for all nonzero α in Zm2 ,∑

x∈Zm2

(−1)f (x)⊕α·x = ±2
m
2 (1)

where ‘‘⊕’’ denotes the modulo-2 sum and ‘‘·’’ the dot-product of Zm2 .
Allowing groups to be more general than the simple Abelian 2-groups, Logachev et al., [5] generalized this notion. In

order to understand it, we need to recall the theory of characters and the definition of the (discrete) Fourier transform.
By convention, when G is an additive (resp. multiplicative) group, its identity element is denoted by 0G (resp. 1G). The

neutral element for the multiplication law of a unitary ring A is also denoted by 1A.
LetGbe a finite Abelian group. The characters ofG are the grouphomomorphisms fromG to the unit circleS of the complex

field C. When equipped with the point-wise multiplication of functions, the set of all characters Ĝ is a group isomorphic to
G itself. In the remainder of this contribution, we always suppose some isomorphism from G to Ĝ to be fixed and we denote
by χαG the image of α ∈ G in Ĝ by this isomorphism.
Now let φ : G→ C. Its Fourier transform is the map φ̂ defined as

φ̂ : G→ C
α 7→

∑
x∈G

φ(x)χαG (x). (2)

Definition 1. Let G be a finite Abelian group. A function φ : G → S is called bent (with respect to the theory of Logachev
et al.) if for all nonzero α ∈ G,

|̂φ(α)|2 = |G| (3)

where |z| denotes the complex modulus of z ∈ C and |G| is the cardinality of G.

In what follows, we use the convenient notation G∗ to denote the set of all nonidentity elements of a group G.
This notion of bentness is closely related to the concept of perfect nonlinearity introduced by Nyberg [6].

Definition 2. Let G and H be two finite groups (respectively in multiplicative and additive representations). A function
f : G→ H is perfect nonlinear if for all α ∈ G∗ and for all β ∈ H ,

|{x ∈ X |f (αx)− f (x) = β}| =
|G|
|H|

. (4)

Recently, Carlet et al., [2] and Pott [11] discovered a characterization of bentness in the Abelian groups setting in terms of
bent functions that generalizes a classical result of Dillon.

Theorem 3. Let G and H be two finite Abelian groups. A map f : G → H is perfect nonlinear if and only if for all β ∈ H∗, the
map χβH ◦ f : G→ S is bent.

3. Bentness and perfect nonlinearity: The group actions approach

Embedded in the definition of perfect nonlinearity is the left-regular action of a group G on itself by multiplication. This
kind of operation is a particular instance of group actions. So it is possible to refine the notion of perfect nonlinearity (and,
by duality through the Fourier transform, of bentness) as it has been already done in [9,10].
Let G be a group and X a nonempty set. A group action of G on X is a group homomorphism Φ from G to S(X), the

symmetric group of X . It is called faithful when Φ is an injective map. Instead of writing ‘‘Φ(α)(x)’’ for (α, x) ∈ G × X , we
use the convenient notation ‘‘α · x’’.
The action ofG on itself by translation (ormultiplication) is the group action used in the definitions of perfect nonlinearity

and bentness (by duality). But one can naturally replace it by any group action.

Definition 4. Let G be a finite group acting faithfully on a finite nonempty set X and H a finite group in additive
representation. A function f : X → H is called G-perfect nonlinear if for all α ∈ G∗ and for all β ∈ H ,

|{x ∈ X |f (α · x)− f (x) = β}| =
|X |
|H|

. (5)
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If the group action is not faithful then there exists at least one α ∈ G∗ such that for all x ∈ X , α · x = x and then no function
from X to H can be G-perfect nonlinear (except in some trivial cases: G or H is the trivial group {0}).
In [9,10], we show the following characterization of G-perfect nonlinearity.

Theorem 5. Let G and H be two finite Abelian groups. Suppose that G acts faithfully on a finite nonempty set X. Amap f : X → H
is G-perfect nonlinear if and only if for all β ∈ H∗ and for all α ∈ G,

1
|X |

∑
x∈X

|
̂

(χ
β

H ◦ f(x))(α)|
2
= |G| (6)

where for each x ∈ X, we have

f(x) : G→ H
α 7→ f (α · x). (7)

Now let us introduce the concept of G-bentness.

Definition 6. Let G be a finite Abelian group acting faithfully on a finite nonempty set X . Let φ : X → S. The map φ is called
G-bent if for all α ∈ G∗,

1
|X |

∑
x∈X

|φ̂(x)(α)|
2
= |G| (8)

with for each x ∈ X ,

φ(x) : G→ S
α 7→ φ(α · x). (9)

Informally, according to this definition, we can say that a map is G-bent if the sequence of functions {φ(x)}x∈X from G to S is
bent in average over all x ∈ X .
Then using the notion of G-bentness, we can rewrite Theorem 5 in a form similar to Theorem 3.

Theorem 7. Let G and H be two finite Abelian groups. Suppose that G acts faithfully on a finite nonempty set X. Amap f : X → H
is G-perfect nonlinear if and only if for all β ∈ H∗, the map χβH ◦ f : X → S is G-bent.

Note that in [3,7], we have proved the existence of a G-perfect nonlinear function f : X → H such that there exists at least
one x0 ∈ X for which f(x0) : G → H is not classical perfect nonlinear: we used H = Z2, G = Zm2 and X = Z2m+n2 where
m and n are both odd numbers and G acts by translations on the first m copies of Z2 in X and trivially on the other m + n
copies; due to the chosen parameters, no (classical) bent functions can exist from G or X to Z2 (for more details see in [3] the
‘‘hyperplane construction’’ theorem 4.5, corollary 4.6 and the discussion which follows). It ensures the fact that the group
action-based and the traditional versions of perfect nonlinearity are different.
In this paper, we present a second characterization of G-perfect nonlinearity in terms of a new concept called Hermitian

bentness.

4. Hermitian bentness

4.1. Component-wise Fourier transform

In this fourth section,G is a finite Abelian group (in amultiplicative representation) andH is a finite-dimensional complex
vector space equipped with any inner-product 〈., .〉H (linear in the first variable and anti-linear in the second variable), i.e.,
H is a Hermitian space. Its dimension over C as a vector space is denoted by dimC(H). The norm ofH with respect to the
inner-product is defined for u ∈ H as the non-negative real number ‖u‖H such that

‖u‖2H = 〈u, u〉H . (10)

We fix B as an orthogonal basis (with respect to 〈., .〉H ) ofH (then for every (e, e′) ∈ B2, 〈e, e′〉H = 0 if and only if e 6= e′ but
‖e‖H is not necessarily equal to 1, or in other words, the basis is not supposed to be orthonormal) and we use it to define a
component-wise multiplication. For (u, v) ∈ H2, we have

u · v =
∑
e∈B

uevee (11)

with u =
∑
e∈B uee and v =

∑
e∈B vee the decompositions of u and v in the basis B.
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Equipped with this multiplicationH becomes a unitary commutative ring (the unit is 1H =
∑
e∈B e). It is obviously not

a field but the multiplicative group of invertible elements ofH is {u ∈ H |∀e ∈ B, ue 6= 0} and the inverse of an element u
of this set is simply u−1 =

∑
e∈B u

−1
e e.

The (component-wise) conjugate of u ∈ H is given by u =
∑
e∈B uee. Using conjugation and multiplication over H , we

also define a component-wise norm of u ∈ H as u · u =
∑
e∈B |ue|

2e. This ‘‘norm’’ can be connected to the classical norm.

〈u · u, 1H 〉H =

〈∑
e∈B

|ue|2e,
∑
e′∈B

e′
〉

H

(
1H is written as

∑
e′∈B

e′
)

=

∑
e∈B

|ue|2
∑
e′∈B

〈e, e′〉H

=

∑
e∈B

|ue|2‖e‖2H

(since B is an orthogonal basis)

= ‖u‖2H .

(12)

Finally we define the unit sphere ofH by

S(H) = {u ∈ H |〈u · u, 1H 〉H = 1} = {u ∈ H |‖u‖2H = 1} . (13)

In particular if B is an orthonormal basis then e ∈ S(H)whenever e ∈ B.
Our objective is to introduce a notion of bentness for functions defined on the (finite Abelian) group G and with values

inH , thus we need to define a Fourier transform to deal with this kind of maps.

Definition 8. The component-wise Fourier transform of φ : G→ H is defined as

φ̂ : G→ H

α 7→
∑
e∈B

φ̂e(α)e (14)

where φe is the component function with respect to e, i.e., for each x ∈ G

φe(x) = (φ(x))e and in particular φ(x) =
∑
e∈B

φe(x)e . (15)

One can note that for each e ∈ B, by uniqueness of a decomposition in B, (̂φ)e = (̂φe). This relation explains the abuse of
notation used to denote this component-wise Fourier transform. IfH reduces to C, classical and component-wise versions
of the Fourier transform are identical.
The component-wise Fourier transform hasmany properties that come from the discrete Fourier transform. For instance,

we have for α ∈ G and φ : G→ H ,̂̂φ(α) = |G|φ(−α) . (16)

We can prove it by using the same well-known similar relation for the discrete Fourier transform on each component
functions of φ and the relation (̂φ)e = (̂φe). From this equality and the inversion formula of the discrete Fourier transform,
we deduce the inversion formula in the component-wise setting.

Proposition 9. Let φ : G→ H . We have for each x ∈ G,

φ(x) =
1
|G|

∑
e∈B

∑
α∈G

φ̂e(α)χ
α
G (x)e =

1
|G|

∑
α∈G

(
φ̂(α) · χαG (x)1H

)
. (17)

This transform also satisfies the Parseval equation. In order to show this we first introduce the component-wise convolutional
product of (φ, ψ) ∈ (HG)2. It is defined for α ∈ G by

(φ ? ψ)(α) =
∑
e∈B

(φe ∗ ψe)(α)e (18)

where the symbol ‘‘∗’’ denotes the classical (one-dimensional) convolutional product defined for (f , g) ∈ (CG)2 by

(f ∗ g)(α) =
∑
x∈G

f (x)g(x−1α). (19)
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By recalling that (̂f ∗ g)(α) = f̂ (α)̂g(α), we easily prove that

̂(φ ? ψ)(α) = φ̂(α) · ψ̂(α) . (20)

Let iG : G→ G such that iG(x) = x−1 and for f : G→ C, one defines f : G→ C such that f (x) = f (x). This last notation is

generalized component-by-component to the case of functions from G toH . Let us compute f̂ ◦ iG(α) for α ∈ G.

f̂ ◦ iG(α) =
∑
x∈G

f ◦ iG(x)χαG (x)

=

∑
x∈G

f (x−1)χαG (x)

=

∑
y∈G

f (y)χαG (y
−1)

=

∑
y∈G

f (y)χα
−1

G (y)

=

∑
y∈G

f (y) χαG (y)

=

∑
y∈G

f (y)χαG (y)

= f̂ (α) . (21)

Let φ : G→ H . Let us also compute φ̂ ◦ iG(α) for α ∈ G.

φ̂ ◦ iG(α) =
∑
e∈B

̂
(φ ◦ iG)e(α)e

=

∑
e∈B

̂
(φ ◦ iG)e(α)e

=

∑
e∈B

φ̂e ◦ iG(α)e

=

∑
e∈B

φ̂e(α)e

(according to (21))

= φ̂(α). (22)
Now let us compute (ψ ?ψ ◦ iG)(1G) for (φ, ψ) ∈ (HG)2. There are two ways to find the result. The first one is given by the
definition of the component-wise convolutional product.

(ψ ? ψ ◦ iG)(1G) =
∑
e∈B

(φe ∗ (ψ ◦ iG)e)(1G)e

=

∑
e∈B

(φe ∗ ψe ◦ iG)(1G)e

=

∑
e∈B

∑
x∈G

φe(x)ψe(x)e

=

∑
x∈X

φ(x).ψ(x) . (23)

We use the inversion formula for the second way.

(φ ? ψ)(1G) =
1
|G|

∑
α∈G

̂
(φ ? ψ ◦ iG)(α) · χαG (1G)1H

=
1
|G|

∑
α∈G

(̂φ(α).ψ̂ ◦ iG(α))1H

(according to (20))

=
1
|G|

∑
α∈G

φ̂(α) · ψ̂(α)

(according to (22)). (24)
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Using (23) we obtain∑
x∈X

φ(x) · ψ(x) =
1
|G|

∑
α∈G

φ̂(α) · ψ(α) (25)

which is traditionally known as Plancherel relation whenH = C. This relation is then used to obtain Parseval equation.

Theorem 10. Let φ : G→ H . We have∑
x∈G

∑
e∈B

|φe(x)|2e =
1
|G|

∑
α∈G

∑
e∈B

|φ̂e(α)|
2e . (26)

In particular φ also satisfies∑
x∈G

‖φ(x)‖2H =
1
|G|

∑
α∈G

‖φ̂(α)‖2H . (27)

And if φ is S(H)-valued the following formula holds∑
α∈G

‖φ̂(α)‖2H = |G|
2 . (28)

Proof. According to (25), we have∑
x∈X

φ(x) · φ(x) =
1
|G|

∑
α∈G

φ̂(α).φ(α)

⇔

∑
x∈X

∑
e∈B

|φe(x)|2e =
1
|G|

∑
α∈G

∑
e∈B

|φ̂e(α)|
2e .

(29)

Then we also have〈∑
x∈X

∑
e∈B

|φe(x)|2e, 1H

〉
H

=

〈
1
|G|

∑
α∈G

∑
e∈B

|φ̂e(α)|
2e, 1H

〉
H

⇔

∑
x∈X

∑
e∈B

|φe(x)|2〈e, 1H 〉H =
1
|G|

∑
α∈G

∑
e∈B

|φ̂e(α)|
2
〈e, 1H 〉H

⇔

∑
x∈X

∑
e∈B

|φe(x)|2‖e‖2H =
1
|G|

∑
α∈G

∑
e∈B

|φ̂e(α)|
2
‖e‖2H

⇔

∑
x∈G

‖φ(x)‖2H =
1
|G|

∑
α∈G

‖φ̂(α)‖2H .

(30)

The last equality of the theorem is obvious. �

4.2. Hermitian bent functions

An appropriate notion of bentness occurs naturally in this setting.

Definition 11. Let φ : G→ S(H). This function is (Hermitian) bent if for all α ∈ G, we have

‖φ̂(α)‖2H = |G| (31)

or in other words∑
e∈B

|φ̂e(α)|
2
‖e‖2H = |G| . (32)

Such notion has been previously introduced in [8] but in a slightly different way (note in particular that in [8] it is called
‘‘multidimensional bent’’ rather than ‘‘Hermitian bent’’). Another bentness notion, based on the component-wise norm, can
be introduced in a way as natural as the previous one.

Definition 12. Let φ : G→ H . This function is component-wise bent if

1. ∀x ∈ G, φ(x) · φ(x) = 1H (or equivalently, ∀x ∈ G and ∀e ∈ B, φe(x) ∈ S);
2. ∀α ∈ G, φ̂(α) · φ̂(α) = |G|1H (or equivalently, ∀α ∈ G, ∀e ∈ B, φe is bent).
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Obviously a function φ is component-wise bent if and only if each of its component functions are bent. Moreover if
dimC(H) = 1 the two concepts coincide with the classical bentness notion of Logachev et al. Nevertheless we will show
in the sequel that component-wise and Hermitian bentness are two different notions. However there is a relation between
the two approaches.

Lemma 13. Let φ : G → H such that for all x ∈ G, φ(x) · φ(x) = 1H then φ(x) ∈ S(H) for all x ∈ G if and only if
‖1H‖

2
H =

∑
e∈B ‖e‖

2
H = 1.

Proof. Let x ∈ G. We have

〈φ(x) · φ(x), 1H 〉H = ‖φ(x)‖2H =
∑
e∈B

|φe(x)|2‖e‖2H =
∑
e∈B

‖e‖2H = ‖1H‖
2
H . (33)

The result immediately follows. �

According to the lemma above, if the basis B is orthonormal (and dimC(H) > 1), we cannot find a function φ : G→ H such
that it satisfies at the same time ∀x ∈ G, φ(x) · φ(x) = 1H and φ(x) ∈ S(H). So in this particular case, component-wise and
Hermitian bentness are different. Now we exhibit a relation when ‖1H‖

2
H = 1.

Proposition 14. Suppose that ‖1H‖
2
H =

∑
e∈B ‖e‖

2
H = 1. Let φ : G→ {u ∈ H |u.u = 1H }. If φ is component-wise bent then

it is also Hermitian bent.

Proof. According to Lemma 13, ∀x ∈ G, φ(x) ∈ S(H). Moreover we have for α ∈ G,

‖φ̂(α)‖2H = 〈̂φ(α) · φ̂(α), 1H 〉H = 〈|G|1H , 1H 〉H = |G|‖1H‖
2
H = |G|. � (34)

In what follows we see that even if ‖1H‖
2
H = 1, we can find a Hermitian bent function which is not component-wise bent.

In a very similar way as for Logachev et al.’s, bent functions, it is possible to determine a combinatorial characterization
of this notion using derivative and balancedness.

Definition 15. A function f : G→ C is balanced if
∑
x∈G f (x) = 0.

The derivative of f : G→ C in α ∈ G is defined as

dα f : G→ C
x 7→ f (αx)f (x) . (35)

Then the (component-wise) derivative of φ : G→ H is simply defined as

Dαφ : G→ H

x 7→
∑
e∈B

dαφe(x)e . (36)

In particular, (Dαφ)e = dαφe.
A result by Logachev et al., gives a link between bentness, derivatives and balancedness.

Theorem 16 ([5]). A function f : G→ S is bent if and only if for all α ∈ G∗, the derivative dα f is balanced.

Our ambition is now to present a similar result for the Hermitian bentness.

Lemma 17. Let φ : G→ H . One defines the auto-correlation function of φ by

ACφ : G→ H

α 7→ D̂αφ(1G) =
∑
e∈B

d̂αφe(1G)e. (37)

Then for all α ∈ G,

ÂCφ(α) = φ̂(α) · φ̂(α) . (38)
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Proof. For α ∈ G, we have

ACφ(α) =
∑
e∈B

d̂αφe(1G)e

=

∑
e∈B

∑
x∈G

dαφe(x)e

=

∑
e∈B

∑
x∈G

φe(αx)φe(x)e

=

∑
e∈B

∑
y∈G

φe(αy−1)φe(y−1)e

=

∑
e∈B

(φe ∗ φe ◦ iG)(α)e

= (φ ? φ ◦ iG)(α) . (39)

Then using relations (20) and (22) we obtain

ÂCφ(α) =
̂

(φ ? φ ◦ iG)(α) = φ̂(α) · φ̂(α) . � (40)

Before presenting the expected result, we give two technical lemmas. The proof of the first one can be found in [2].

Lemma 18 ([2]). Let f : G→ C. Then f (x) = 0 for all x ∈ G∗ if and only if f̂ (α) = f (1G) for all α ∈ G.

Lemma 19. Let φ : G→ H and u ∈ H . We define

Pu(φ) : G→ C
x 7→ 〈φ(x), u〉H .

(41)

Then for all α ∈ G, we have

P̂u(φ)(α) = Pu(̂φ)(α) = 〈̂φ(α), u〉H . (42)

Proof.

P̂u(φ)(α) =
∑
x∈G

Pu(φ)(x)χαG (x)

=

∑
x∈G

〈φ(x), u〉HχαG (x)

=

∑
x∈G

〈∑
e∈B

φe(x)e, u

〉
H

χαG (x)

=

〈∑
x∈G

∑
e∈B

χαG (x)φe(x)e, u

〉
H

=

〈∑
e∈B

φ̂e(α)e, u

〉
H

= 〈̂φ(α), u〉H . � (43)

The combinatorial characterization for Hermitian bentness is given by the following result.

Theorem 20. Let φ : G → S(H). The function φ is Hermitian bent if and only if for all α ∈ G∗, the map P1H (Dαφ) : G → C
defined for x ∈ G by P1H (Dαφ)(x) = 〈Dαφ(x), 1H 〉H is balanced.

Proof. The map P1H (Dαφ) is balanced for all α ∈ G∗

⇔∀α ∈ G∗,
∑
x∈G

P1H (Dαφ)(x) = 0

⇔∀α ∈ G∗,
∑
x∈G

〈Dαφ(x), 1H 〉H = 0
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⇔∀α ∈ G∗,

〈∑
x∈G

Dαφ(x), 1H

〉
H

= 0

⇔∀α ∈ G∗, 〈ACφ(α), 1H 〉H = 0
⇔∀α ∈ G∗, P1H (ACφ)(α) = 0

⇔∀α ∈ G, ̂P1H (ACφ)(α) = P1H (ACφ)(1G) (according to Lemma 18).

Moreover by Lemma 19, we have

̂P1H (ACφ)(α) = P1H (ÂCφ)(α)

=
〈
ÂCφ(α), 1H

〉
H

=

〈̂
φ(α) · φ̂(α), 1H

〉
H

(according to Lemma 17)

= ‖φ̂(α)‖2H .

(44)

On the other hand,

P1H (ACφ)(1G) =

〈∑
e∈B

d̂1Gφe(1G)e, 1H

〉
H

=

〈∑
e∈B

∑
x∈G

|φe(x)|2e, 1H

〉
H

=

∑
x∈G

|φe(x)|2‖e‖2H

=

∑
x∈G

‖φ(x)‖2H

= |G| (since φ is S(H)-valued.) (45)

Finally we have:
the map P1H (Dαφ) is balanced for all α ∈ G

∗

⇔ ∀α ∈ G, ‖φ̂(α)‖2H = |G|
⇔ φ is Hermitian bent. �

5. G-perfect nonlinearity as a particular kind of Hermitian bentness

In this section, G is a finite Abelian group inmultiplicative representation andH is the complex-vector space of functions
from a nonempty finite set X to the complex field. This |X |-dimensional vector space is denoted byC[X]. We choose as inner-
product of C[X] the following sesquilinear form

〈f , g〉C[X] =
∑
x∈X

f (x)g(x) (46)

for (f , g) ∈ C[X]2. The fixed orthogonal basis of C[X] is given by the canonical basis of Dirac functions

δx(y) =
{
1 if x = y
0 if x 6= y . (47)

In particular for each x ∈ X , we have ‖δx‖2C[X] =
1
|X | and ‖1C[X]‖

2
C[X] =

∑
x∈X ‖δx‖

2
C[X] =

|X |
|X | = 1.

In this setting a map φ : G→ S(C[X]) is Hermitian bent if for all α ∈ G,

‖φ̂(α)‖2C[X] =
∑
x∈X

|φ̂δx(α)|
2
‖δx‖

2
H =

1
|X |

∑
x∈X

|φ̂δx(α)|
2
= |G|.

We can already note that the last equality above is similar to the one given in Definition 6.
Now suppose that G acts faithfully on the set X .
For each f ∈ C[X] is associated the following map from G to C[X].

φ(f ) : G→ C[X]
α 7→ φ(f )(α) =

∑
x∈G

f(x)(α)δx =
∑
x∈G

f (α · x)δx . (48)



L. Poinsot / Discrete Applied Mathematics 157 (2009) 1848–1857 1857

By uniqueness of the decomposition in the basis {δx}x∈X ofC[X], we have in particular for each x ∈ X ,φ(f )δx = f(x). Moreover
if we suppose that f is S-valued then φ(f ) is S(C[X])-valued since for each α ∈ G,

‖φ(f )(α)‖2C[X] =
1
|X |

∑
x∈X

|φ(f )δx(α)|
2
=
1
|X |

∑
x∈X

|f(x)(α)|2 =
1
|X |

∑
x∈X

|f (α · x)|2 =
|X |
|X |
= 1.

Theorem 21. Let f : X → S. Then f is G-bent if and only if φ(f ) is Hermitian bent.

Proof. Let us compute for α ∈ G, φ̂(f )(α).

φ̂(f )(α) =
∑
x∈X

φ̂(f )δx(α)δx

=

∑
x∈X

f̂(x)(α)δx . (49)

Then we have

‖φ̂(f )(α)‖2C[X] =
1
|X |

∑
x∈X

|φ̂(f )δx(α)|
2

=
1
|X |
|f̂(x)(α)|2 . (50)

Finally we conclude that

f is G-bent

⇔∀α ∈ G,
1
|X |

∑
x∈X

|f̂(x)(α)|2 = |G|

⇔∀α ∈ G, ‖φ̂(f )(α)‖2C[X] = |G|
⇔φ(f ) is Hermitian bent. �

(51)

Corollary 22. Let G and H be two finite Abelian groups. Suppose that G acts faithfully on a finite nonempty set X. The map
f : X → H is G-perfect nonlinear if and only if ∀β ∈ H∗, the map φ(χβH ◦ f ) : G→ S(C[X]) is Hermitian bent.
Proof.

∀β ∈ H∗, φ(χ
β

H ◦ f ) is Hermitian bent
⇔∀β ∈ H∗, χ

β

H ◦ f : X → S is G-bent (according to Theorem 21)
⇔f is G-perfect nonlinear (according to Theorem 7). �

(52)

We have already mentioned (see in Section 2 the discussion that follows Theorem 7) that there exists a function f : X → H
such that f is G-perfect nonlinear (and according to the previous corollary, φ(χβ ◦ f ) is Hermitian bent for each β ∈ H∗)
and such that there exists x0 ∈ X for which f(x0) : G→ H is not perfect nonlinear in the traditional setting. Then according
to Theorem 3 there exists β0 ∈ H∗, such that χ

β0
H ◦ f(x0) : G → S is not bent, i.e., there is an element α0 ∈ G such that

|
̂

χ
β0
H ◦ f(x0)(α0)|

2
6= |G|. Then φ(χβ0H ◦ f ) is not component-wise bent. Indeed if we suppose that φ(χ

β0
H ◦ f ) is component-

wise bent then for each x ∈ X , φ(χβ0H ◦ f )δx = χ
β

H ◦ f(x) is bent and it would also be the case in particular forχ
β

H ◦ f(x0). Thenwe
have a function which is Hermitian but not component-wise bent. The reciprocal assertion of Proposition 14 is then false.
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