
Chapter 12

Enforcing Security with Cryptography

12.1. Introduction

The world famous InternationalOrganization for Standardization (ISO) defines in

its norm ISO 27001:2005 (Information technology - Security techniques - Information

security management systems - Requirements) the term " confidentiality " as follows.

Confidentiality is a characteristic that applies to information. To protect and preserve

the confidentiality of information means to ensure that it is not made available or dis-

closed to unauthorized entities. In this context, entities include both individuals and

processes.

One way to ensure a high level of confidentiality should be to use some private

communication network, with native devices of information protection. For instance

some privately operated optical fiber network between two buildings of a financial in-

stitution. Nevertheless the cost for establishing and maintening of such networks is

clearly not compatible with scaling. What is the alternative ? Cryptography. What

is cryptography ? A collection of involved mathematical notions, miscellaneous en-

gineering designs and a large amount of daily used software that allow thousands of

people per hour to buy or sell many articles on the Internet.

The very objective of cryptography is to allow confidential communications be-

tween two entities, namely human beings, computers or any processes, through a

public network. By public network is meant an unrestricted communication medium

Chapter written by Sami HARARI and Laurent POINSOT.

303

304 Distributed Systems (vol. 1): Design and Algorithms

with no access control such as the telephone network or Internet for instance. Cryp-

tographic devices should make it impossible, if not to collect, to use informations

illegitimately " sniffed " on the public network.

When confidentiality must be guaranteed, for instance for military messages or

financial transactions, it is fundamental to employ cryptography. Nevertheless such

techniques may be successfully used to achieve other security requirements such as

integrity, authenticity and non-repudiation. Even if we give some account for the pre-

vious ideas, this chapter is mainly devoted to the protection of confidentiality.

From a very general point of view, a cryptographic kind of communication be-

tween two individuals (or computers or processes), say Alice and Bob, is composed

in the following way. Before sending its information (on the public network) to Bob,

Alice modifies it, by using a cryptographic system (a cryptosystem for short), into

a new message called ciphertext or cryptogram which has the essential property to

dissimulate the very nature of the original message, called cleartext or plaintext, to

every entity other than Bob. This last one, the legitimate recipient of Alice’s message,

retrieves and decrypts the ciphertext in order to recover the original information of

Alice. Since the network is public and, as so, freely accessible, any person may be

able to intercept the ciphertext. However, because it is encrypted for Bob, this mes-

sage seems to be without meaning and in fact unusable. In this way, in principle, the

requirement of confidentiality is ensured.

All cryptosystems are quite similar in form and in principle, and they all share

same operating process and fulfill similar tasks. Therefore the first part of this chapter

is devoted to the general description of these common features: an accurate definition

for cryptosystems will be given as well as a description of high level functionalities

provided by cryptosystem devices. Furthermore the very existence of cryptography

is related to threats on communication media; this is the reason why the concept of

cryptanalysis is also introduced in the first part. Cryptosystems are classified in one

or the other of the following two species: symmetric (or secret-key) cryptosystems,

and public-key cryptosystems. A part of this chapter is dedicated to both families. In

Section 12.3 we deal with the former; we provide a general description for secret-key

cryptosystems, and we deal with some famous algorithms, namely DES, IDEA and

AES, in order to illustrate the development of mathematical technologies in this area.

The world famous RSA algorithm, as a relevant instance of public key cryptosystems,

is detailed in Section 12.4. Then we stress the fundamental role played by prime num-

bers in asymmetric encryption: different techniques to prove primality or to provide

prime numbers are presented.

Enforcing Security with Cryptography 305

12.2. Cryptography: From a General Perspective

In this section are introduced general definitions and high-level principles available

for the remainder of this chapter.

12.2.1. Cryptosystems

The notion of cryptographic systems, although quite imprecise in appearance, may

be given a rigorous mathematical definition (which is inspired from [STI 06]). Math-

ematically speaking, an enciphering algorithm, also called cryptosystem or cipher

system 1, can be described as a collection of three non-empty sets, P , C and K (in

general these sets are finite), called sets of plaintexts, ciphertexts and keys, and two

functions 2E : K → CP , that maps a key k ∈ K to a enciphering (or encryption) func-

tion Ek : P → C, and D : K → PC , that associates with every k ∈ K its deciphering

(or decryption) functionDk : C → P , which are required to satisfy a decryption rule:
for every plaintext x ∈ P ,

Dk(Ek(x)) = x .

This rule is fundamental for the decryption process, and more precisely to make

such a process possible. Indeed, let us assume that y ∈ C is the ciphertext Ek(x) for
some plaintext x ∈ P (and key k ∈ K). The decryption rule points out that we can
recover this plaintext from the ciphertext by an application of the decryption function

Dk: Dk(y) = Dk(Ek(x)) = x. While quite simple, this is the most important feature

of a cryptosystem, and this leads to the search for invertible functions 3 Ek and Dk

(for every key k). This is the reason why we will present some cryptographic algo-

rithms emphasizing the property of invertibility satisfied by the encryption/decryption

functions.

From this formalism we deduce that Alice must know the map Ek while Dk has

to be known by Bob in order to make possible the decryption process. Besides Bob, if

someone else is acquainted with the use ofDk, then he is able to decrypt any message

enciphered by Ek, and the protection of confidentiality probably fails (except if the

person under consideration is Alice!).

1. In the sequel we will freely use the terms " cryptographic " or " cipher " or " encryption " in order to

avoid monotony.

2. Recall that the set of all maps fromX to Y is usually denoted Y X .

3. The decryption rule only implies that for each k ∈ K,Dk is onto andEk is one-to-one. Nevertheless,

when P and C are finite with the same cardinal number, both maps are invertible (we also say that they are

" bijective " or " one-one correspondences ").

306 Distributed Systems (vol. 1): Design and Algorithms

Example 12.1 The following (secret-key) cryptosystem, called one-time pad, was

invented by G.S. Vernam in 1917 (while published in 1926 in [VER 26]). Let us

denote by Z2 the set {0, 1} of bits and let ⊕ be the addition of bits modulo two, also

called exclusive or (shorter: XOR), given by the following (addition) table:

⊕ 0 1
0 0 1
1 1 0

Vernam’s cryptosystem is formalized in the following fashion: P = C = K = (Z2)
ℓ

where ℓ is a positive integer. Therefore plaintexts, ciphertexts and keys are are ℓ-tuples

of bits. For each key k = (k1, . . . , kℓ) (where each ki is a bit) the encryption is defined

Ek : (Z2)
ℓ → (Z2)

ℓ

x = (x1, . . . , xℓ) 7→ x⊕ k = (x1 ⊕ k1, . . . , xℓ ⊕ kℓ) .

So the ciphertext Ek(x) corresponding to the plaintext x is equal to the component-

wise modulo-two sum, which, by abuse, is also called XOR (or exclusive or), of x

and k. The decryption function Dk is equal to Ek. It is quite easy to check that the

decryption rule is satisfied. First of all, let us notice that for every x, y ∈ (Z2)
ℓ it holds

that (x⊕ y)⊕ y = x (this is due to the definition of ⊕ at the bit level). It follows that

Dk(Ek(x)) = Dk(x1 ⊕ k1, . . . , xℓ ⊕ kℓ)
= ((x1 ⊕ k1)⊕ k1, . . . , (xℓ ⊕ kℓ)⊕ kℓ)
= (x1, . . . , xℓ)
= x .

In order to illustrate the encryption process, let us suppose that ℓ = 4, x = (0, 1, 1, 0),
and k = (1, 1, 0, 1). Then Ek(x) = (0⊕ 1, 1⊕ 1, 1⊕ 0, 0⊕ 1) = (1, 0, 1, 1).

12.2.2. Two Dissimilar Worlds

As announced in the Introduction, there are two principal classes of cryptosystems,

distinguished by the management of the secret on Ek andDk.

Conventional, symmetric or secret-key cryptosystems are the encryption schemes

where nobody knows the key k used to communicate, except the legitimate correspon-

dents, say Alice and Bob. In this context, k is called the secret key. Functions Ek and

Dk are secret quantities shared by the two interlocutors. In order to use such a cryp-

tosystem Alice and Bob need to choose together the secret key, or at least one of them

determines then communicates it to the other. In short Alice and Bob must agree on

the choice of the secret key before any encrypted communication. In order to make

this choice, they must meet physically in a secure area, or use a private network. The

Enforcing Security with Cryptography 307

one-time pad of example 12.1, and also DES, IDEA and AES (described later) are

secret key cryptosystems.

The other main class of encryption processes is given by the so-called asymmet-

ric or public-key cryptosystems. The key k and the decryption functionDk are secret

quantities only known by the receiver of confidential messages, Bob, while the en-

cryption function Ek (and not the key k) is published by Bob (on his web page for

instance) so that everybody who wishes to communicate with him can use it. In this

situation Bob is the unique individual able to decrypt messages Ek(x) sinceDk is its

own secret. The different roles played by the public Ek on one side and the secrets

k, Dk on the other side, justify the term " asymmetric " for such cryptosystems; ob-

viously " public-key " comes from the existence of this public quantity Ek . The RSA

algorithm belongs to this class of algorithms.

We emphasize the fact that both classes of cryptosystems are based on very dif-

ferent mathematical techniques: invertible functions over some algebraic structures,

probability theory and statistical analysis usually occurred in conventional cryptogra-

phy, while prime numbers, computability and complexity theories are the main ingre-

dients of the mathematical foundation for asymmetric encryption schemes.

12.2.3. Functionalities Provided by Cryptographic Devices

The application of cryptographic tools is not restricted to the protection of in-

formation confidentiality. It is actually possible to define four primitive functionali-

ties provided by encryption devices: confidentiality, authenticity, integrity and non-

repudiation. Each of them represents a mean of defense against a particular kind of

threat. We review in a few words these cryptographic characteristics.

Confidentiality means that an information, after encryption, loses all meaning for

all people except the legitimate protagonists of a cryptographic communication. An

enemy that intercepts the plaintext must be unable to decrypt it for confidentiality to

be preserved.

Integrity: In every communication (encrypted or not) it is expected the message

to be received with no modifications, exactly as it was sent. Moreover, if a received

message is different from the transmitted message, then the receiver must be able to

detect it. We say that " integrity of messages against modifications is ensured " if the

preservation of these two properties is secured.

Authenticity: The mission assigned to authentication consists in the guarantee that

the received message comes from the entity (human, computer, process) which is

308 Distributed Systems (vol. 1): Design and Algorithms

supposed to send it. If an enemy – playing the role of Alice – sends a message to Bob,

then the authenticity of the message must be questioned. Otherwise, Bob, believing

the enemy is Alice, would send confidential information to him.

Non-repudiation is the means that avoid a receiver of a message to deny its trans-

mission. This a fundamental protection for instance in the context of financial trans-

actions.

In this chapter we only deal with integrity which is the heart of cryptography, and

we do not develop the other cryptographic notions.

12.2.4. Cryptanalysis: the Dark Side of Cryptology ?

In the world of cryptography two kinds of entities coexist: the legitimate players

of a enciphered communication, Alice and Bob, and an adversary (also called crypt-

analyst, enemy, opponent, attacker) who tries to discover the key used to encipher;

if he succeeds in this attempt, then the enemy has " broken " the cryptosystem: the

cryptanalysis is successful.

Cryptography and cryptanalysis form the two sides of cryptology, the science of

secret. In appearance, but only in appearance, the dark side of cryptology is crypt-

analysis. Nevertheless this notion is also used to design systems to be invulnerable

against some classes of cryptanalysis. Then it becomes essential to define models of

the strength of an attacker so as to measure how strong the cryptosystem is. At this step

Kerckhoffs’ principle is often assumed. This assumption – defined by A. Kerckhoffs –

means that the encryption algorithm is known by the enemy ([KER 83a, KER 83b]).

There exists a very basic cryptanalysis for every cryptosystem, called brute-force

attack, which in theory should be able to break any encryption algorithm. It is not

sophisticated at all since it consists in trying to decrypt a ciphertext with all possible

keys until an understandable plaintext is obtained. An adversary will find the key after

an average of
|K|
2 attempts 4.

The number |K| of possible keys is clearly a fundamental parameter to measure
how strong a cryptosystem is, with respect to a brute-force attack. Modern cryptosys-

tems with a size of at least 160 bits to encode a key are considered secure against this

4. The quantity |X| is the number of elements or cardinal of the finite set X .

Enforcing Security with Cryptography 309

trivial attack because, even for very advanced computers, an exhaustive search in a set

of 2159 seems to be impossible in practice. Usually, an attack is considered successful
when it requires less time to get the key than a brute-force attack.

Obviously more sophisticated cryptanalysis may be encountered. Their common

goal is always to find the key used to encrypt messages. The most common types of

attacks are classified by increasing order of adversary’s power. The list is given below.

Known-ciphertext attacks. The adversary is assumed to have only access to a set of

ciphertexts (from unknown plaintexts and a fixed unknown key);

Known-plaintext attacks. The enemy has samples of both the plaintext and its en-

crypted version (by a given and unknown key), the ciphertext, and is free to

make use of them to reveal the key;

Chosen-plaintext attacks. This mode presumes that the attacker has the capability

to choose arbitrary plaintexts to be encrypted and obtain the corresponding ci-

phertexts;

Chosen-ciphertext attacks. The opponent collects information by choosing one or

several ciphertexts and obtaining their decryption under an unknown key.

This classification allows us to define several degrees of cryptographic resistance. For

instance it is possible to prove that the one-time pad is invulnerable with respect to a

known-ciphertext attack while it is easily broken by a known-plaintext attack: let us

assume that a plaintext m and its ciphertext c = m ⊕ k are known, then the key is

immediately found by computingm⊕ c = k.

12.2.5. General Requirements to Avoid Vulnerabilities

There are three theoretical models to measure the level of security of a crypto-

graphic device. In 1949, Claude Shannon, founder of modern cryptography, gave the

mathematical bases of contemporary cryptology in his famous article [SHA 49]. In

this paper he introduced the two first criteria for a cryptosystem to be secure: uncon-

ditional security and statistical security.

A cryptosystem is said to provide unconditional security when any kind of knowl-

edge on a ciphertext does not reveal any information about the corresponding plain-

text. As an examplewe can prove that for Vernam’s cryptosystem such a cryptographic

property holds whenever a new randomly chosen key is used for each encryption. This

very strong feature ensures invulnerability against every known-plaintext attack.

Nevertheless, one-time pad, as all secret-key algorithms, involves a key exchange

among the legitimate interlocutors. But to satisfy unconditional security they are

forced to use a new key for each of their confidential communications. We easily

310 Distributed Systems (vol. 1): Design and Algorithms

see the limitation of such a process in practice. In order to get around it, Shannon

defined an other resistance criterion, namely statistical security that is based on two

more fundamental properties called diffusion and confusion.

Under the name of diffusion Shannon defined the fact that every letter (or more

generally symbol) of a ciphertext should be dependent of every letter of the corre-

sponding plaintext and of the key. The goal of this is the following: two ciphertexts,

where one of them is due to a modification – even a minimal one – of the plaintext or

of the key, must be very different. It is a kind of dependence of ciphertexts to initial

condition (plaintext or key used). A slight difference at the input of a cryptosystem

must produce a large difference in its output.

Confusion refers to making the relationship between the key and the ciphertext as

complex and involved as possible in order to hide any statistical structures that would

be used to discover bits of information from the plaintext without knowledge of the

key. For instance, statistics of natural languages must be destroyed during the encryp-

tion process so that they become inpractical for an adversary. We will observe soon

that these two properties, diffusion and confusion, establish the architectural pattern

of modern symmetric encryption algorithms.

The last approach to cryptographic security, called computational security, intro-

duced by Whitfield Diffie and Martin Hellman in their joint-work [DIF 76], only con-

cerns public-key encryption schemes. Such an algorithm is said to provide computa-

tional security if the best known attack requires too many computations to be really

feasible in practice. In general we prove that breaking a cryptosystem is equivalent to

solve a problem known to be difficult in the sense that the construction of an explicit

solution is impossible in practice (but not in theory!). Notice also that a computation-

ally secure scheme is not unconditionally secure.

12.3. Symmetric Encryption Schemes

This section is devoted to symmetric encryption schemes: the high-level design is

presented at first, followed by famous instances of such schemes.

12.3.1. The Secret Key

Let us briefly recall how a secret-key algorithm is implemented. For a symmetri-

cally ciphered communication, Alice and Bob, and no other entity, have the common

secret key. Thus Alice encrypts her message with this key, and sends to Bob, who can

Enforcing Security with Cryptography 311

recover the original message from the ciphertext he received by using the key. Even if

the cryptosystem used is known by everybody – in accordance with Kerckoffs’ princi-

ple – an adversary cannot decrypt any intercepted confidential message since he does

not possess the key.

The choice of the key by Alice and Bob is a tricky problem. Indeed, either they

physically meet or one of them sends the key to the other using a communication

network secured in some way, for instance a private optic fiber between two buildings,

or by the use of a key-exchange protocol. This problem is not treated in this chapter.

See [MEN 97], available on-line at http://www.cacr.math.uwaterloo.ca/hac/,

for a good reference on key-exchange protocols.

12.3.2. Iterated Structures and Block Ciphers

For evident sake of efficiency, encryption processes are performed by computers.

Thus, the messages (plain or cipher) are treated as blocks of bits (or bytes) built fol-

lowing an iterated architecture that allows a high level of confusion and diffusion. An

internal round function T is used. It takes two arguments: a messagem and a secret-

subkey or round subkey k (both are blocks of bits). The subkey is produced from the

secret key, called master key, by some derivation algorithm. Even though they are

required for a symmetric encryption scheme, these algorithms are not treated in more

detail in this chapter.

The round function is required to satisfy the following property to make decryp-

tion possible. With a fixed round subkey k, the function Tk : m 7→ T (m, k) must be
invertible. This is actually the realization of the decryption rule in this particular con-

text. The argument m is called round plaintext and T (m, k) is the round ciphertext.
The round function consists in a sequence of complex mathematical transformations

in order to make its result T (m, k) unintelligible. More precisely, T must implement

confusion and diffusion requirements. In particular an output block of such a function

must be dependent of an important number (at least half the number) of bits of plain-

text and round subkey.

In order to confuse and diffuse, the round function is iterated some number r of

times as follows. Let m be the message to encrypt. The following sequence of com-

putations is done.

m0 = m;
mi+1 = Tki+1(mi) for 0 ≤ i ≤ r − 1

312 Distributed Systems (vol. 1): Design and Algorithms

where ki denotes the subkey related to the ith round. The ciphertext c, obtained as

output of the last round, is given by formulae:

c = mr

= Tkr
(mr−1)

= Tkr
◦ Tkr−1 ◦ · · · ◦ Tk2 ◦ Tk1(m) .

where " ◦ " is the usual composition of functions. This iterated architecture turns out
to be unavoidable to obtain convenient levels of confusion and diffusion in order to

ensure statistical security. More precisely, iteration increases the diffusion.

Let us take a look at the deciphering process. Recall that for a given round subkey

k, the function Tk is required to be invertible, which implies that there exists a map

T−1
k such that for any block x, T−1

k (Tk(x)) = x. Decryption is performed by " re-

versing the time ". More precisely, it is done by replacing the round function Tk by its

inverse T−1
k , and running in the sequence of subkeys in the reverse order. Formally

from the ciphertext c the plaintextm is obtained by:

c0 = c;
ci+1 = T−1

k̂i+1
(ci) for 0 ≤ i ≤ r − 1

where k̂i denotes the subkey kr+1−i related to the r + 1− ith round so that:

k̂1 = kr

k̂2 = kr−1

. . .

k̂r = k1 .

According to the invertibility of the round function (with a fixed round subkey), the

final block cr is clearly equal to the original plaintextm.

12.3.3. Some Famous Algorithms: a Short Story of the Evolution of Mathematical

Techniques

Most of the famous symmetric encryption schemes make use of an iterated struc-

ture with some possible minor modifications at the first and final rounds. Therefore

such cryptosystems only differ from the point of view of the size of data (plain and

ciphertext, secret key, subkey), of the number of rounds, of the internal round function

and the derivation algorithm used. In what follows three of the most renowned secret-

key ciphers, namely DES, IDEA, and AES, are described insisting on the evolution of

mathematical constructions in use in those algorithms.

Enforcing Security with Cryptography 313

The Seventies: DES - Data Encryption Standard

Data Encryption Standard, DES, was designed by IBM during the seventies, and

became an encryption standard in 1977 for United States of America’s official docu-

ments. Its status as a standard – for five years – was evaluated several times: the last

time being in 1999.

In [FIP 99] the DES is completely described and in [FIP 87] its different operation

modes are presented. This symmetric algorithm operates on 64-bits plaintexts, cipher-

texts and secret-keys. Actually, 8 bits from the key are parity bits: the eighth bit of

each byte of the key takes the value such that the number of bits equal to 1 in this byte
is an even number. A subkey (for a given round) is given by 48 bits of the master key

– except parity bits – in some specific order. The ciphertext is obtained after sixteen

rounds.

Let us study the DES round function. It is formally defined as a Feistel structure

or Feistel scheme named after the American cryptographer Horst Feistel [FEI 73]. In

such a scheme, blocks have an even number 2ℓ of bits (ℓ = 32 in the case of DES).
The first ℓ consecutive bits of some block B are denoted, as a block, by L, while R is

given by B’s last ℓ bits in such a way that B = (L,R). Let f be a function that takes

two blocks as input, the first block having length ℓ. This function produces as output

also a block of size ℓ. The round function T for the Feistel structure associated with

f operates as follows: it takes B = (L,R) and a round subkey k as entries, it flips

L and R, and transforms L into f(R, k) ⊕ L. This can be written in a mathematical

form:
T (B, k) = T ((L,R), k)

= (R, f(R, k)⊕ L).

It can be easily checked that given any map f as above, the round function T , with

a fixed round key k, is invertible. This is an essential property for the decipher-

ing process in such a cryptosystem. Let us prove this property. We define the map

Uk(L,R) := (f(L, k)⊕R,L)which will be shown to be the inverse of Tk : (L,R) 7→
T ((L,R), k). Notice that if we denote by σ the permutation σ(L,R) = (R,L), then
Uk = σ ◦Tk ◦ σ. MoreoverUk(Tk(L,R)) = (L,R). Indeed let us define L′ = R and

R′ = f(R, k)⊕ L.

Uk(Tk(L,R)) = Uk(R, f(R, k)⊕ L)
= Uk(L

′, R′)
= (f(L′, k)⊕R′, L′)
= (f(R, k)⊕ (f(R, k)⊕ L), R)
= (L,R).

As a result, such a Feistel scheme may be used as a round function in an iterated

symmetric encryption algorithm.

In order to complete the description for the DES round function, a description of

the function f used in this system is needed. This is an important function because

314 Distributed Systems (vol. 1): Design and Algorithms

confusion is based on it, while diffusion is obtained by the iterated structure itself.

The function f takes as its first argument a block of size 32 (the 32 first or last bits
of the block to encrypt) which is denoted by X . The second argument is a subkey, so

here a block, say Y , of 48 bits. The result f(X,Y) is a block of 32 bits (according to
the specifications of Feistel structures). The function f carries out a computation in

four steps:

1) X is transformed by a function E, that takes 32 bits in input and produces a
block of 48 bits, in such a way that E(X) consists in the bits of X in an other order

where sixteen of them are duplicated. More precisely the 48 bits ofE(X) are obtained
by selecting the bits ofX according to the order induced by the following table:

Function E

32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

Thus, as an example, the 4 first bits of E(X) are the bits 32, 1, 2 and 3 ofX whereas

the 3 last bits are the bits 31, 32 and 1 ofX ;

2) The result E(X) ⊕ Y is then computed and written as a concatenation of 8
subblocks, each of them consisting of 6 bits:

E(X)⊕ Y = B1B2B3B4B5B6B7B8

where for each i ∈ {1, . . . , 8}, Bi has a length of 6 bits;

3) For each i = 1, . . . , 8, Bi goes through a function Si, called a substitution or

an S-box. Such a box takes 6 bits in input and gives 4 bits as output. The result of this
step is given by the concatenation of the Si(Bi), i.e., the block of 32 bits:

S = S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(B7)S8(B8).

Each S-box Si is represented by a table with 4 rows and 16 columns. Its rows are

indexed from the top to the bottom with integers from 0 to 3 and its columns from the

left to the right by integers from 0 to 15. Each entry contains an integer between 0 and

Enforcing Security with Cryptography 315

15. For instance, the S-box S1 is given by the following table:

S1

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

Let us see the action of an S-box, say Si, on a block Bi of 6 bits. The first and last
bits of Bi are interpreted as a binary representation of an integer, say a, between 0
and 3. The four other bits represent a binary representation of an other integer, say
b, between 0 and 15. The entry (a, b) of the table associated with Si, i.e., the integer

given at the intersection of the ath row and the bth column, may be written as a block

of 4 bits in its binary representation (since, by definition, it is an integer between 0
and 15). This block is taken as the output of Si, or in other terms, the value Si(Bi).
For instance, let B1 be the block 011011. The corresponding index for the row of S1

is represented by 01 so it is equal to 0 × 21 + 1 × 20 = 1 in decimal representation.
The corresponding index for the column of S1 is given by 1101 which is the binary
representation of 1 × 23 + 1 × 22 + 0× 21 + 1 × 20 = 13. Therefore S1(B1) is the
binary representation of the integer 5 given as the entry (1, 13). Since 5 is represented
by 0101, the result is S1(B1) = 0101.

These S-boxes are nonlinear in the sense that in general Si(Bi ⊕B′i) 6= Si(Bi)⊕
Si(B

′
i). They destroy the algebraic structure, therefore produce confusion for this

cryptogram;

4) At the input of these eight S-boxes we have a block S of 32 bits. The last step

of internal computations of f is a re-ordering of these bits using a permutation P . It

is represented in the table below:

Permutation P

16 7 20 21
29 12 28 17
1 15 23 26
5 18 31 10
2 8 24 14
32 27 3 9
19 13 30 6
22 11 4 25

The output P (S) is obtained from S by taking the sixteenth bit of S for the first bit

of P (S), the seventh bit of S for the second bit of P (S), etc. (at the end, the twenty-
fifth bit of S is used as the thirty-second bit of P (S)). P (S) is taken as the result of
f(X,Y) for the round function.

316 Distributed Systems (vol. 1): Design and Algorithms

In order to summarize this situation, to compute f(X,Y), B1, . . . , B8 are defined as

blocks of 6 bits each by
B1B2 . . . B8 = E(X)⊕ Y

then the block f(X,Y) is defined by

f(X,Y) = P (S1(B1)S2(B2) . . . S8(B8)).

The DES round function is now fully described. We are in position to conclude

with the presentation of the encryption process by the DES algorithm. An initial step,

before the 16 rounds, is applied to the block that represents the plaintext: it goes

through a permutation IP , called initial permutation, the operation of which is given

by the following table.

Permutation IP

58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 22 14 6
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

Therefore the permuted block has bit number 58 from the original block as its first bit,

then bit 50 for its second, and so on. This initial step is followed by the sixteen itera-

tions of the round function. Finally if (L16, R16) denotes the 64-bits blocks produced
at the sixteenth, and last, round, then the encryption process is ended by applying to

σ(L16, R16) = (R16, L16) the inverse IP
−1 of IP .

We are now in position to present this algorithm in a more compact way. Let k

be the master key, and ki be the subkey from round number i. Let EDES

k be the

DES encryption function. The ciphertext EDES

k (m) of a plaintext m is computed as

follows.
(L0, R0) = IP(m);
(Li+1, Ri+1) = Tki+1(Li, Ri) for i = 0, . . . , 15;

EDES

k (m) = IP
−1(R16, L16).

Using a more condensed notation:

EDES

k (m) =
(
IP
−1 ◦ σ ◦ Tk16 ◦ · · · ◦ Tk1 ◦ IP

)
(m) .

Notice that the final permutation is not applied to (L16, R16) but to σ(L16, R16), i.e.,
(R16, L16). Since this permutation, IP

−1, is the inverse of IP , in order to perform de-

cryption the same algorithm is applied on EDES

k (m), subkeys being used in a reverse

Enforcing Security with Cryptography 317

order from k16 to k1. In other terms, the decryption function is defined by

DDES

k (c) = (IP−1 ◦ σ ◦ Tk1 ◦ · · · ◦ Tk16 ◦ IP)(c) .

In order to check the decryption rule, we only need to notice that T−1
k = σ ◦ Tk ◦ σ,

and for every (L,R), (σ ◦ σ)(L,R) = (L,R). Therefore,

DDES

k (EDES

k (m)) =

(IP−1 ◦ σ ◦ Tk1 ◦ · · · ◦ Tk16 ◦ IP)(EDES

k (m)) =
IP
−1 ◦ (σ ◦ Tk1 ◦ σ) ◦ · · · ◦ (σ ◦ Tk16 ◦ σ) ◦ σ ◦ IP(EDES

k (m)) =

IP
−1 ◦ T−1

k1
◦ · · · ◦ T−1

k16
◦ σ ◦ IP(EDES

k (m)) =

IP
−1 ◦ T−1

k1
◦ · · · ◦ T−1

k16
◦ σ ◦ IP ◦ IP−1 ◦ σ ◦ Tk16 ◦ · · · ◦ Tk1 ◦ IP(m) = m

(eliminating consecutive compositions of a map and its inverse).

Document [FIP 99] also contains the description of an other algorithm for symmetric

encryption, TDEA (for Triple Data Encryption Algorithm), called triple DES. It is

defined as an iteration of the original DES. Let k(1), k(2) and k(3) be three master

keys subject to particular independence properties (given in [FIP 99]). Let m be a 64

bits long block to encode.

1) Encryption algorithm: block m is transformed into a new block c (64 bits) as
follows:

c = EDES

k(3) (DDES

k(2) (EDES

k(1) (m)));

2) Decryption algorithm: m is recovered from the ciphertext c by computing:

m = DDES

k(1) (EDES

k(2) (DDES

k(3) (c))) .

The Nineties: IDEA - International Data Encryption Algorithm

IDEA algorithm, invented by Xuejia Lai and James L. Massey, is described in

[LAI 90] and [LAI 92].

IDEA was explictly designed to fulfill confusion and diffusion requirements. Like

DES, it is based on an iterated structure. However the method used to produce invert-

ible functions – in order to make possible the decryption process – is not based on

Feistel structures. IDEA round function relies on more involved mathematical struc-

tures, namely the groups. An internal composition law, denoted by ∗, on a set E is a

function that associates an ordered pair (x, y) of members ofE to some z that belongs

to E: we denote this z by x∗y. A group is then defined as a non-empty setG together

with an internal composition law that satisfies the following axioms:

1) Associativity: for every x, y, z in G, x ∗ (y ∗ z) = (x ∗ y) ∗ z;

2) Neutral element: there is some e ∈ G such that for every x ∈ G, x∗e = e∗x =
x;

318 Distributed Systems (vol. 1): Design and Algorithms

3) Inversion: for every x ∈ G, there is a unique yx ∈ G such that x∗yx = yx∗x =
e. This element yx is usually denoted by x

−1.

For instance if p is a prime number – that is a positive integer> 1 with 1 and the num-
ber itself as only divisors (such that 2, 3, 5, 7, 11, etc.) – then modulo pmultiplication
of positive integers is an internal composition group law on the set {1, 2, · · · , p− 1}.
Similarly for every positive integer n, the set {0, · · · , n − 1} becomes a group under
modulo n addition. Finally, the set of all blocks of n bits with bit-wise modulo 2 sum,
that is XOR, is another example of a group. IDEA is precisely based on these three

algebraic structures.

In order to describe IDEA round function, the following notations will be used.

Let n be an integer so that 22
n

+ 1 is a prime number (for instance n = 1 or n = 2 or
n = 16).

– As usually the symbol "⊕ " is used to denoteXOR operation between two blocks

of 2n. For instance with n = 2, (0, 1, 1, 0)⊕ (1, 1, 0, 1) = (1, 0, 1, 1);

– Each 2n-bit long block can be identified with a unique integer between 0 and

22
n

− 1 written in binary representation. More generally, let us assume given a ℓ-bit

block (xℓ−1, xℓ−2, · · · , x1, x0), xi ∈ {0, 1}. It represents the integer x =

ℓ−1∑

i=0

xi2
i,

and satisfies 0 ≤ x ≤ 2ℓ − 1. It is thereby possible to compute a modulo 22
n

addition

under this identification (take ℓ = 2n). This operation is denoted by " ⊞ ". For n = 2
so that 22

n

= 16, (0, 1, 1, 0) represents the integer 6, and (1, 1, 0, 1) the integer 13.
Addition modulo 16 of 6 and 13 is, in binary notation, is equal to (0, 0, 1, 1). Therefore
(0, 1, 1, 0)⊞ (1, 1, 0, 1) = (0, 0, 1, 1);

– Each 2n-bit long block, such that at least one of its bits is not zero, represents
a unique integer between 1 and 22

n

− 1. The block, given by 2n bits equal to zero,

is declared to represent the integer 22
n

. Since 22
n

+ 1 is assumed to be prime, the
set {1, 2, . . . , 22

n

}, under modulo 22
n

+ 1 multiplication of integers, is a group. Ac-
cording to this identification between blocks and integers, we can apply this product,

denoted by "⊙ ", to any two blocks (each of them composed of 2n bits). For instance,
(0, 1, 1, 0)⊙ (1, 1, 0, 1) = (1, 0, 1, 0) since 6× 13 is equal to 10modulo 24 +1 = 17,
and 10 is represented as (1, 0, 1, 0) in base two.

Basic components of IDEA being known, it is possible to describe the round func-

tion. IDEA handles blocks of 64 bits for plain and ciphertexts, and uses a master

key of size 128 bits. The derivation algorithm produces at each round, from a given

master key, subkeys of 96 bits. The block mi−1, produced at the (i − 1)th round, is
used as input of the round function for the ith round. It is divided into four blocks,

each of 16 bits, while the ith subkey is divided into six blocks of 16 bits, so that

mi−1 = m1
i−1 m

2
i−1 m

3
i−1 m

4
i−1 and ki = k1i k2i k3i k4i k5i k6i wherem

j
i−1 and k

l
i are

blocks of 16 bits for each j = 1, 2, 3, 4 and l = 1, 2, 3, 4, 5, 6. Notice that 16 satisfies

Enforcing Security with Cryptography 319

the requirement that 216+1 = 65537 is a prime number. As a consequence it is possi-
ble to use the three group laws previously introduced on blocks of 16 bits. The round
function is based on a particular operation, denoted byMA, and called multiplication-

addition orMA-structure, that takes four blocks x1, x2, y1, y2, each of 16 bits, in input
and produces two blocks, MA1(x1, x2, y1, y2) and MA2(x1, x2, y1, y2), also 16 bits
long. Mathematical relations between inputs and outputs ofMA are the following:

MA(x1, x2, y1, y2) = MA1(x1, x2, y1, y2) MA2(x1, x2, y1, y2)
MA1(x1, x2, y1, y2) = MA2(x1, x2, y1, y2)⊞ (x1 ⊙ y1)
MA2(x1, x2, y1, y2) = ((x1 ⊙ y1)⊞ x2)⊙ y2

where the second member of the first equality represents the concatenation of the

blocks MA1(x1, x2, y1, y2) and MA2(x1, x2, y1, y2). The MA-structure is therefore

composed of sophisticated and involved use of two of the three group operations,

multiplication⊙ modulo 216+1 and addition⊞modulo 216. TheMA-structure plays

the same role as the function f fromDES in fulfillment of confusion and diffusion, but

unlike the latter, it is invertible whenever the inputs y1 and y2 are fixed. Indeed from

the knowledge of the outputs z1 = MA1(x1, x2, y1, y2), z2 = MA2(x1, x2, y1, y2) of
the MA-structure together with y1, y2, it is possible to recover x1, x2. The equation

z1 = MA2(x1, x2, y1, y2) ⊞ (x1 ⊙ y1) leads to the value of x1. In fact, let us denote

by a−1 (respectively−a) the inverse of a with respect to the operation⊙ (respectively

⊞).
z1 = z2 ⊞ (x1 ⊙ y1)

⇔ −z2 ⊞ z1 = x1 ⊙ y1
⇔ (−z2 ⊞ z1)⊙ y−1

1 = x1.

Then, injecting this value for x1 into the equation z2 = ((x1 ⊙ y1) ⊞ x2) ⊙ y2, is

recovered the value of x2. Indeed,

z2 = ((x1 ⊙ y1)⊞ x2)⊙ y2
⇔ z2 ⊙ y−1

2 = (x1 ⊙ y1)⊞ x2

⇔ −(x1 ⊙ y1)⊞ (z2 ⊙ y−1
2) = x2

⇔ −(((−z2 ⊞ z1)⊙ y−1
1)⊙ y1)⊞ (z2 ⊙ y−1

2) = x2.

IDEA does not use any Feistel structure, invertible by construction, but we will see

later the round function of IDEA to be also invertible. Surprisingly, invertibility of the

MA-structure does not play any role in the deciphering process.

Let us precisely examine any round of IDEA. The ith round produces a block ci
of 64 bits divided into four blocks (16 bits each of them), which we denote by c1i , c

2
i ,

c3i and c4i such that ci = c1i c2i c3i c4i . From a purely mathematical point of view, an

IDEA round is given by the following formulae.

c1i = MA2 ⊕ (m3
i−1 ⊞ k3i);

c2i = MA1 ⊕ (m4
i−1 ⊞ k4i);

c3i = MA2 ⊕ (m1
i−1 ⊙ k1i);

c4i = MA1 ⊕ (m2
i−1 ⊙ k2i)

(12.1)

320 Distributed Systems (vol. 1): Design and Algorithms

where we define

MA1 = MA1((m
1
i−1 ⊙ k1i)⊕ (m3

i−1 ⊞ k3i), (m
2
i−1 ⊙ k2i)⊕ (m4

i−1 ⊞ k4i), k
i
5, k

i
6);

MA2 = MA2((m
1
i−1 ⊙ k1i)⊕ (m3

i−1 ⊞ k3i), (m
2
i−1 ⊙ k2i)⊕ (m4

i−1 ⊞ k4i), k
5
i , k

6
i).

(12.2)

IDEA enciphering process is given as a sequence of 8 rounds for which the output
ci from the ith round is chosen as input for the following round. The ciphertext cor-

responding to the plaintext m = m0 is not the block c8, output of the eighth round.

Indeed there is a final step: the ciphertext c9 = c19 c
2
9 c

3
9 c

4
9 is computed by

c19 = c18 ⊙ k19 ;
c29 = c28 ⊙ k29 ;
c39 = c38 ⊞ k39 ;
c49 = c48 ⊞ k49

(12.3)

where k9 = k19 k29 k39 k49 is a subkey of 64 bits (each of the k
i
9 being composed of 16

bits), which also comes from the derivation algorithm applied to the master key.

Let us review the decryption process. First of all, let us explore how to recover the

inputsm
j
i−1 for j = 1, . . . , 4 of round number i (for 1 ≤ i ≤ 8) from the outputs c

j
i

and subkeys kli (l = 1, . . . , 6). Recall that the inverse of a block x under ⊕ operation

is x itself. In particular, x⊕ x is equal to the block with all bits equal to zero, neutral

element for ⊕. From the definitions of c
j
i given by the equalities (12.1), the following

result can be checked.

c1i ⊕ c3i = MA2 ⊕ (m3
i−1 ⊞ k3i)⊕MA2 ⊕ (m1

i−1 ⊙ k1i)
⇔ c1i ⊕ c3i = (m3

i−1 ⊞ k3i)⊕ (m1
i−1 ⊙ k1i).

Similarly

c2i ⊕ c4i = MA1 ⊕ (m4
i−1 ⊞ k4i)⊕MA1 ⊕ (m2

i−1 ⊙ k2i)
⇔ c2i ⊕ c4i = (m4

i−1 ⊞ k4i)⊕ (m2
i−1 ⊙ k2i).

Then notice that (c1i ⊕ c3i) (respectively c
2
i ⊕ c4i) is the first (respectively the second)

argument of theMA function according to the equalities (12.2). From this we see that

under knowledge of all c
j
i and k

5
i , k

6
i ,MA1 andMA2 can be computed. Finally using

formulae (12.1) inputs from round number i, namely m
j
i−1, can be deduced since

subkeys kli are also known. For instance,

c1i = MA2 ⊕ (m3
i−1 ⊞ k3i)

⇔ c1i ⊕MA2 = m3
i−1 ⊞ k3i

⇔ (c1i ⊕MA2)⊞ (−k3i) = m3
i−1.

Enforcing Security with Cryptography 321

From c
j
9 and subkeys k

1
9 , k

2
9 , k

3
9 , k

4
9 , c8 = c18 c

2
8 c

3
8 c

4
8 is recovered: the equalities (12.3)

are used. It can be easily shown that:

c19 ⊙ (k19)
−1 = c18;

c29 ⊙ (k29)
−1 = c28;

c39 ⊞ (−k39) = c38;
c49 ⊞ (−k49) = c48.

As previously claimed, invertibility of the MA-structure is not involved in the de-

cryption process. In other terms, if f is any function that takes 4 blocs of 16 bits as
input and produces two blocks of 16 bits as outputs, the encryption algorithm obtained,

after substitution of theMA-structure by f in the IDEA algorithm, remains invertible

and allows decryption process. So after all, what is the role of this function ? Actually

diffusion requirement is based onMA. Indeed, each output subblock ofMA depends

on all input subblocks, in such a way that it ensures diffusion in a number of rounds

less than DES.

Confusion is obtained by the mixed use of the three group operations, which, in a

specific sense, are mutually incompatible, and thus allow to hide the algebraic struc-

tures used. As an example, the following properties can be listed. Let # and ⋆ be

two different operations from⊕, ⊞ and ⊙ (for instance# is ⊕ and⋆ is ⊞, or# is ⊞

and⋆ is ⊙).

1) No such pairs of operations#,⋆ satisfy distributivity from one over the other,

that is there are at least three blocks x, y, z, each of 16 bits, such that:

x#(y⋆z) 6= (x#y)⋆(x#z);

2) No such pairs of operations#, ⋆ satisfy associativity, that is there are at least

three blocks x, y, z of 16 bits such that:

x#(y⋆z) 6= (x#y)⋆z.

Nowadays: AES - Advanced Encryption Standard

On September 2, 1997, the NIST (National Institute of Standards and Technology)

launched a call for proposals about a new cryptosystem to replace DES as a stan-

dard. The requirements were the following: a symmetric encryption algorithm, called

AES (Advanced Encryption Standard), supporting blocks of size 128 bits, and keys of
lengths 128, 192 and 256 bits. On August 20, 1998, the NIST announced the applica-

tion of fifteen algorithms from twelve countries. A year later, after a detailed review

of candidates, the NIST retained only five proposals, namely MARS, RC6, Rijndael,

Serpent and Twofish. A second and last round was led by the NIST with help from the

322 Distributed Systems (vol. 1): Design and Algorithms

worldwide cryptographic community in order to select the winner. Dramatically no

attacks were able to break any of the five last candidates [NEC 01]. Nevertheless other

criteria, as algorithmic complexity or implementation characteristics, were applied to

select, in year 2000, Joan Daemen and Vincent Rijmen’s Rinjdael algorithm as new

encryption standard AES. The official document [FIP 01], dated from November 26,

2001, approved AES as a cryptographic protection of sensitive electronic data (un-

classified) of Federal agencies and departments of the U.S. government. In the same

document are presented in detail full AES specifications.

AES supports 128, 192 or 256 bits long blocks as key formats, and plaintexts,

ciphertexts have 128 bits. The choice of the length for keys depends on the level of
protection needed by the communications (the longer they are, the more the security

is enhanced); for instance, in a note from the American federal government [NSA 03],

the National Security Agency (NSA) recommends to use keys of 192 or 256 bits for

top-secret documents. Notice that the original Rinjdael was conceived to manipulate

also other lengths for blocks and keys, but these ones were not retain for the final AES

version. As its predecessor DES, AES operates on a certain number of rounds that

depends on the length of the keys in a way described in the following table.

Keys Number of rounds

128 10
192 12
256 14

Contrary to DES or IDEA, plaintexts and ciphertexts are not treated as blocks of bits,

but as matrices of bytes, called states: the input of a round is a 4 × 4 matrix (4 rows,
and 4 columns) of bytes entries. Thus a state is represented as the following matrix.

a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3
a3,0 a3,1 a3,2 a3,3

where ai,j is a byte. Such a state represents the block

a0,0 a1,0 a2,0 a3,0 a0,1 a1,1 a2,1 a3,1 . . . a0,3 a1,3 a2,3 a3,3.

Whatever the size chosen for the secret key, round subkeys are also represented by

such 4× 4 arrays of bytes (so they contain 128 bits).

In order to describe in detail the AES round function, some mathematical notions

are required. We use the same notations as in the official document [DAE 99] available

at the address http://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael.

pdf.

Enforcing Security with Cryptography 323

AES uses operations that are defined on a finite field. A (commutative) field K

is a set with at least two distinct elements, 0 and 1, and equipped with two internal
composition laws, + and × (to denote the second law, juxtaposition will also be used

as the usual multiplication), such that

1) K with + is a group with 0 for its neutral element (the inverse of x under this

law will be denoted by −x, that is x+ (−x) = (−x) + x = 0);

2) Addition+ is commutative: for every x, y in K, x+ y = y + x;

3) The set K∗ of elements of K distinct from 0 is a group for multiplication× and

its neutral element is 1 (the inverse of a non zero x in K for multiplication is denoted

by x−1 and thus xx−1 = x−1x = 1);

4) 0 is an absorbing element for multiplication: for every x ∈ K, x0 = 0x = 0;

5) Multiplication is commutative: xy = yx for every x, y ∈ K;

6) Multiplication distributes over addition: x(y + z) = xy + xz for all x, y, z in

K.

Among the class of all fields some have an infinite cardinality, while other, more

interesting from an implementation point of view, have only finitely many elements.

They are called the finite fields. A byte may be represented as an element of the finite

field GF(28) with 28 = 256 elements (" GF " stands for " Galois Field "). Thus a state
may be seen as a 4× 4 array with entries in this field.

AES round function has four basic components. Each of them is invertible which

is an important difference compared to DES and IDEA. Indeed, AES round function

is invertible as the composite of invertible maps while the corresponding property

in DES or IDEA is not based upon invertible internal components. The first three

components are independent of the round subkey, while the fourth is just entry-by-

entry addition of bytes from the current state and those of the subkey. Each of these

operations acts in a specific way on a state and promotes diffusion. A round thus

consists in four stages as follows:

1) The function ByteSub (for Byte Substitution) is applied to a matrix A that rep-

resents the state at the input of the round. This map acts independently on each entry

of A via an invertible transformation SRD : GF(2
8)→ GF(28). This function is essen-

tially defined using

inv : x 7→

{
0 if x = 0,
x−1 if x 6= 0

where x is a byte seen as en element of GF(28). More precisely SRD = λ ◦ inv where
λ is an affine and invertible transformation of bytes; the term " affine " means that

there exists a function α such that for all bytes x, y, α(x + y) = α(x) + α(y) (α is

said to be linear), and a fixed byte β, interpreted as en element of GF(28), such that
λ(x) = α(x) + β. The linear map α also is invertible, and λ−1(x) = α−1(x − β).

324 Distributed Systems (vol. 1): Design and Algorithms

Therefore the inverse of SRD is obtained as SRD
−1 = inv◦λ−1 since, as easily checked,

inv is its own inverse.

Graphically, ByteSub may be described as follows:

ByteSub







a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3
a3,0 a3,1 a3,2 a3,3





 =




b0,0 b0,1 b0,2 b0,3
b1,0 b1,1 b1,2 b1,3
b2,0 b2,1 b2,2 b2,3
b3,0 b3,1 b3,2 b3,3




where each bi,j = SRD(ai,j).
Theoretical results assert that this function provides a very good level of confu-

sion [DAE 02]; in particular, SRD, like DES S-boxes, is not linear since in general,

SRD(x + y) 6= SRD(x) + SRD(y). This first step " destroys " the group structure of
GF(28) under addition. It is therefore an essential part in achieving the confusion

within the cryptosystem. We also notice that ByteSub is invertible: in order to recover

an input state A from B = ByteSub(A), it is sufficient to apply SRD
−1 on each entry

of B; in other terms, the transformation obtained from ByteSub after substitution of

SRD by its inverse SRD
−1 is the inverse of ByteSub;

2) A shift, from left to right, is applied on the rows of the matrixB = ByteSub(A),
output of ByteSub. These are cyclic shifts: for instance applying shift operation two

consecutive times on the row

x1 x2 x3 x4

gives

x3 x4 x1 x2

This operation on the rows of the current state is called ShiftRow. The way the shift

operates on a row depends on the row index. First row is not shifted, while the sec-

ond is shifted one step to the right, the third two steps, and the fourth, three steps.

Graphically ShiftRow acts on a matrix B with entries bi,j as follows.

ShiftRow







b0,0 b0,1 b0,2 b0,3
b1,0 b1,1 b1,2 b1,3
b2,0 b2,1 b2,2 b2,3
b3,0 b3,1 b3,2 b3,3





 =




b0,0 b0,1 b0,2 b0,3
b1,1 b1,2 b1,3 b1,0
b2,2 b2,3 b2,0 b2,1
b3,3 b3,0 b3,1 b3,2


 .

Like ByteSub, function ShiftRow is invertible. In order to recover the output ma-

trix B of ByteSub it suffices to apply ShiftRow modified by the value of the applied

shifts: the first row is not shifted, the second is now shifted three steps to the left, the

third, two steps, and the fourth, only one step. This transformation aims at promoting

diffusion in the cryptosystem;

3) The third step of the round, called MixColumn, operates at the column level

of the current state. It is a matrix multiplication of each column of the state by the

Enforcing Security with Cryptography 325

same invertible 4 × 4 matrix M. Let C = ShiftRow(B) be the current state, re-
sult of ShiftRow, with entries denoted by ci,j (i = 0, . . . , 3, j = 0, . . . , 3). Let

C0, C1, C2, C3 be the four columns of C, from left to right, in such a way C can be

seen as concatenation, [C0 | C1 | C2 | C3], of its columns. It follows that column

number j (for j = 0, . . . , 3) has the following form:

Cj =




c0,j
c1,j
c2,j
c3,j


 .

The multiplication of the column Cj by the matrix M (its entries, mi,j , belong to the

field GF(28)) gives an other column Dj =




d0,j
d1,j
d2,j
d3,j


. So Dj = MCj , and in matrix

representation:

Dj = MCj ⇔




d0,j
d1,j
d2,j
d3,j


 =




m0,0 m0,1 m0,2 m0,3

m1,0 m1,1 m1,2 m1,3

m2,0 m2,1 m2,2 m2,3

m3,0 m3,1 m3,2 m3,3







c0,j
c1,j
c2,j
c3,j


 .

Matrix multiplications lead to the following result concerning the values of di,j for

i = 0, . . . , 3.

di,j = mi,0c0,j +mi,1c1,j +mi,2c2,j +mi,3c3,j .

The matrix multiplication of the columns of C produces four new columns

D0, D1, D2, D3 that can be concatenated to build a 4 × 4 matrix D as D =
[D0 | D1 | D2 | D3]. In short,MixColumn is formally defined as

D = MixColumn(C) = [MC0 |MC1 |MC2 |MC3] .

The fact thatM is an invertible matrix is essential for the invertibility ofMixColumn.

The matrix M to be invertible means that there is another 4 × 4 matrix, denoted by
M−1, such that for every 1×4matrixX (that is a matrix of one row and four columns,

similar to a column Cj for instance)

M−1(MX) = X. (12.4)

In other terms, ifM−1 is multiplied by the column that results from the productMX ,

thenX is obtained. Using this property we can proveMixColumn to be invertible. In-

deed, letMixColumn−1 be the operation obtained fromMixColumn after replacement

of M by its inverse M−1. Let us check that by applying MixColumn−1
to the state

D = MixColumn(C), C is recovered.

MixColumn−1(D) = [M−1D0 |M
−1D1 |M

−1D2 |M
−1D3]

(becauseD = [D0 | D1 | D2 | D3])

326 Distributed Systems (vol. 1): Design and Algorithms

= [M−1(MC0) |M
−1(MC1) |M

−1(MC2) |M
−1(MC3)]

(sinceD = MixColumn(C))

= [C0 | C1 | C2 | C3]
(by property (12.4)).

4) The fourth and final step of an AES round is given by an addition of the

MixColumn result D and the round subkey k, seen under the form of a 4 × 4 ma-

trix of bytes. Therefore the following holds:

D + k =




d0,0 d0,1 d0,2 d0,3
d1,0 d1,1 d1,2 d1,3
d2,0 d2,1 d2,2 d2,3
d3,0 d3,1 d3,2 d3,3


+




k0,0 k0,1 k0,2 k0,3
k1,0 k1,1 k1,2 k1,3
k2,0 k2,1 k2,2 k2,3
k3,0 k3,1 k3,2 k3,3




=




d0,0 + k0,0 d0,1 + k0,1 d0,2 + k0,2 d0,3 + k0,3
d1,0 + k1,0 d1,1 + k1,1 d1,2 + k1,2 d1,3 + k1,3
d2,0 + k2,0 d2,1 + k2,1 d2,2 + k2,2 d2,3 + k2,3
d3,0 + k3,0 d3,1 + k3,1 d3,2 + k3,2 d3,3 + k3,3


 .

So the result ofD + k is a 4× 4 matrix E with byte entries ei,j given by

ei,j = di,j + ki,j .

This operation of round subkey addition is also invertible because

E = D + k ⇔ D = E + k

since addition in GF(28) is nothing else than a usual XOR, and thus (D+k)+k = D.

12.4. Prime Numbers and Public key Cryptography

This section is dedicated to the notion of public key cryptography (through one

of its famous instance: the RSA algorithm) and its relation with arithmetic and, more

precisely, prime numbers.

12.4.1. Introduction

Many cryptosystems use prime numbers. Most of them belong to the class of

asymmetric encryption algorithms. In this section is briefly described one of the most

famous, namely the RSA cryptosystem, and then the question of the construction of

" cryptographic " prime numbers will be reviewed.

Enforcing Security with Cryptography 327

The very principle of public-key encryption was introduced by Diffie and Hell-

man [DIF 76] in 1976, but the authors were unable to provide an example of such

algorithms. In asymmetric cryptography, two kinds of keys are involved: a public key

and a private key. The first one is used for encryption, while the second enters the

scene during the decryption process.

Let us review a communication between Alice and Bob, made confidential with

a public-key algorithm. Let us assume that Alice wishes to send to Bob some con-

fidential message. Alice finds Bob’s public key k
pub
B which, as public, is known to

everybody. Then, she encrypts her message, with this key, and sends it to Bob. Bob,

who is the only one to know his private key k
priv
B , recovers the plaintext as a result of a

decryption algorithm. Notice that for Bob to send a confidential message to Alice, he

must use Alice’s public key k
pub

A who will recover Bob’s message with her own private

key k
priv
A . In such a scenario, everybody has access to public keys, while private keys

are kept secret.

Security of public-key encryption process is provided by infeasibility to solve

some mathematical problem in a practical way, that is without requiring too much

memory or time. In particular, the RSA algorithm is based on the problem of integer

factorization or prime factorization of a number into its prime factors.

12.4.2. The RSA Algorithm

One of the first public-key algorithms, the RSA, was developed by Rivest, Shamir

and Adleman [RIV 78].

Given two prime numbers p, q, it is easy to compute their product n = pq, even

if both of them a very large. However it is difficult to factorize n, that is to recover

its prime divisors when p, q are large enough (one thousand of decimal digits). The

security of RSA is based on this assumption.

Keys Generation Step

Let p, q be two distinct prime numbers. Let n = pq be the RSA modulus. An

integer e < (p − 1)(q − 1), coprime 5 to (p − 1)(q − 1), is chosen. It is called the
encryption exponent. Its inverse, d, modulo (p−1)(q−1) is computed: d is the unique
positive integer x < (p− 1)(q − 1) such that

ex = a(p− 1)(q − 1) + 1 (12.5)

5. Two integers a, b are coprime if, and only if, their greatest common divisor is 1.

328 Distributed Systems (vol. 1): Design and Algorithms

for some integer a. The number d is called the decryption exponent. The ordered pair

(n, e) is the public key, while (p, q, d) is the private key.

Enciphering Step

A plaintext m is a non-negative integer < n. Its corresponding ciphertext is the

non-negative integer c, 0 ≤ c < n, given by

c = me mod n .

Notice that everybody is able to compute c from m, because n, e are given in the

public-key.

Deciphering Step

In order to recover the plaintextm from the ciphertext c, computed as above, it is

sufficient to compute

m = cd mod n .

We notice that only a person with knowledge of d, part of the private key, is able to

compute cd.

Let us check the equality above to be true:

cd mod n = (md)e mod n

= med mod n

= mma(p−1)(q−1) mod n (according to (12.5))
= m(m(p−1)(q−1))a mod n

= m mod n

= m

since it can be checked thatm(p−1)(q−1) = mmod n = m.

12.4.3. Primality and Pseudo-Primality

Many asymmetric encryption schemes use prime numbers. It follows that the ways

to test a number to be prime, or to construct prime numbers are very important issues

in this context. The end of this chapter is devoted to a short presentation of some of

these methods.

A problem must be solved in order to use a given prime number p in a public-

key encryption: one must be sure that p is prime. This problem is obviously solved

for small numbers, but it requires some techniques, called primality tests, for crypto-

graphic relevant numbers (that is very large numbers).

Enforcing Security with Cryptography 329

In order to know if a given number is, or not, a prime number, it is possible to fac-

torize this number. The Sieve of Eratosthenes is one of the oldest methods to achieve

it. Nevertheless it becomes unusable when the number of decimal digits is large. The

best factorization algorithms are able to compute the prime factors of numbers with

an order of 200 decimal digits. But they are much lower than those needed in cryptog-

raphy, and other criteria, than factorization, to determine an integer to be prime must

be used.

Fermat’s theorem states that if p is a prime number, then for every integer a, 1 <

a < p− 1, the following holds

ap−1 = 1mod p.

Its reciprocal is false but may be used to developweak and strong pseudo-primality

tests [MEN 97]. Guaranteed primality tests have also been worked out. They are based

on another reciprocal due to Lehmer and put into practice by Pocklington. Some of

them will be reviewed. Nevertheless they are only used on pseudo-prime inputs.

12.4.4. Pseudo-Primality Test

The reciprocal of Fermat’s theorem is false: for a non-prime integer n there is at

least one integer a such that

an−1 = 1mod n.

This allows to define a base a weak pseudo-primality test for n.

1) Compute an−1mod n;

2) If the result is different from 1, then the integer n is a composite (it is not a

prime number);

3) If it is equal to 1, then n is said to be a base a weak pseudo-prime.

Any prime number obviously is a pseudo-prime with respect to every base.

An algorithm, due to Strassen [SCH 71], computes an−1mod n with a complexity

O(log2 n), which is a multiplicative version of " Russian peasant " algorithm. It is an
iterative program that connects the computation of an to that of an/2.

Strong Pseudo-Primality

Let n be an integer, pseudo-prime of base a. Let n − 1 = d2s, with an odd

d. If ad = 1 mod n or ad2
r

= 1 mod n with r < s, then n is said to be strong

330 Distributed Systems (vol. 1): Design and Algorithms

pseudo-prime of base a. Experimentally, it is known that non-prime strong pseudo-

prime are less numerous than non-prime weak pseudo-prime numbers. For instance,

there are only 13 non-prime strong pseudo-prime numbers of bases 2, 3, 5 smaller

than 25 109. Therefore, as primality test, strong pseudo-primality is better than weak
pseudo-primality tests (for instance, for the same bases, they are an order of 2600

non-prime weak pseudo-prime smaller than 25 109).

12.4.5. Guaranteed Primality Tests

There is a theoretic primality test based on a reciprocal of Fermat’s theorem con-

jectured and proved by Lehmer [LEH 35]. An implementation has been developed by

Pocklington [POC 14].

Let N be an integer for which primality should be proved. Let N − 1 = R × F

be a partial factorization of N − 1, F being a product of prime divisors of N − 1,
while R is not factorized. Let us assume that R and F are coprime, and R < F . Let

F =
n∏

j=1

q
βj

j with prime numbers qj . If there is some integer a such that a
(N−1)/qj−1

andN are coprime for every j = 1, · · · , n, and aN−1 = 1mod N , then N is a prime

number.

The implementation is difficult to use because the choice of a is not deterministic.

Nevertheless, only a partial number of prime factors of N − 1 are needed to proveN
to be prime (without any error).

Associated Construction Algorithm

It is possible to use primality test in order to construct prime numbers relevant

for a cryptographic use. Let R be a prime integer, for instance obtained by a sieve

method. Then smaller prime integers (one of them is 2) are chosen to constitute the
part F . Using the previous algorithm, it is possible to find a new prime integer of

length the double of that of R. Iterating this process, prime numbers p of arbitrary

large value may be constructed with the property that p − 1 has a large prime factor
which is interesting to avoid factorization.

A method to obtain prime numbers is then the following.

1) Let j = 1;

2) Let pj be a prime integer with 10 digits, obtained by a sieve method;

3) Compute a set of small prime numbers, and some of their powers, called a base

of primes;

Enforcing Security with Cryptography 331

4) Pick at random in the base of primes some integers such that their product Fj

is even, Fj > pj ;

5) Test weak pseudo-primality of pj+1 = Fj .pj + 1;

6) If weak pseudo-primality does not hold, then change Fj and start again;

7) Change pseudo-primality base and check pseudo-primality with respect to this

new base;

8) Iterate instruction 7 ten times;

9) Increment j. Iterate instructions 2 to 8 until a number pj of expected size is

obtained;

10) Test strong pseudo-primality of pj . If it does not hold, then return to instruction

2;

11) Apply Pocklington’s algorithm to pj .

The integer pj is a prime number with the expected number of digits.

12.5. Conclusion

In this chapter we focused on general principles of cryptography and on some of

the famous encryption algorithms. It should be clear to everybody that an algorithm

may be considered as sure only for a short period of time, and never in an absolute

fashion. Indeed, cryptanalytic techniques are developed to break cryptosystems.

The evolution of mathematical technology to produce invertible functions relevant

for a cryptographic use was highlighted in the second part of this chapter, where were

presented in detail, and in a chronological order, DES, IDEA and AES. This evolu-

tion follows discovery of new mathematical objects (Feistel structures, more involved

group structures, computations in finite fields, and so on). Therefore it is quite clear

that new cipher algorithms will be designed in the future just as new mathematical

objects will be discovered.

A new directionwill perhaps be followed, namely quantum cryptography [BEN 84].

It is different from the kind of cryptography presented in this chapter, since it is based

on principles of quantum mechanics rather than on mathematics. Security of those

cryptosystems is ensured by the impossibility to duplicate an unknown wave function

(Heisenberg uncertainty principle), or in other terms, impossibility to perform non-

perturbative measures on a quantum system. Thus an adversary will measure some

quantities (such as the spin of photons) in order to spy on confidential communica-

tions. Therefore the system will be perturbated so that Alice and Bob will be aware of

the attack.

332 Distributed Systems (vol. 1): Design and Algorithms

12.6. Bibliography

[BEN 84] BENNETT C., BRASSARD G., “Quantum cryptography: Public key distribution and

coin tossing”, Proceedings of the IEEE International Conference on Computers, Systems

and Signal Processing, p. 175–179, 1984.

[DAE 99] DAEMEN J., RIJMEN V., “AES proposal: Rijndael”, 1999.

[DAE 02] DAEMEN J., RIJMEN V., The design of Rijndael: AES - the Advanced Encryption

Standard, Springer, 2002.

[DIF 76] DIFFIE W., HELLMAN M., “New directions in cryptography”, Information Theory,

IEEE Transactions on, vol. 22, num. 6, p. 644–654, 1976.

[FEI 73] FEISTEL H., Cryptography and computer privacy, Scientific American, 1973.

[FIP 87] FIPS P., “81: DESModes of Operation”, National Bureau of Standards, vol. 1, 1987.

[FIP 99] FIPS P., “46-3: Data Encryption Standard”, National Institute for Standards and

Technology, vol. 25, 1999.

[FIP 01] FIPS P., “197: Advanced Encryption Standard”, National Institute of Standards and

Technology, vol. 26, 2001.

[KER 83a] KERCKHOFFS A., “La cryptographie militaire (première partie)”, Journal des Sci-

ences Militaires, vol. IX, p. 5–38, 1883.

[KER 83b] KERCKHOFFS A., “La cryptographie militaire (seconde partie)”, Journal des Sci-

ences Militaires, vol. IX, p. 161–191, 1883.

[LAI 90] LAI X., MASSEY J., “A proposal for a new block encryption standard”, Proc. EU-

ROCRYPT, vol. 90, p. 389–404, Springer, 1990.

[LAI 92] LAI X., MASSEY J., MURPHY S., “Markov ciphers and differential cryptanalysis”,

Advances in Cryptology - Eurocrypt, vol. 91, p. 17–38, Springer, 1992.

[LEH 35] LEHMER D., “On Lucas’s test for the primality of Mersenne’s numbers”, J. London

Math. Soc., vol. 10, p. 162–165, 1935.

[MEN 97] MENEZES A., OORSCHOT P. V., VANSTONE S., Handbook of applied cryptogra-

phy, CRC Press, 1997.

[NEC 01] NECHVATAL J., BARKER E., BASSHAM L., BURR W., DWORKIN M., FOTI J.,

ROBACK E., “Report on the development of the Advanced Encryption Standard (AES)”,

Journal of Research of the National Institute of Standards and Technology, vol. 106, num. 3,

p. 511–576, 2001.

[NSA 03] NSA, “15, Fact Sheet No. 1 National policy on the use of the Advanced Encryp-

tion Standard (AES) to protect national security systems and national security information.

CNSS”, 2003.

[POC 14] POCKLINGTON H., “The determination of the prime or composite nature of large

numbers by Fermat’s theorem”, Proc. Cambridge Phil. Soc., vol. 18, p. 29–30, 1914.

[RIV 78] RIVEST R. L., SHAMIR A., ADLEMAN L., “A method for obtaining digital signa-

tures”, Commun. ACM, vol. 21, p. 120–126, 1978.

Enforcing Security with Cryptography 333

[SCH 71] SCHONHAGE A., STRASSEN V., “Schnelle Multiplikation grosser Zahlen”, Com-

puting, vol. 7, num. 3-4, p. 281–292, 1971.

[SHA 49] SHANNON C., Communication theory and secrecy Systems, Bell Telephone Labo-

ratories, 1949.

[STI 06] STINSON D., Cryptography: theory and practice, Chapman and Hall/CRC, 2006.

[VER 26] VERNAM G., “Cipher printing telegraph systems for secret wire and radio tele-

graphic communications”, Journal of the American Institute of Electrical Engineers,

vol. 45, p. 109–115, 1926.

