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Abstract. On any set X may be defined the free algebra R〈X〉 (respec-
tively, free commutative algebra R[X]) with coefficients in a ring R. It
may also be equivalently described as the algebra of the free monoid X∗

(respectively, free commutative monoid M (X)). Furthermore, the algebra
of differential polynomials R{X} with variables inX may be constructed.
The main objective of this contribution is to provide a functorial descrip-
tion of this kind of objects with their relations (including abelianization
and unitarization) in the category of differential algebras, and also to
introduce new structures such as the differential algebra of a semigroup,
of a monoid, or the universal differential envelope of an algebra.

Keywords: Differential algebra, monoid algebra, free algebra, category
theory.

1 Introduction

On any set X may be defined the free algebra R〈X〉 of non-commutative poly-
nomials with variables in X and coefficients in a (commutative and unital) ring
R. This is the tensor algebra of the free module RX with basis X . Its abelianiza-
tion, the symmetric algebra of RX , corresponds to the free commutative algebra
R[X ] of polynomials with variables in X . Moreover each of these algebras may
be equivalently defined as the algebra of a monoid. Thus R〈X〉 is the algebra of
the monoid X∗ while R[X ] is the algebra of the free commutative monoid M (X)
over X . Replacing X∗ by the free semigroup X+ over X (thus X+ is the set of
non-empty words over X and X∗ is obtained from X+ by adding an identity
element), we may speak about the algebra R〈X〉+ of the semigroup X+, which
is the free non-unital algebra over X . Its abelianization, denoted by R[X ]+, is
then the free commutative non-unital algebra overX and is also characterized as
the semigroup algebra of the abelianization S(X) of X+, namely the free com-
mutative semigroup over X . The algebras R〈X〉 and R[X ] are recovered from
R〈X〉+ and R[X ]+ respectively by a free adjunction of an identity that turns any
non-unital algebra into a unital one in the usual way. Thus, R〈X〉 ∼= R〈X〉+⊕R
and R[X ] ∼= R[X ]+ ⊕ R as modules over R, where R〈X〉+ and R[X ]+ are the
kernels of the augmentation maps that send a polynomial (commutative or not)
to its constant term (the coefficient of the empty word in the polynomial under
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consideration). Now, again for any set X we may define the algebra R{X } of
differential (commutative) polynomials over R in the standard way. It consists
of the polynomial algebra in the variables x(i), x ∈ X , i ≥ 0, together with a
derivation ∂ that acts on the basis elements x(i) by ∂(x(i)) = x(i+1) for every
x ∈ X , and i ≥ 0. (Here R is just a ring1, but the case of differential polyno-
mials over a differential ring is almost given by the same construction, and is
treated in this contribution.) By analogy to the above algebraic case we may ask
a few questions. (1) Is there a non-commutative differential algebra, say R�X�,
for which R{X } is the abelianization? (2) What kind of universal properties do
these algebras satisfy? (3) Does the algebra R{X } (and R�X� if it exists) may
be interpreted, in the differential setting, as the algebra of some monoid? (4)
What is the nature of the relations between the algebras R�X� and R〈X〉, and
the algebras R{X } and R[X ]?

The main objective of this contribution is to give precise answers to these
questions. In order to make this program possible we adopt a functorial point of
view. More precisely the relations between algebraic and differential structures
are described through the general ideas of forgetful functors and left adjoints.
This allows us to characterize the objects by universal properties. This contribu-
tion provides a large panorama of structures and connections between them in
the differential setting that generalizes some usual algebraic objects such as the
algebra of a monoid, the abelianization functor between algebras, the free ad-
junction of a unit, and differential polynomials. In this way the usual differential
polynomials will be seen as a particular instance of what we call the differential
algebra of a monoid, but also as the differential algebra freely generated by the
usual (non-differential) commutative polynomials. Moreover non-commutative
versions are also provided together with their relations with their commutative
counterparts.

A reader interested in differential algebra might not guess why these new ob-
jects and constructions could be useful. However we think that it is rather natural
to consider generalized differential equations in variables that satisfy some non
trivial relations (not just commutativity), exactly as our differential algebra of
a semigroup for which for instance the theory of differential Gröbner bases [15],
i.e., Gröbner bases for differential ideals, or G.M. Bergman’s notion of poly-
nomial reduction systems [1], should be extended. As the functorial viewpoint
on classical algebraic geometry was so successful (e.g., [7]), we hope that such
an approach to differential algebraic geometry may lead to new progress in this
area [12]. We also mention a recent interest about non-commutative differential
equations [8], and also the author’s paper [16] where is defined and studied a uni-
versal differential enveloping algebra for a Lie algebra. In both cases a functorial
approach should be relevant to obtain new results.

1 It is actually a differential ring with the zero derivation, so that it may be referred
to as a “trivial” differential ring.
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State of the Art and Overview of the New Results

What is well-known for a long time in the area of differential algebra related to
the present work is the construction of the ring of differential commutative poly-
nomials (over a differential ring). Not as well-known is the construction of its
non-commutative counterpart [5] which is quite more recent. And that’s all, up
to our knowledge. On the other side much more algebraic (and not differential)
constructions, again related to our work, are classical: the ring of a semigroup or
a monoid, the unitarization of semigroups or non-unital rings, the abelianization
of these various structures. In brief, the paper presents a variety of new construc-
tions in the spirit of differential polynomials for obtaining differential rings from
semigroups and monoids. These constructions may be seen as the counterparts
of the algebraic ones in the category of differential algebras. Sections 2 and 3
are devoted to basic definitions related to universal problems and to differential
algebra respectively. The other sections contain the new constructions and what
connects them. In Section 4 is introduced the concept of the non-commutative
differential algebra R�S� of a semigroup or a monoid S (Lemma 4) that gener-
alizes the usual construction of the algebra R[S] of S, over some commutative
base ring R, as the solution of some universal problem (or equivalently as a free
construction). Again in the same section the commutative counterpart R{S }
is defined for a commutative S (Lemma 7). When S is the free commutative
monoid over X , then R{S } is the usual differential ring of commutative differ-
ential polynomials with variables in X (as already mentioned above), and for S
the free monoid overX , R�S� is the ring of non-commutative differential polyno-
mials with variables inX . It is also proved that the unitarization (as a differential
algebra) R�S�1 of R�S� is (isomorphic to) the differential algebra R�S1� of the
unitarization of the semigroup S (Lemma 6, and Lemma 9 for the commuta-
tive case), and the abelianization (as a differential algebra) Ab(R�S�) of R�S� is
(isomorphic to) R{Ab(S) } (Lemma 11), where Ab(S) is the usual abelianization
of a semigroup or a monoid. In Section 5 is proved the existence of a universal
differential envelope D(A) of a usual algebra A, i.e., the free differential algebra
generated by a usual algebra both in the commutative and non-commutative
cases, and unital and non-unital cases (Lemmas 15 and 16). It is proved that the
differential algebra of a semigroup or monoid is the universal differential enve-
lope of its usual algebra (Corollaries 1 and 2). Also are explained the relations
with abelianization (Lemma 17) and unitarization (Lemma 18). Finally in the
Section 6 are extended some of these results to the setting of differential (unital)
algebras over a differential base ring (rather than over a usual base ring) that
extends the notion of differential commutative polynomials over a differential
ring. The paper concludes with an overview of the constructions: when fitted
all together the results from this paper lead to a large commutative diagram
of functors (13) between the categories of unital/non-unital, commutative/non-
commutative, differential/non-differential algebras (different construction paths
lead to isomorphic objects).
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2 Some Introducing Remarks about Universal Problems

Most of the constructions we deal with in this paper are actually special in-
stances of a general category-theoretic fact that algebraic functors between vari-
eties of (universal) algebras admit a left adjoint (see for instance Corollary 8.17
in [2]). Nevertheless this result is too general to provide any insight about the ex-
plicit constructions. Thus, we follow the more classical point of view of universal
problems.

Universal problems and properties are so important to this contribution that
they deserve their own section. The basic definitions and results, some of which
being briefly recalled below, about category theory (such as functors, full, faithful
and forgetful functors, left adjoints) may be found in [14] and other (such as
universal problems and universal properties) may be found in a full generality
in [17]. Let C be a category. We denote by C(A,B) the class of morphisms from
an object A to an object B of C , and the identity morphism of A is denoted
by idA. Let D be also a category, and let U : C → D be a functor. Let X be
an object of D. An object SX of C together with a morphism ηX : X → U(SX)
is said to be a solution to the universal problem associated to U (or satisfies
the universal problem) if for every object A of C and every morphism (in D)

φ : X → U(A), there is a unique morphism ̂φ : SX → A such that U(̂φ)◦ηX = φ.
We also say that SX (with a given ηX) has a universal property (associated to
U), and the associated map ηX is referred to as the canonical arrow (or map) or
the natural arrow (or map) associated to X and the solution SX . We mention

that the unique arrow ̂φ : SX → A, corresponding to a morphism φ : X → U(A),
is also referred to as a canonical map (or arrow or morphism).

Let us assume that for a same object X one has two solutions say (SX , ηX)
and (TX , νX). Then, SX and TX are isomorphic as objects of C. Indeed, because
of the universal property of SX , there is a unique morphism ν̂X : SX → TX (in C)
such that U(ν̂X) ◦ ηX = νX . Similarly, because of the universal property of TX ,
there is a unique morphism η̃X : TX → SX such that U(η̃X) ◦ νX = ηX . Thus,
U(η̃X ◦ ν̂X) ◦ ηX = U(η̃X) ◦ U(ν̂X) ◦ ηX = U(η̃X) ◦ νX = ηX , and conversely,
U(ν̂X ◦ η̃X) ◦ νX = U(ν̂X) ◦ U(η̃X) ◦ νX = U(ν̂X) ◦ ηX = νX . But we also have
U(idSX ) ◦ ηX = idU(SX) ◦ ηX = ηX , and U(idTX ) ◦ νX = idU(TX ) ◦ νX = νX . By
the universal property of SX this implies that idSX = η̃X ◦ ν̂X (because there is
a unique morphism ψ : SX → SX such that U(ψ) ◦ ηX = ηX), and the universal
property of TX implies that U(idTX ) = ν̂X ◦ η̃X (because there is a unique
morphism θ : TX → TX such that U(θ) ◦ νX = νX). Thus we conclude that
SX

∼= TX (in C). As a consequence, to prove that an object of C is isomorphic
to another one that we know to satisfy some universal problem, it is sufficient
to prove that it satisfies the same universal problem.

Remark 1. The kind of proof as above (using uniqueness of some morphism) is
very usual in category theory. In this contribution we also take it as usual and
hereafter we don’t develop all the details of such a proof (see for instance the end
of the proof of Lemma 11, which is based on exactly the same kind of reasoning,
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where we only mention “usual categorical arguments” referring by this sentence
to the above kind of proof).

A large source of such universal problems comes from (categorical) adjunctions.
Let C and D be two categories. Let U : C → D and F : D → C be two functors.
We say that F is a left adjoint to U (or that (U, F ) is an adjunction) if there
exists a natural bijection ψX,A : D(X,UA) ∼= C(FX,A) (where A is an object of
C and X and object of D). In particular, let A = FX for some object X of D,
then D(X,UFX) ∼= C(FX,FX), and we denote by ηX : X → UFX the arrow
ψ−1
X,FX(idFX).

Example 1. Let C be the category of groups, and D be that of sets. Let U be
the obvious forgetful functor. Then, F is the free group on a set construction,
and for every set X , ηX is the map that identifies a member of X with the
corresponding free generator of FX .

In such a situation, FX , with ηX , is a solution to the universal problem associ-
ated to U : let φ : X → U(A) be a morphism in D (where A is an object of D),

then the unique morphism (in C) ̂φ from FX to A is given by ψX,A(φ). A full
detailed account on universal properties is given in [17].

3 Basic Definitions from Differential Algebra

In this contribution, every ring is assumed to be both unital and commutative.
Nevertheless, given such a commutative ring R with a unit, commutativity is
not assumed for R-algebras, nor it is assumed that they possess an identity (but
obviously they are assumed to be associative). We refer to [13,18,19] concerning
notions about the field of differential algebra which are recalled hereafter. The
categories of R-algebras, R-algebras with a unit, commutative R-algebras and
commutative R-algebras with a unit are denoted respectively by R-Alg , R-Alg

1
,

R-CAlg and R-CAlg
1
. Homomorphisms between algebras (commutative or not)

with a unit are assumed to respect the units.
Let R be a ring, and A be a R-algebra. A R-derivation (or R-linear derivation)

of A is a R-linear endomorphism ∂ : A → A that satisfies Leibniz rule, i.e., for
every a, b ∈ A, ∂(ab) = ∂(a)b + a∂(b) . In particular, if A is an algebra with a
unit 1A, then ∂(1A) = 0. An algebra A together with a R-linear derivation ∂ is
called a differential R-algebra. It is said to be commutative (respectively, unital)
when the underlying algebra A is so.

Given two differential algebras (overR) (A, ∂A) and (B, ∂B), a homomorphism
of differential algebras φ : (A, ∂A) → (B, ∂B) is a homomorphism of algebras from
A to B that commutes with the derivations φ ◦ ∂A = ∂B ◦ φ. (In particular, if A
and B are both unital, then it is assumed that φ(1A) = 1B.) The categories of
differential R-algebras, differential R-algebras with a unit, commutative differen-
tial R-algebras and commutative differential R-algebras with a unit are denoted
respectively by R-DiffAlg , R-DiffAlg

1
, R-CDiffAlg and R-CDiffAlg

1
. It is clear that

R-CDiffAlg (respectively, R-CDiffAlg
1
) is a full subcategory of R-DiffAlg (respec-

tively, R-DiffAlg1), while R-DiffAlg1 (respectively, R-CDiffAlg1) is a (non-full)
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subcategory of R-DiffAlg (respectively, R-CDiffAlg). We observe that any usual
R-algebra (commutative or not, unital or not) is also a differential R-algebra
when equipped with the zero derivation. Actually these define full embeddings
(see Lemma 13 in Subsection 4.6) given by J : A 
→ (A, 0) for every algebra A.
Conversely, there are obvious forgetful functors (that “forgets” the derivation)
from R-DiffAlg to R-Alg (respectively, from R-DiffAlg1 to R-Alg1, from R-CDiffAlg
to R-CAlg , and from R-CDiffAlg

1
to R-CAlg

1
).

Example 2. Let X be any set, and let us denote the element (x, i) ∈ X × N

by x(i). The algebra R{X } of differential polynomials over X (see [13]) is the
usual algebra of polynomials R[X ×N] generated by all x(i)’s together with the
derivation ∂ such that ∂(x(i)) = x(i+1) for each x ∈ X and each i ≥ 0. More
generally, if (A, dA) is a commutative and unital differential R-algebra, then we
define similarly A{X } with the derivation such that ∂(x(i)) = x(i+1) for each
x ∈ X and each i ≥ 0 that extends that of A, i.e., ∂(αx(i)) = dA(α)x

(i)+αx(i+1)

for every α ∈ A. This means that (A{X }, ∂) is a differential R-algebra (and we
recover R{X } by considering for (A, dA) the differential algebra (R, 0)), but not
a differential A-algebra (see also Section 6).

Given a differential R-algebra (A, ∂), a (two-sided) ideal I of A is said to be
a differential ideal when ∂(I) ⊆ I. Then, the quotient algebra A/I becomes a

differential algebra in a natural way: there is a unique derivation ˜∂ on A/I such

that ˜∂ ◦πI = πI ◦∂, where πI : A → A/I is the natural epimorphism (it becomes

a homomorphism of differential algebras when A/I is equipped with ˜∂).

4 Differential Semigroup Algebra

The well-known algebra R{X } of differential polynomials (see for instance [13]
and example 2) on a set X is the basis of the developments presented in this con-
tribution. One of our objectives will be to prove that it is actually the differential
algebra of some monoid, and also to present its non-commutative counterpart.
This section is devoted to the construction of the universal differential associa-
tive envelope of a semigroup or a monoid, i.e., the differential algebra freely
generated by a semigroup or a monoid, which extends the usual structure of
algebra of a semigroup. Informally, and this is formally proved in Section 5, the
former is obtained by adding all derivatives of members of the later. The cases
of semigroups, commutative or not, and monoids, commutative or not, are pre-
sented hereafter together with their main connections (abelianization functors,
and adjunction of a unit).

4.1 Preliminaries on Free Partially Commutative Structures

In this subsection is adopted the language of free partially commutative struc-
tures (see for instance [4,9,10,20]) that allows a kind of interpolation between
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non-commutativity and full commutativity, and which is recalled hereafter. A
commutation alphabet (X, θ) is a set X with an irreflexive relation θ ⊆ X2.
Let S be either a semigroup, a monoid, an algebra or an algebra with a unit
(over a ring R). Let φ : X → S. It is said to respect the commutations if for
every (x, y) ∈ θ, φ(x)φ(y) = φ(y)φ(x). There exists a free partially commuta-
tive semigroup (respectively, monoid, algebra, algebra with a unit) over (X, θ)
denoted by S(X, θ) (respectively, M (X, θ), R〈X, θ〉+ and R〈X, θ〉) characterized
as the solution of the following universal problem: there is a one-to-one map
i(X,θ) from X to the free partially commutative structure S(X, θ) (respectively,
M (X, θ), R〈X, θ〉+ and R〈X, θ〉), called the canonical map (see Section 2), that
respects the commutations, such that for every semigroup (respectively, monoid,
algebra, algebra with a unit) S and every map φ : X → S that respects the com-

mutations, then there is a unique homomorphism ̂φ from S(X, θ) (respectively,

M (X, θ), R〈X, θ〉+ and R〈X, θ〉) to S such that ̂φ(i(X,θ)(x)) = φ(x) for every
x ∈ X .

If one denotes by X+ (respectively, X∗, R〈X〉+ and R〈X〉) the free semigroup
(respectively, monoid, algebra, algebra with a unit) over X , then S(X, θ) (respec-
tively, M (X, θ)) is obtained as the quotient semigroup (monoid) by the least con-
gruence onX+ (respectively, onX∗) generated by the (xy, yx)’s, (x, y) ∈ θ, while
R〈X, θ〉+ (respectively, R〈X, θ〉) is obtained as the quotient algebra of R〈X〉+
(respectively, R〈X〉) by the two-sided ideal generated by { xy− yx : (x, y) ∈ θ }.
The map i(X,θ) is given as the composition between the natural epimorphism
associated to the quotient and the usual embedding of the alphabet X into the
free structure (it is indeed proved to be one-to-one, see for instance [9]). In
what follows the alphabet X is identified with its image by i(X,θ) into S(X, θ),
respectively M (X, θ), R〈X, θ〉+, R〈X, θ〉.

For any semigroup S we define the monoid S1 = S � { 1 } obtained by free
adjunction of a unit (where � denotes the disjoint sum) with the obvious ex-
tension of the multiplication in S. It satisfies the following universal problem:
for any monoid M and any homomorphism of semigroups φ : S → M there is
a unique homomorphism of monoids φ1 : S1 → M such that φ1(x) = φ(x) for
every x ∈ S (and of course φ1(1) = 1). Similarly, let A be a non-unital R-
algebra. Let A1 = A⊕R (direct sum of R-modules). We define a multiplication
on A1 in a usual way by (x, α)(y, β) = (xy + αy + βx, αβ). Then, A1 becomes
a R-algebra with a unit and A is a two-sided ideal, kernel of the augmentation
map A1 → R that maps (x, α) onto α. The algebra A1 also is a solution of a
universal problem: let B be any R-algebra with a unit, and φ : A → B be a
homomorphism of algebras. Then, there is a unique homomorphism of algebras
with unit φ1 : A1 → B such that φ1(x, 0) = φ(x) for every x ∈ A (and therefore,
φ1(x, α) = φ(x) + α1B).

It can be proved that M (X, θ) may be obtained from S(X, θ) by a free adjunc-
tion of an identity ε (the empty word2), that is M (X, θ) = S(X, θ)1 = S(X, θ) �

2 More precisely, the image of the empty word by the quotient map from X∗ to
M (X, θ).
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{ ε }. Similarly, R〈X, θ〉 = R〈X, θ〉+1 = R〈X, θ〉+ ⊕ R. Besides3, R〈X, θ〉+ =
R[S(X, θ)] and R〈X, θ〉 = R[M (X, θ)], where R[S] denotes the usual algebra of
the semigroup (respectively, monoid) S.

If θ = ∅, then S(X, ∅) (respectively, M (X, ∅), R〈X, ∅〉+, R〈X, ∅〉) is the free
non-commutative semigroup (respectively, monoid, algebra, algebra with a unit)
X+ (respectively, X∗, R〈X〉+, R〈X〉) on the alphabet X . Let ΔX = { (x, y) ∈
X2 : x �= y }. Then, S(X,ΔX) (respectively, M (X,ΔX), R〈X,ΔX〉+, R〈X,ΔX〉)
is the free commutative semigroup (respectively, monoid, algebra, algebra with
a unit) S(X) (respectively, M (X), R[X ]+, R[X ]) on the alphabet X .

4.2 Extension of Maps as Derivations

In this subsection are given three lemmas that allow us to construct derivations
from maps defined on a commutation alphabet which respect the commutations
(see also [3], Lemme 4, for a similar result).

Lemma 1. Let R be a ring, and X be any set. Let ∂X : X → R〈X〉+ be a
set-theoretic map. Then there exists a unique map ∂ : X+ → R〈X〉+ such that
∂(x) = ∂X(x) for every x ∈ X, and ∂(uv) = ∂(u)v+ u∂(v) for every u, v ∈ X+.
Moreover, ∂ extends uniquely to a map ∂ : X∗ → R〈X〉 such that for every
u, v ∈ X∗, ∂(uv) = ∂(u)v + u∂(v). This map ∂ : X∗ → R〈X〉 may also be
equivalently defined as the unique extension of ∂X such that for every u, v ∈ X∗,
∂(uv) = ∂(u)v + u∂(v).

Proof. We first define ∂ : X+ → R〈X〉+ by induction on the length of a word.
We have ∂(x) = ∂X(x) and ∂(xu) = ∂X(x)u + x∂(u) for every x ∈ X , u ∈ X+.
Let us prove that for every words u, v ∈ X+, ∂(uv) = ∂(u)v+u∂(v) by induction
on the length of uv. We have ∂(xv) = ∂X(x)v+x∂(v) = ∂(x)v+x∂(v) for every
x ∈ X , v ∈ X+. We have

3 Let us sketch the proof of the fact that R〈X, θ〉+ = R[S(X, θ)]. We check that
R〈X, θ〉+ satisfies the same universal property of the algebra R[S(X, θ)] of the
semigroup S(X, θ) which implies that they are isomorphic. Let A be a R-algebra,
and let φ : S(X, θ) → A be a homomorphism of semigroups (A is seen as a semi-
group with respect to its multiplicative structure). Then, φ and φ0 = φ ◦ i(X,θ),
with i(X,θ) : X → S(X, θ) being the canonical map, both respect the commuta-

tions. Thus there is a unique homomorphism of algebras ̂φ0 : R〈X, θ〉+ → A such

that ̂φ0 = φ0. Let jS(X,θ) : S(X, θ) → R〈X,θ〉+ be the obvious map that identifies
a member w of the semigroup with the polynomial w. Of course, it is a homo-
morphism of semigroups, and ̂φ0 ◦ jS(X,θ) = φ (indeed, let i′(X,θ) : X → R〈X, θ〉+
be the canonical map, then it easy to see that jS(X,θ) ◦ i(X,θ) = i′(X,θ), and then
̂φ0 ◦ jS(X,θ) ◦ i(X,θ) = ̂φ0 ◦ i′(X,θ) = φ0 = φ ◦ i(X,θ) so that ̂φ0 ◦ jS(X,θ) = φ by unique-

ness of such a map). Let ψ : R〈X, θ〉+ → A be a homomorphism of algebras such
that ψ ◦ jS(X,θ) = φ. Then again ψ ◦ jS(X,θ) ◦ i(X,θ) = ψ ◦ i(X,θ) = φ0, so by the

universal property of R〈X,θ〉+, ψ = ̂φ0. Thus, we can take R〈X, θ〉+ and R[S(X, θ)]
as equal.
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∂(xuv) = ∂(x)uv + x∂(uv)
= ∂(x)uv + x(∂(u)v + u∂(v))

(by induction)
= (∂(x)u + x∂(u))v + xu∂(v)
= ∂(xu)v + xu∂(v)

(1)

for every x ∈ X , u, v ∈ X+. Now, we extend ∂ as a map ∂ : X∗ → R〈X〉 by
setting ∂(ε) = 0. This extension is easily seen to be unique and that for every
u, v ∈ X∗, ∂(uv) = ∂(u)v + u∂(v). It is also quite clear that it is the unique
unique extension of ∂X such that for every u, v ∈ X∗, ∂(uv) = ∂(u)v + u∂(v).

��
Lemma 2. Let R be a ring, (X, θ) be any commutation alphabet, and ∂X : X →
R〈X, θ〉+ be a set-theoretic map such that for every (x, y) ∈ θ, ∂X(x)y = y∂X(x).
Then, there exists a unique map ∂ : S(X, θ) → R〈X, θ〉+ such that ∂(x) = ∂X(x)
for every x ∈ X, and ∂(uv) = ∂(u)v+ u∂(v) for every u, v ∈ S(X, θ). Moreover,
∂ extends uniquely to a map ∂ : M (X, θ) → R〈X, θ〉 such that for every u, v ∈
M (X, θ), ∂(uv) = ∂(u)v + u∂(v). This map ∂ : M (X, θ) → R〈X, θ〉 may also
be equivalently defined as the unique extension of ∂X such that for every u, v ∈
M (X, θ), ∂(uv) = ∂(u)v + u∂(v).

Proof. Let π : X+ → S(X, θ) (respectively, π : X∗ → M (X, θ) = S(X, θ)1) be
the canonical epimorphism. We also denote by π : R〈X〉+ → R〈X, θ〉+ (respec-
tively, π : R〈X〉 → R〈X, θ〉) the canonical epimorphism. (Recall that R〈X, θ〉+ =
R[S(X, θ)] = R〈X〉+/ kerπ, respectively, R〈X, θ〉 = R[M (X, θ)] = R〈X〉/ kerπ.)
Let us choose a set-theoretic section s : S(X, θ) → X+ of π, i.e., π ◦ s = idS(X,θ)

(respectively, π ◦ s = idM (X,θ)). It extends uniquely, as a R-linear map, to
a section s : R〈X, θ〉+ → R〈X〉+ of π. Let us define ∂0 : X → R〈X〉+ by
∂0(x) = s(∂X(x)) for every x ∈ X . By Lemma 1, there exists a unique map
∂0 : X

+ → R〈X〉+ that extends ∂0 : X → R〈X〉+ such that for every u, v ∈ X+,
∂0(uv) = ∂0(u)v+u∂0(v). Now, let us check that π ◦∂0 : X+ → R〈X, θ〉+ passes
to the quotient by kerπ. Let (x, y) ∈ θ. We have ∂0(xy) = ∂0(x)y + x∂0(y).
Then,

π(∂0(xy)) = π(∂0(x))π(y) + π(x)π(∂0(y))
= π(s(∂X(x)))π(y) + π(x)π(s(∂X (y)))
= ∂X(x)y + x∂X(y)
= y∂X(x) + ∂X(y)x

(by assumption on ∂X)
= π(∂0(yx)) .

(2)

Let w,w′ ∈ X+ such that π(w) = π(w′). By definition of the congruence kerπ,
there are w = w0, . . . , wn = w′ such that for every 0 ≤ i < n, wi = uixiyivi,
wi+1 = uiyixivi such that ui, vi ∈ X∗ and (xi, yi) ∈ θ. Then,
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π(∂0(wi)) = π(∂0(uixiyivi))
= π(∂0(ui)xiyivi) + π(ui)π(∂0(xi))π(yi)π(vi)

+π(ui)π(xi)π(∂0(yi))π(vi) + π(ui)π(xi)π(yi)π(∂0(vi))
= π(∂0(ui))xiyiπ(vi) + π(ui)∂X(xi)yiπ(vi)

+π(ui)xi∂X(yi)π(vi) + π(ui)xiyi∂0(vi)
= π(∂0(ui))yixiπ(vi) + π(ui)yi∂X(xi)π(vi)

+π(ui)∂X(yi)xiπ(vi) + π(ui)yixi∂0(vi)
(since (xi, yi) ∈ θ and by assumption on ∂X)

= π(∂0(wi+1)) .

(3)

It follows that π(∂0(w)) = π(∂0(w0)) = · · · = π(∂0(wn)) = π(∂0(w
′)). Therefore,

there is a unique map ∂ : S(X, θ) → R〈X, θ〉+ such that ∂ ◦ π = π ◦ ∂0. In par-
ticular, ∂(π(x)) = π(∂0(x)) = π(s(∂X(x))) = ∂X(x) for every x ∈ X . Moreover
for every u, v ∈ X+,

∂(π(u)π(v)) = ∂(π(uv))
= π(∂0(uv))
= π(∂0(u)v + u∂0(v))
= π(∂0(u))π(v) + π(u)π(∂0(v))
= ∂(π(u))π(v) + π(u)∂(π(v)) .

(4)

It is easily checked that ∂ : S(X, θ) → R〈X, θ〉+ is uniquely determined as a map
that extends ∂X and such that for every u, v ∈ S(X, θ), ∂(uv) = ∂(u)v + u∂(v).
Now, we extend uniquely ∂ to a map ∂ : M (X, θ) = S(X, θ)� { ε } → R〈X, θ〉 by
setting ∂(ε) = 0. It is clear that for every x ∈ X , ∂(x) = ∂X(x), and for every
u, v ∈ M (X, θ), ∂(uv) = ∂(u)v + u∂(v). Moreover this is the unique extension
of ∂ with this property. Furthermore, we already know that ∂ extends ∂X and
∂(uv) = ∂(u)v + u∂(v) for every u, v ∈ M (X, θ). This is the unique extension
with such property. ��
Lemma 3. Let R be a ring, (X, θ) be any commutation alphabet, and let us
give a set-theoretic map ∂X : X → R〈X, θ〉+ such that for every (x, y) ∈ θ,
∂X(x)y = y∂X(x). Then, there exists a unique derivation ∂ of R〈X, θ〉+ such that
for every x ∈ X, ∂(x) = ∂X(x). Moreover, ∂ extends uniquely to a derivation of
R〈X, θ〉.This derivation may also be equivalently defined as the unique derivation
of R〈X, θ〉 that extends ∂X .

Proof. According to Lemma 2, there are unique maps (which by abuse of lan-
guage are denoted by the same name) ∂ : S(X, θ) → R〈X, θ〉+ and ∂ : M (X, θ) →
R〈X, θ〉 that extend ∂X and such that for every u, v ∈ S(X, θ) (respectively,
u, v ∈ M (X, θ)), ∂(uv) = ∂(u)v+u∂(v). Since R〈X, θ〉+ is free with basis S(X, θ),
then we may extend ∂ in a unique way as a R-linear map. Since R〈X, θ〉 is a
free R-module with basis M (X, θ) = S(X, θ) � { ε }, we may also extend ∂ in a
unique way as a R-linear map. It is clear that this map ∂ : R〈X, θ〉 → R〈X, θ〉
is an extension of the previous one ∂ : R〈X, θ〉+ → R〈X, θ〉+, and thus an ex-
tension of ∂X . Both linear maps are actually derivations as it is easy to check.
Uniqueness of both maps is obvious. ��
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4.3 Non-commutative Case

In this subsection is defined the differential algebra of a semigroup (respectively,
monoid) S. We denote by × the product in S, and its identity by 1S. In what
follows, for every set Y , we denote by XY the set Y × N.

According to Lemmas 1 and 3 (with θ = ∅), we define in a unique way a
R-derivation ∂ on R〈XS〉+ (respectively, R〈XS〉) by setting ∂(x(i)) = x(i+1) for
every (x, i) ∈ S × N.

Let us consider the relations on R〈XS〉+ (respectively, R〈XS〉): for every

i ≥ 0 and every x, y ∈ S, (x × y)(i) =
∑i

j=0

(

i
j

)

x(j)y(i−j) . (Respectively, in

addition with the relations 1
(0)
S = ε, and 1

(i)
S = 0 for every i > 0.) In particular,

(x× y)(0) = x(0)y(0) for every x, y ∈ S.
Let us denote by R�S� the quotient R-algebra R〈XS〉+ (respectively, unital

R-algebra R〈XS〉) by the two-sided ideal I generated by the above relations.
The corresponding congruence is denoted by ≡, and π is the canonical epimor-
phism from R〈XS〉+ (respectively, from R〈XS〉) onto R�S� = R〈XS〉+/≡ (re-
spectively, R�S� = R〈XS〉/≡). Let x, y ∈ S and i ∈ N. We have ∂((x × y)(i)) =

(x × y)(i+1), while we have ∂
(

∑i
j=0

(

i
j

)

x(j)y(i−j)
)

=
∑i

j=0

(

i
j

)

∂(x(j)y(i−j)) =
∑i+1

j=0

(

i+1
j

)

x(j)y(i+1−j). Therefore, ∂((x× y)(i)) ≡ ∂
(

∑i
j=0

(

i
j

)

x(j)y(i−j)
)

. (If S

is a monoid, we also have ∂(1(0)) = 1(1) ≡ 0 = ∂(ε) and for every i > 0, ∂(1(i)) =
1(i+1) ≡ 0 = ∂(0).) From these results, it is easy to check that I is a differential
ideal. So, we can define in a unique way a R-linear derivation ∂ : R�S� → R�S�
such that ∂(π(p)) = π(∂(p)) for every p ∈ R〈XS〉+ (respectively, p ∈ R〈XS〉).
The map qS : x ∈ S 
→ π(x(0)) ∈ R�S� is a homomorphism of semigroups (re-
spectively, monoids). Indeed, π((x × y)(0)) = π(x(0)y(0)) = π(x(0))π(y(0)) (plus

π(1
(0)
S ) = π(ε) if S is a monoid). The algebra R�S� satisfies a universal property

as it is stated in the following lemma.

Lemma 4. Let S be any semigroup (respectively, a monoid), and (A, ∂A) be a
R-differential algebra (respectively, unital R-algebra). Let φ : S → A be a ho-
momorphism of semigroups (respectively, monoids) from S to the multiplicative
structure of A. Then, there is a unique homomorphism of differential R-algebras
(respectively, unital differential R-algebras) ̂φ : (R�S�, ∂) → (A, ∂A) such that
̂φ(qS(x)) = φ(x) for every x ∈ S.

Proof. We define ̂φ : (R�S�, ∂) → (A, ∂A) in several steps. Let φ1 : XS → A
be defined by φ1(x

(i)) = ∂i
A(φ(x)) for every (x, i) ∈ S × N. In particular,

φ1(x
(0)) = ∂0

A(φ(x)) = φ(x). Then, we define φ2 : X
+
S → A (respectively,

φ2 : X
∗
S → A) as the unique semigroup (respectively, monoid) homomorphism

extension of φ1. That is, φ2(x
(i)) = φ1(x

(i)) = ∂i
A(φ(x)) for every (x, i) ∈ S×N,

and φ2(a1 · · ·an) = φ1(a1) · · ·φ1(an) for every ak ∈ S × N (plus, φ2(ε) = 1A if
S is a monoid). Now, φ3 : R〈XS〉+ → A (respectively, φ3 : R〈XS〉 → A) is the
unique extension of φ2 as the homomorphism of algebras (respectively, unital al-
gebras). This is possible since R〈XS〉+ = R[X+

S ] (respectively, R〈XS〉 = R[X∗
S]).

Let us prove that φ3 passes to the quotient to R�S�. Let i ∈ N, x, y ∈ S. We have
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φ3((x× y)(i)) = φ2((x × y)(i)) = φ1((x × y)(i)) = ∂i
A(φ(x × y)) = ∂i

A(φ(x)φ(y)),
and

φ3

(

∑i
j=0

(

i
j

)

x(j)y(i−j))
)

=
∑i

j=0

(

i
j

)

φ3(x
(j)y(i−j)))

=
∑i

j=0

(

i
j

)

φ3(x
(j))φ3(y

(i−j)))

=
∑i

j=0

(

i
j

)

φ1(x
(j))φ1(y

(i−j)))

=
∑i

j=0

(

i
j

)

∂j
A(φ(x))∂

i−j
A (φ(y))

= ∂i
A(φ(x)φ(y))

(5)

(and φ3(1
(0)
S ) = φ(1S) = 1A = φ3(ε), φ3(1

(i)
S ) = ∂i

A(φ(1S)) = ∂i
A(1A) = 0A,

φ3(0) = 0A for every i > 0, if S is a monoid). Therefore, we define a homomor-

phism of algebras (respectively, unital algebras) in a unique way ̂φ : R�S� → A

by setting ̂φ(π(p)) = φ3(p) for every p ∈ R〈XS〉+ (respectively, p ∈ R〈XS〉).
In particular, ̂φ(π(x(0))) = φ3(x

(0)) = φ2(x
(0)) = φ1(x

(0)) = ∂0
A(φ(x)) = φ(x)

for every x ∈ S. Let us check that ̂φ commutes with the derivations. First, let
w ∈ X+

S , and let us prove that φ3(∂(w)) = ∂A(φ2(w)) by induction. First we
have φ3(∂(x

(i))) = φ3(x
(i+1)) = φ1(x

(i+1)) = ∂i+1
A (φ(x)) = ∂A ◦ ∂i

A(φ(x)) =
∂A(φ1(x

(i))) = ∂A(φ3(x
(i))) for every x ∈ S, i ∈ N. We have

φ3(∂(x
(i)u)) = φ3(x

(i+1)u+ x(i)∂(u))

= φ3(x
(i+1)u) + φ3(x

(i)∂u)
= φ3(x

(i+1))φ3(u) + φ3(x
(i))φ3(∂(u))

= φ1(x
(i+1))φ3(u) + φ1(x

(i))∂A(φ3(u))
(by induction)

= ∂i+1
A (φ(x))φ3(u) + ∂i

A(φ(x))∂A(φ3(u))
= ∂A(∂

i
A(φ(x))φ3(u))

= ∂A(φ1(x
(i))φ3(u))

= ∂A(φ3(x
(i))φ3(u))

= ∂A(φ3(x
(i)u))

= ∂A(φ2(x
(i)u))

(6)

for every (i, x, u) ∈ N × S × X+
S (moreover, if S is a monoid, then φ3(∂(ε)) =

φ3(0) = 0A = ∂A(0A) = ∂A(φ3(ε))). Now, let p =
∑

w∈X+
S
pww ∈ R〈XS〉+. We

have

φ3(∂p) = φ3

(

∑

w∈X+
S
pw∂(w)

)

=
∑

w∈X+
S
pwφ3(∂(w))

=
∑

w∈X+
S
pw∂A(φ2(w))

= ∂A(φ3(p)) .

(7)

Finally, we have ̂φ(∂(π(p))) = ̂φ(π(∂(p))) = φ3(∂(p)) = ∂A(φ3(p)) =

∂A(̂φ(π(p))), which proves that ̂φ commutes with the derivations (the same proof

holds for p ∈ R〈XS〉). It remains to check that ̂φ is the unique homomorphism
of differential R-algebras (respectively, unital R-differential algebras) such that
̂φ(π(x(0))) = φ(x) for every x ∈ S. But this is quite easy. ��



176 L. Poinsot

Lemma 4 shows some similarities between R[S] and R�S�. This is the reason
why the differential R-algebra (R�S�, ∂) is called the differential R-algebra of
the semigroup (respectively, monoid) S. We now give a relation between the
differential algebra of a semigroup S and that of the monoid S1 obtained by
free adjunction of an identity to S. Recall from Subsection 4.1 that if A is a
R-algebra, then A1 = A⊕R denotes the (universal) unital R-algebra generated
by A.

Lemma 5. If (A, ∂A) is a differential R-algebra, then (A1, ∂A1) is a differential
R-algebra with ∂A1(x, α) = (∂A(x), 0), x ∈ A. More precisely it is universal
in the following sense: for every unital differential R-algebra (B, ∂B), and every
homomorphism φ : (A, ∂A) → (B, ∂B) of differential R-algebras, there is a unique
homomorphism φ1 : (A1, ∂A1) → (B, ∂B) of unital differential R-algebras such
that φ1(x, 0) = φ(x) for every x ∈ A.

Proof. Let ∂A1 : A1 → A1 be defined by ∂A1(x, α) = (∂A(x), 0) for every x ∈ A,
α ∈ R. It is easily checked that it is a R-linear derivation on A1. Now, let
φ : (A, ∂A) → (B, ∂B) be a homomorphism of differential R-algebras, where
(B, ∂B) is a unital differential R-algebra. Let φ1 : A1 → B be the unique ho-
momorphism of unital algebras that extends φ, i.e., φ1(x, α) = φ(x) + α1B for
all x ∈ A, α ∈ R, also is a homomorphism of unital differential R-algebras.
Indeed, let (x, α) ∈ A1. We have φ1(∂A1(x, α)) = φ1(∂A(x), 0) = φ(∂A(x)) =
∂B(φ(x)) = ∂B(φ(x) + α1B) = ∂B(φ1(x, α)). Uniqueness is obvious. ��
Remark 2. If we consider members of A1 = A⊕R as sums x+α, x ∈ A, α ∈ R,
then ∂A1(x+ α) = ∂A(x) for every x ∈ A.

If S is a semigroup, then as presented in Subsection 4.1, S1 = S � { 1 } denotes
the monoid obtained by adjunction of a unit to S.

Lemma 6. Let S be a semigroup. We have (R�S1�, ∂) ∼= (R�S�1, ∂) as unital
R-differential algebras.

Proof. Let φ : S1 → A be a monoid homomorphism from S1 to the multiplicative
monoid of a unital algebra A, where (A, ∂A) is a unital differential R-algebra.
There exists a unique homomorphism of semigroups φ0 : S → A such that
φ(1S) = 1A and φ(s) = φ0(s) for every s ∈ S. According to Lemma 4, there is a

unique homomorphism of differential R-algebras ̂φ0 : (R�S�, ∂) → (A, ∂A) such

that ̂φ0(π(x
(0))) = φ0(x) = φ(x). According to Lemma 5, there exists a unique

homomorphism of unital differential R-algebra ̂φ0,1 : (R�S�1, ∂1) → (A, ∂A) such

that ̂φ0,1(x, 0) = ̂φ0(x) for every x ∈ R�S�. Since ̂φ0,1(0, 1) = 1A = φ(1), this
implies that (R�S�1, ∂1) satisfies the same universal problem as (R�S1�, ∂). ��

4.4 Commutative Case

The results from Subsection 4.3 are extended to commutative semigroups and
monoids. Recall from Subsection 4.1 that S(X) (respectively, M (X)) denotes the
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free commutative semigroup (respectively, monoid), i.e., the free partially com-
mutative semigroup (respectively, monoid) S(X,ΔX) (respectively, M (X,ΔX))
where ΔX = { (x, y) ∈ X2 : x �= y }.

Let S be a commutative semigroup (respectively, monoid). According to Lem-
mas 2 and 3, we define in a unique way a R-derivation ∂ on R[XS]

+ (respectively,
R[XS]), where XS = S × N, by setting ∂(x(i)) = x(i+1) for every (x, i) ∈ S × N

(since R[XS]
+ = R〈XS , ΔXS 〉+, and respectively, R[XS] = R〈XS , ΔXS 〉). Let

us consider the relations on R[XS ]
+ (respectively, R[XS ]): for every i ≥ 0 and

every x, y ∈ S, (x × y)(i) =
∑i

j=0

(

i
j

)

x(j)y(i−j) . (And in addition, the rela-

tions 1
(0)
S = ε, and 1

(i)
S = 0 for every i > 0, if S is a monoid.) In particular,

(x × y)(0) = x(0)y(0) for every x, y ∈ S. Let us denote by R{S} the quotient
R-algebra R[XS ]

+ (respectively, unital R-algebra R[XS ]) by the ideal I gener-
ated by the above relations. The corresponding congruence is denoted by ≡, and
π is the canonical epimorphism from R[XS ]

+ (respectively, from R[XS ]) onto
R{S} = R[XS]

+/≡ (respectively, R{S} = R[XS ]/≡). It is easy to check that
∂(I) ⊆ I so that I is a differential ideal. So we can define in a unique way a
R-linear derivation ∂ : R{S} → R{S} such that ∂(π(p)) = π(∂(p)) for every
p ∈ R[XS ]

+ (respectively, p ∈ R[XS]). The map qS : x ∈ S 
→ π(x(0)) ∈ R{S}
is a homomorphism of commutative semigroups (respectively, monoids). Indeed,

π((x × y)(0)) = π(x(0)y(0)) = π(x(0))π(y(0)) (and π((1
(0)
S )) = π(ε), if S is a

commutative monoid).

Lemma 7. Let S be any commutative semigroup (respectively, monoid), and
(A, ∂A) be a R-differential commutative algebra (respectively, unital commuta-
tive R-algebra). Let φ : S → A be a homomorphism of commutative semigroups
(respectively, monoids) from S to the multiplicative structure of A. Then, there
is a unique homomorphism of differential commutative R-algebras (respectively,

unital differential commutative R-algebras) ̂φ : (R{S}, ∂) → (A, ∂A) such that
̂φ(π(x(0))) = φ(x) for every x ∈ S.

Proof. The proof is omitted since it is almost only an adaptation of that of
Lemma 4. ��

The differential R-algebra (R{S}, ∂) is called the commutative differential
R-algebra of the (commutative) semigroup (respectively, monoid) S. As in the
non-commutative case, there is a relation between R{S1} and R{S}1 given by
Lemma 9 and which used the following result (as easily proved as Lemma 5).

Lemma 8. If (A, ∂A) is a commutative differential R-algebra, then (A1, ∂A1)
is a commutative differential R-algebra with ∂A1(x, α) = (∂A(x), 0) for all x ∈
A. More precisely it is universal in the following sense: for every commutative
unital differential R-algebra (B, ∂B), and every homomorphism φ : (A, ∂A) →
(B, ∂B) of commutative differential R-algebras, there is a unique homomorphism
φ1 : (A1, ∂A1) → (B, ∂B) of commutative unital differential R-algebras such that
φ1(x, 0) = φ(x) for every x ∈ A.

The following lemma is then easily proved.
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Lemma 9. Let S be a commutative semigroup. We have (R{S1}, ∂) ∼=
(R{S}1, ∂1) as commutative unital R-differential algebras.

4.5 Abelianization of Differential Algebras

There is an obvious forgetful functor R-CDiffAlg → R-DiffAlg (respectively, a
forgetful functor R-CDiffAlg

1
→ R-DiffAlg

1
) that admits a left adjoint, the well-

known abelianization functor (in the case of algebras without derivation) that
we describe now.

It is well-known that the forgetful functor from commutative semigroups (re-
spectively, commutative monoids, commutative R-algebras, commutative and
unital R-algebras) to semigroups (respectively, monoids, R-algebras, unital R-
algebras) has a left adjoint, also called the abelianization functor. It is defined
as follows: let S be either a semigroup, a monoid, a R-algebra, or a unital R-
algebra. Let Ab(S) be the quotient semigroup (respectively, monoid, R-algebra,
unital R-algebra) by the least congruence generated by the relations xy = yx
for every x, y ∈ S (respectively, by the two-sided ideal I generated by all the
commutators xy − yx in the cases of algebras). Let (A, ∂A) be a differential
R-algebra (respectively, unital differential R-algebra). It is easy to see that I
is actually a differential ideal. Therefore, Ab(A) admits a natural structure of
a commutative (respectively, unital and commutative) differential R-algebra:
let πAb : A → Ab(A) be the canonical epimorphism from A to its abelianization.
Then, there is a unique derivation ∂Ab(A) on Ab(A) such that ∂Ab(A)◦πAb = πAb◦∂A
and πAb becomes a homomorphism of differential R-algebras (respectively, com-
mutative differential R-algebras).

Lemma 10. Let (A, ∂A) be a differential R-algebra (respectively, a unital dif-
ferential R-algebra), then its abelianization is (Ab(A), ∂Ab(A)).

Proof. Let φ : (A, ∂A) → (B, ∂B) be a homomorphism of R-algebras (respec-
tively, unital R-algebras), where (B, ∂B) is assumed to be a commutative (re-

spectively, unital and commutative) R-algebra. Let ˜φ : Ab(A) → B be the corre-
sponding abelianization of φ for the underlying R-algebras (respectively, unital

R-algebras). Let us check that ˜φ ◦ ∂Ab(A) = ∂B ◦ ˜φ. We have

˜φ ◦ ∂Ab(A) ◦ πAb = ˜φ ◦ πAb ◦ ∂A
= φ ◦ ∂A
= ∂B ◦ φ
= ∂B ◦ ˜φ ◦ πAb .

(8)

Let ψ : (Ab(A), ∂Ab(A)) → (B, ∂B) be a homomorphism of commutative (respec-
tively, unital and commutative) differential R-algebras such that ψ ◦ πAb = φ.

It is therefore clear that ˜φ = ψ as homomorphisms of commutative R-algebras,
and so as homomorphisms of commutative differential R-algebras. ��
Lemma 11. Let S be a semigroup (respectively, monoid). Then, as commutative
differential R-algebras (Ab(R�S�), ∂Ab(R�S�)) ∼= (R{Ab(S)}, ∂) (respectively, as
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commutative and unital differential R-algebras, we have (Ab(R�M�), ∂Ab(R�M�)) ∼=
(R{Ab(M)}, ∂)).

Proof. According to the universal problems, we have the following commutative
diagram.

S
πAb ��

qS ��

Ab(S)
qAb(S)

������
�����

�����q̂

�����
���

���
���

���
���

���
�

(R�S�, ∂))
π̂ ��

πAb ��

(R{Ab(S)}, ∂)
q̃

��
(Ab(R�S�), ∂Ab(R�S�)) π̃

��

(9)
That is, there are natural arrows such that π̂ ◦ qS = qAb(S) ◦ πAb , π̃ ◦ πAb = π̂,

q̃ ◦ qAb(S) = q̂ and q̂ ◦πAb = πAb ◦ qS . Therefore, π̃ ◦ q̃ ◦ qAb(S) ◦πAb = π̃ ◦πAb ◦ qS =
qAb(S) ◦ πAb , so that π̃ ◦ q̃ = id(R{Ab(S)},∂), and q̃ ◦ π̃ ◦ πAb ◦ qS = q̃ ◦ qAb(S) ◦ πAb =

πAb ◦qS, so that q̃◦ π̃ = id(Ab(R�S�),∂Ab(R�S�)) (by usual categorical arguments). ��

It is also possible to present a connection between abelianization and unitariza-
tion as follows.

Lemma 12. Let (A, ∂A) be a R-differential algebra. Then, (Ab(A1), ∂Ab(A1))
∼=

(Ab(A)1, ∂Ab(A)1) as commutative unital R-algebras.

Proof. The proof is due to the following commutative diagrams

(A,∂A)
πAb ��

��

(Ab(A), ∂Ab(A))

��
(A1, ∂A1)

φ ��

��

(Ab(A)1, ∂Ab(A)1)

(Ab(A1), ∂Ab(A1))

˜φ ����������

(A,∂A)
πAb ��

��

(Ab(A), ∂Ab(A))

��
ψ

		���
���

���
���

���

(A1, ∂A1)

��

(Ab(A)1, ∂Ab(A)1)
˜ψ



�����
���

(Ab(A1), ∂Ab(A1))

where the arrows without names are the canonical arrows. ��

In particular, for any semigroup S, R{Ab(S1)}, R{Ab(S)1}, R{Ab(S)}1,
Ab(R�S1�), Ab(R�S�1) and Ab(R�S�)1 are all naturally isomorphic as commu-
tative unital differential algebras.

4.6 Embedding of S into R�S�

Let S be a semigroup (respectively, commutative semigroup, monoid, commu-
tative monoid), and R[S] be the usual R-algebra of S. Let jS : S → R[S] be
the natural inclusion which is a homomorphism of semigroups (respectively,
monoids), and qS : S → R{S} be the homomorphism, already defined in Sub-
section 4.4, such that qS(x) = π(x(0)) for every x ∈ S. Since (R[S], 0) is also
a differential R-algebra (respectively, commutative differential R-algebra, if S
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is commutative, and unital differential R-algebra, if S has an identity), accord-
ing to Lemma 4, there is a unique homomorphism of differential R-algebras
̂jS : (R�S�, ∂) → (R[S], 0) (respectively, by Lemma 7, if S is commutative, a

unique homomorphism of commutative differential R-algebras, ̂jS : (R{S}, ∂) →
(R[S], 0)) such that ̂jS ◦ qS = jS . This implies immediatly that qS is one-to-one
so that S embeds into R�S� (respectively, for the commutative case, into R{S})
as a semigroup (respectively, monoid).

In Section 5 is defined the differential algebra generated by a (usual) algebra
and is proved that the later is embedded (as a sub-algebra) into the former. This
may be used to prove the embedding of R[S] into R�S� (respectively, R{S},
depending on whether or not S is commutative). More precisely, see remarks 5
and 7.

Lemma 13. The functor J : R-Alg → R-DiffAlg (respectively, R-CAlg →
R-CDiffAlg, R-Alg

1
→ R-DiffAlg

1
, R-CAlg

1
→ R-CDiffAlg

1
), that maps a R-

algebra A to the differential R-algebra (A, 0) and which is the identity at the
level of homomorphisms, is a full embedding.

Proof. We prove this lemma only for the first case. The other cases are treated
similarly. Let A,B be two R-algebras. If (A, 0) = (B, 0), then it is clear that
A = B so that J is injective on objects. It is faithful: let A be a R-algebra. Let
f, g be two homomorphisms from A to B such that J(f) = J(g). Then, it is
clear that f = g. Let A,B be two R-algebras and let g : (A, 0) → (B, 0) be a
homomorphism. Then, g : A → B is a usual homomorphism, and J(g) = g so
that J is full. ��
According to Lemma 13, R-Alg (respectively, R-Alg

1
, respectively, R-CAlg , re-

spectively, R-CAlg1) may be identified as a full subcategory of R-DiffAlg (respec-
tively, R-DiffAlg

1
, respectively, R-CDiffAlg , respectively, R-CDiffAlg

1
), namely

that of algebras with a zero derivation. It becomes clear that (R[S], 0) for a
semigroup (respectively, a monoid) S is the free differential semigroup (respec-
tively, monoid) algebra generated by S in the full subcategory of all differential
algebras with the zero derivation (and the same holds for the commutative case).

4.7 A Transversal for R�A+�

In this subsection is studied the differential algebra R�A+� generated by the free
semigroup A+ on the set A. The objective is here to provide a normal form for
the elements of this quotient algebra. In other terms we construct a transver-
sal (see [6]) for the equivalence relation ≡ such that R〈XA+〉+/≡ ∼= R�A+�
(see Subsection 4.3), i.e., a subset T of R〈XA+〉+ that meets each equivalence
classes modulo ≡ in exactly one element. This is equivalent to find a section
s : R�A+� ↪→ R〈XA+〉+ to the natural epimorphism π : R〈XA+〉+ → R�A+�.
Actually we will prove that R�A+� is isomorphic to R〈A × N〉+ (and thus,
R�A∗� is isomorphic to R〈A × N〉). In order to provide this result, we use the
theory of polynomials reduction systems of G.M. Bergman in [1].
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Let S be a semigroup (respectively, monoid), with product × (and identity
1S if S is a monoid). Recall that XS = S ×N. We consider the following reduc-

tion system (see [1]) on R〈XS〉+, Red S = { ((x × y)(i),
∑i

j=0

(

i
j

)

x(j)y(i−j)) : i ≥
0, x, y ∈ S } . (Of which are added the following rules {(1(0)S , ε) }�{ (1(i)S , 0): i >
0 } if S is a monoid.) Following the terminology from [1], there are no overlap
ambiguities. But there are inclusion ambiguities which may be not resolvable.
Indeed, let us assume that w×x = y× z in S, then we may reduce (w× x)(i) as
∑i

j=0

(

i
j

)

w(j)x(j−i) and (w × x)(i) = (y × z)(i) as
∑i

j=0

(

i
j

)

y(j)z(j−i). But there
may be no ways to reduce both polynomials to a same one.

Let us assume for a time that S is the free semigroup A+ over some set
A. Then, every (inclusion) ambiguity is resolvable. Let |w| be the length of
any word w in A+. Let us assume that u1u2 = v1v2 in A+. If |u1| = |v1|,
then u1 = v1, and u2 = v2, so that the ambiguity is obviously resolved. So
let us assume for instance that |u1| < |v1|, then |u2| > |v2|. There exists w
such that v1 = u1w, and u2 = wv2. We have (u1u2)

(i) = (u1(wv2))
(i) which

reduces to
∑i

j=0

(

i
j

)

(u1)
(j)(wv2)

(i−j), while (v1v2)
(i) = ((u1w)v2)

(i) reduces to
∑i

j=0

(

i
j

)

(u1w)
(j)(v2)

(i−j). By associativity in X+
S , both sums are joinable (by

reduction applied on each of them).
Now, let us assume that S is any semigroup. We define the following relations

on X+
S : u(x × y)(i)v → ux(j)y(i−j)v for every i ≥ 0, 0 ≤ j ≤ i, x, y ∈ S and

u, v ∈ X∗
S . It is an irreflexive relation since |w| < |w′| for every w,w′ such that

w → w′. We now consider the transitive closure →+ of→ defined by w →+ w′ if,
and only if, there are w0 = w,w1, . . . , wn = w′, n > 0, such that wi → wi+1 for
0 ≤ i ≤ n−1. This relation is also obviously irreflexive since |w| < |w′| whenever
w →+ w′. Therefore, →+ is a strict (partial) order on X+

S . We define w ⇒+ w′

by w →+ w′ or w = w′. This defines a partial order on X+
S . It satisfies the

following: let us assume that w →+ w′, and let u, v ∈ X∗
S , then uwv →+ uw′v,

and therefore it is called a semigroup partial ordering according to [1]. Since
for every i ≥ 0, and every x, y ∈ S, (x × y)(i) →+ x(j)y(j−i), the partial order
⇒+ is said to be compatible with the reduction system. An irreducible monomial

(under Red S) is a word x
(i1)
1 · · ·x(in)

n ∈ X+
S such that for every 1 ≤ j ≤ n, there

are no y, z ∈ S such that xj = y× z in S, j = 1, . . . , n. The set of all irreducible
monomials under Red S is denoted by IrrS . An irreducible polynomial is a member
of R〈XS〉+ that involves only irreducible monomials. Let x ∈ S.

A decomposition of length n of x is a the sequence (x1, . . . , xn) ∈ Sn such
that x1 × · · · × xn = x in S. The set of decompositions of length n of x is
denoted by Dn(x). A semigroup is said to be locally finite if for every x ∈ S,
then

⋃

n≥0 Dn(x) is finite (see [11]).

Lemma 14. Assuming that S is locally finite, the partial order ⇒+ has de-
scending chain condition.

Proof. Let (un)n≥0 be a sequence of member of X+
S such that for every n ≥ 0,

un →+ un+1. By definition of →+, we may assume without loss of generality

that un → un+1 for every n. Let us assume that u0 = x
(i0,1)
0,1 · · ·x(i0,n0 )

0,n0
, n0 ≥ 1,
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x0,j ∈ S, i0,nj ∈ N, for j = 0, . . . , n0. Let x0 = x0,1 × · · · × x0,n0 so that
(x0,1, . . . , x0,n0) ∈ Dn0(x0). By induction it follows that |un| = n0 + n for each

n. Therefore un = x
(in,1)
n,1 · · ·x(in,n0+n)

n,n0+n , with xn,k ∈ S for every k = 1, . . . , n0 +
n. Moreover, again by induction, we have x0 = xn,1 × · · · × xn,n0+n so that
Dn0+n(x0) �= ∅ for every n which contradict local finiteness of S. ��
Remark 3. The monoid case is fundamentally different since there are infinite
decreasing reductions even for the trivial monoid: indeed, let x be a member of
a monoid M , then x(0) = (x× 1M )(0) → x(0)(1M )(0) → x(0) → · · ·
Now, if S is the free semigroup A+, then it is locally finite, and S \ S(2) = A
(where S(2) = { x ∈ S : D2(x) �= ∅ }). Moreover we already know that in this case
all inclusion ambiguities are resolvable. Then, with Lemma 14, it allows us to
apply Theorem 1.2 from [1] (easily generalized to the free algebraR〈X〉+ without
unit). It implies that there is a R-linear map red : R〈XS〉+ → RIrrS , where RIrrS
denotes the submodule of R〈XS〉+ generated by irreducible monomials IrrS , such
that w ≡ w′ if, and only if, red S(w) = red S(w

′). In particular, red S ◦ red S =
red S . The element red S(p) is called the normal form of p ∈ R〈XS〉+. The map
red S : R�S� → RIrrS defined by red S(π(w)) = red S is a linear isomorphism.

Moreover, Theorem 1.2 from [1] also states that RIrrS has a structure of an
associative R-algebra given by w · w′ = red S(ww

′), and R�S� ∼= RIrrS as R-

algebras. In addition, let w = x
(i1)
1 · · ·x(im)

m , w′ = y
(j1)
1 · · · y(jn)n ∈ IrrS . We have

red S(ww
′) = ww′ so that the operation “·” is the usual concatenation of (non

empty) words in the alphabet { x(i) : x ∈ A } = A × N ⊆ IrrS , and R�S� is the
free R-algebra R〈A × N〉+ generated by A × N. The corresponding derivation
acts on x(i) as ∂(x(i)) = x(i+1) for every x ∈ A, i ≥ 0. Moreover, we have
R�A∗� ∼= R�A+�1 ∼= R〈A×N〉+1 ∼= R〈A×N〉. Using the abelianization functors,
we find that R{S(A)} ∼= Ab(R�A+�) ∼= Ab(R〈A × N〉+) ∼= R[A × N]+, and
R{M (A)} ∼= Ab(R�A∗�) ∼= Ab(R〈A× N〉) ∼= R[A× N]. Therefore in this case we
recover the usual differential commutative polynomials with variables in A.

5 The Universal Differential Envelope of an Algebra

In this section, again for the non-commutative as for the commutative cases, and
unital as for non-unital cases, we present a way to form a universal differential
envelope of an algebra, i.e., to freely generate a differential algebra from a usual
algebra. This is used to describe with precision the relation between the algebra
of a semigroup (or monoid) and its differential algebra.

5.1 Non-commutative Case

We now prove that the forgetful functor from R-DiffAlg to R-Alg (respectively,
from R-DiffAlg

1
to R-Alg

1
) has a left adjoint. Let A be a R-algebra (respectively,

a unital R-algebra). Let us consider the free R-algebra R〈A×N〉+ (respectively,
R〈A×N〉) generated by the alphabet (A×N)+ (respectively, (A×N)∗). Let us
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consider the following relations on R〈A × N〉+ (respectively, R〈A × N〉): for all
i ≥ 0, for all x, y ∈ A, and for all α ∈ R, (0A)

(i) = 0, (x + y)(i) = x(i) + y(i),

(αx)(i) = α(x)(i) (in particular, (−x)(i) = −(x)(i) so that 0
(i)
A = (x − x)(i) =

x(i) + (−x)(i) = x(i) − (x(i)) = 0), (x × y)(i) =
∑i

j=0

(

i
j

)

x(j)y(i−j). In addition,

1
(0)
A = ε, and 1

(i)
A = 0 for every i > 0, when A is unital.

Let D(A) be the quotient R-algebra R〈A× N〉+/I (respectively, R〈A× N〉/I)
where I is the two-sided ideal generated by the above relations. We denote by
≡ the corresponding congruence on R〈A × N〉+ (respectively, R〈A × N〉), and
π : R〈A × N〉+ → D(A) (respectively, π : R〈A × N〉 → D(A)) is the canonical
epimorphism. According to Lemma 3, there exists a unique derivation ∂ : R〈A×
N〉+ → R〈A×N〉+ (respectively, ∂ : R〈A×N〉 → R〈A×N〉) such that ∂(x(i)) =
x(i+1) for every i ≥ 0, x ∈ A. It is easy to check that I is actually a differential
ideal, so that there is a unique derivation ∂ on D(A) such that ∂ ◦ π(p) = π ◦ ∂.

Now, let (B, ∂B) be a differential R-algebra (respectively, unital differential
R-algebra), and φ : A → B be a homomorphism of R-algebras. Let φ1 : A ×
N → B be the set-theoretic map defined by φ1(x

(i)) = ∂i
B(φ(x)). Let φ2 : (A ×

N)+ → B (respectively, φ2 : (A×N)∗ → B) be defined as the unique semigroup
(respectively, monoid) homomorphism extension of φ1. Let φ3 : R〈A × N〉+ →
B (respectively, φ3 : R〈A × N〉 → B) be the unique algebra homomorphism
extension of φ2. Let us check that φ3 factors through the quotient algebra D(A).
First of all it is easy to see that φ3 commutes to the derivations, and that
for every generating equation (u, v) of ≡, (φ3(u), φ3(v)) is also a generating

equation. Therefore there is a unique homomorphism of algebras ̂φ : D(A) → B

such that ̂φ(π(p)) = φ3(p) for every p ∈ D(A). Let us check that ̂φ commutes

with the derivations ∂ and ∂B . We have ̂φ(∂(π(p))) = ̂φ(π(∂(p))) = φ3(∂(p)) =

∂B(φ3(p)) = ∂B(̂φ(π(p))). Moreover it is easily checked that ̂φ is unique. The map
qA : A → D(A) defined by qA(x) = π(x(0)) is a homomorphism of R-algebras.
The results above allow us to state the following lemma.

Lemma 15. The differential R-algebra (D(A), ∂) is the free differential (respec-
tively, free unital differential) R-algebra generated by the R-algebra (respectively,
unital R-algebra) A, i.e., let (B, ∂B) be a differential R-algebra (respectively,
a unital differential R-algebra), and φ : A → B be a homomorphism of R-
algebras. Then, there exists a unique homomorphism of differential R-algebras
̂φ : (D(A), ∂) → (B, ∂B) such that for every x ∈ A, ̂φ(π(x(0))) = φ(x).

The connection between the usual algebra of a semigroup and its differential
algebra is stated in the following result.

Corollary 1. Let S be a semigroup (respectively, monoid). Then, (D(R[S]), ∂) ∼=
(R�S�, ∂) as differential R-algebras (respectively, unital differential R-algebras).

Proof. Let (B, ∂B) be a differential R-algebra (respectively, a unital differential
R-algebra), and φ : S → B be a homomorphism of semigroups (respectively,
monoids). By the universal property of R[S], there is a unique homomorphism of

R-algebras ˜φ : R[S] → B such that ˜φ(x) = φ(x) for every x ∈ S. By Lemma 15,
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there is a unique homomorphism of differential R-algebras
̂

˜φ : (D(R[S]), ∂) →
(B, ∂B) such that for every p ∈ R[S],

̂

˜φ(π(p(0))) = ˜φ(p). Because R[S] is free
as a module with basis S, the last assertion is equivalent to the following: for

every x ∈ S,
̂

˜φ(π(x(0))) = ˜φ(x) = φ(x). Indeed, let us assume that for every

x ∈ S,
̂

˜φ(π(x(0))) = ˜φ(x) = φ(x). Let p =
∑

x∈S αxx ∈ R[S]. Then,
̂

˜φ(π(p(0))) =
̂

˜φ(
∑

x∈S αxπ(x
(0))) =

∑

x∈S αx
̂

˜φ(π(x(0))) =
∑

x∈S αxφ(x) = ˜φ(p). ��
Remark 4. Using Corollary 1, we see that D(R〈X〉+) ∼= R�X+� ∼= R〈X × N〉+
as algebras (see Subsection 4.7), for every set X . We also have D(R〈X〉) ∼=
R�X∗� ∼= R〈X × N〉.
Since (A, 0) is a differentialR-algebra (respectively, unital differentialR-algebra),
and idA : A → A is an endomorphism ofR-algebra, according to Lemma 15, there
is a unique homomorphism of differential R-algebras, say I : (D(A), ∂) → (A, 0)
such that I ◦ qA = idA. Therefore, qA is one-to-one, and A embeds into D(A) as
a sub-algebra (respectively, unital sub-algebra).

Remark 5. The semigroup (respectively, monoid) algebra R[S] embeds into
D(R[S]) which is isomorphic to R�S� as a sub-algebra.

5.2 Commutative Case

It is also possible to define a similar construction in the commutative case. Let
A be a commutative (respectively, commutative unital) R-algebra. We construct
(CD(A), ∂) in a way similar to the previous construction D(A) in Subsection 5.1:
first we consider the free commutative R-algebra R[A×N]+ (respectively, R[A×
N]) generated by S(A × N) (respectively, M (A × N)). Then, we consider the
same relations as in the previous construction, and we let CD(A) denote the
quotient algebra R[A × N]+/I (respectively, R[A × N]/I) where I denotes the
ideal generated by the relations. The corresponding congruence is again denoted
by ≡ and π : R[A×N]+ → CD(A) (respectively, π : R[A×N] → CD(A)) denotes
the corresponding natural epimorphism. We know that there exists a unique
derivation ∂ : R[A× N]+ → R[A× N]+ (respectively, ∂ : R[A× N] → R[A× N])
such that ∂(x(i)) = x(i+1) for every x ∈ A, i ≥ 0. Moreover I being a differential
ideal, it follows that CD(A) admits a unique derivation ∂ inherited from ∂. It is
straightforward to obtain the following result by an easy variation of the proof
of Lemma 15. Again the map qA : x ∈ A 
→ π(x(0)) ∈ CD(A) is a homomorphism
of algebras.

Lemma 16. The commutative differential R-algebra (CD(A), ∂) is the free com-
mutative (respectively, commutative unital) differential R-algebra generated by
the commutative (respectively, commutative unital) R-algebra A, i.e., let (B, ∂B)
be a commutative (respectively, commutative unital) differential R-algebra, and
φ : A → B be a homomorphism of R-algebras. Then, there exists a unique homo-
morphism of commutative differential R-algebras ̂φ : (CD(A), ∂) → (B, ∂B) such

that for every x ∈ A, ̂φ(π(x(0))) = φ(x).
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Corollary 2. Let S be a commutative semigroup (respectively, monoid). Then,
(CD(R[S]), ∂) ∼= (R{S}, ∂) as commutative differential R-algebras (respectively,
commutative unital differential R-algebras).

Proof. The proof is omitted since it is similar to that of Corollary 1. ��
Remark 6. Using Corollary 2, we see that CD(R[X ]+) ∼= R{S(X)} ∼= R[X×N]+

as algebras, for every set X . We also have CD(R[X ]) ∼= R{M (X)} ∼= R[X × N].

Since (A, 0) is a commutative (respectively, commutative unital) differential R-
algebra, and idA : A → A is an endomorphism of commutative R-algebra, ac-
cording to Lemma 16, there is a unique homomorphism of commutative differ-
ential R-algebras I : (CD(A), ∂) → (A, 0) such that I ◦ qA = idA, so that qA
is one-to-one, and A embeds into CD(A) as a sub-algebra (respectively, unital
sub-algebra).

Remark 7. The commutative semigroup (respectively, monoid) algebra R[S] em-
beds into CD(R[S]) ∼= R{S} as a sub-algebra (respectively, unital sub-algebra).

5.3 Links between Abelianization and the Free Differential Algebra

Lemma 17. Let A be a R-algebra (unital or not). Then, (Ab(D(A)), ∂Ab(D(A))) ∼=
(CD(Ab(A)), ∂Ab(A)) as commutative R-algebras.

Proof. The proof is due to the following commutative diagrams.

A
πAb ��

qA ��

Ab(A)
qAb(A)��

D(A)
φ ��

πAb ��

CD(Ab(A))

Ab(D(A))

˜φ ����������

A
πAb ��

qA ��

Ab(A)
qAb(A)��

ψ

		���
���

���
���

��

D(A)
πAb ��

CD(Ab(A))
˜ψ



�����
���

Ab(D(A))

(10)

��

5.4 Links between Unitarization and the Free Differential Algebra

The following lemma is easily proved.

Lemma 18. Let A be a non-unital R-algebra (respectively, non-unital com-
mutative R-algebra). Then, as differential algebras, it holds that (D(A1), ∂) ∼=
(D(A)1, (∂)1) (respectively, as commutative differential algebras, it holds that
(CD(A1), ∂) ∼= (CD(A)1, (∂)1)).

6 General Differential Algebra

From now on, only differential algebra over a non-differential ring R has been
explored. But it is also possible to take into account a derivation on the base
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ring, as for instance in example 2 the differential polynomials over a differential
algebra (A, dA). In this final section, we treat this kind of objects by the process
of extension of scalars. This provides the final piece of the panorama of functorial
constructions in the differential setting.

Let (A, dA) be a usual unital and commutative R-differential algebra (recall
that R is assumed to be both unital and commutative). Let B be a unital A-
algebra. By restriction of scalars, it is also a unital R-algebra, and we assume
that (B, ∂B) is a unital differential R-algebra (i.e., ∂B is a R-linear derivation on
B). Finally, we assume that for every α ∈ A, x ∈ B, ∂B(αx) = dA(α)x+α∂B(x),
while ∂B(αx) = α∂B(x) for every α ∈ R, x ∈ B, since ∂B is R-linear (we observe
that it follows from ∂B(αx) = dA(α)x + α∂B(x) for α a scalar multiple of 1A
since dA is R-linear and dA(1A) = 0). Such a structure (B, ∂B) is a called a unital
differential R-algebra over (A, dA). If B is also commutative, then we obtain a
unital commutative differential R-algebra over (A, dA). As an example, (A, dA)
is a commutative unital differential R-algebra over itself by the Leibniz rule.

A homomorphism φ of unital (respectively, commutative unital) differential
R-algebras over (A, dA) from (B, ∂B) to (C, ∂C) is a homomorphism φ : B →
C for the underlying A-algebras such that φ ◦ ∂B = ∂C ◦ φ. If φ is such a
homomorphism, then it is also a homomorphism of the underlying differential
R-algebras. Unital (respectively, commutative unital)R-differential algebras over
(A, dA) and their homomorphisms form a category denoted by (A, dA)-DiffAlg

1
(respectively, (A, dA)-CDiffAlg1).

There is an obvious forgetful functor from (A, dA)-DiffAlg
1
to R-DiffAlg

1
(re-

spectively, from (A, dA)-CDiffAlg
1
to R-CDiffAlg

1
). These functors are faithful

and we will see that they have a left adjoint. It is a well-known fact that
the categories R-DiffAlg

1
and R-CDiffAlg

1
admit a tensor product: let (B, ∂B)

and (C, ∂C) be two unital (respectively, commutative unital) differential R-
algebras. We define a R-linear derivation on the unital (respectively, commu-
tative unital) R-algebras B ⊗R C as ∂B ⊗ ∂C : B ⊗R C → B ⊗R C defined by
(∂B ⊗ ∂C)(b ⊗ c) = ∂B(b) ⊗ c + b ⊗ ∂C(c). Let (B, ∂B) be a usual differen-
tial (respectively, commutative differential) R-algebra. We provide to the unital
(respectively, commutative unital) differential R-algebra (A ⊗R B, dA ⊗ ∂B) a
structure of unital (respectively, commutative unital) differential R-algebra over
(A, dA) as follows. The Abelian group A⊗RB is given the trivial A-module struc-
ture by a(a′ ⊗ b) = aa′ ⊗ b. Because A is commutative, this A-module structure
is compatible with the product of A⊗R B, this means that

a((a′ ⊗ b)(a′′ ⊗ b′′)) = a(a′a′′ ⊗ b′b′′)
= aa′a′′ ⊗ b′b′′

= (a(a′ ⊗ b′))(a′′ ⊗ b′′)
= a′aa′′ ⊗ b′b′′

= (a′ ⊗ b′)(a(a′′ ⊗ b′′)) .

(11)

This A-algebra structure is commutative whenever B is. It is clear that by re-
striction of scalars, we recover the structure of R-module on A ⊗R B. Finally,
we have
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(dA ⊗ ∂B)(a(1A ⊗ 1B)) = (dA ⊗ ∂B)(a⊗ 1B)
= dA(a)⊗ 1B + a⊗ ∂B(1B)
= dA(a)⊗ 1B = dA(a)(1A ⊗ 1B) .

(12)

Therefore, (A ⊗R B, dA ⊗ ∂B) is a unital (respectively, commutative unital)
differential R-algebra over (A, dA). Let (C, ∂C) be a unital differential R-algebra
over (A, dA). Let φ : (B, ∂B) → (C, ∂C) be a homomorphism of differential R-
algebras (C is assumed commutative if B is so). We define a R-linear map
φ1 : A × B → C by φ1(a, b) = aφ(b) (well-defined since C is a A-algebra).
Therefore, φ2 : A⊗R B → C given by φ2(a⊗ b) = φ1(a, b) is R-linear.

Moreover it is easily checked that it commutes with the derivations, and is
unique with those properties. It is also clear that the map iB : b ∈ B 
→ 1A⊗ b ∈
A⊗RB is a homomorphism of differential algebras from (B, ∂B) to (A⊗RB, dA⊗
∂B) . This means that the following result holds.

Lemma 19. Let (B, ∂B) be a unital (respectively, commutative unital) differ-
ential R-algebra and (A, dA) be a commutative differential R-algebra. Then,
for every unital (respectively, commutative unital) differential R-algebra (C, ∂C)
over (A, dA) and every homomorphism φ : (B, ∂B) → (C, ∂C) of differential R-
algebras, there exists a unique homomorphism of differential R-algebras φ2 : (A⊗
B, dA ⊗ ∂B) → (C, ∂C) such that φ2(1A ⊗ b) = φ(b) for every b ∈ B.

Let (B, ∂B) be a unital differential R-algebra over (A, dA). Let Ab(B) be the
abelianization of B as a unital A-algebra. Let πAb : B → Ab(B) be the natural
epimorphism (it is a homomorphism of unital A-algebras). It is easy to see that
the R-linear map (by restriction of scalars from A to R) πAb ◦ ∂B : B → Ab(B)
passes to the quotient. Therefore, there is a unique R-derivation ∂Ab(B) on Ab(B)
such that ∂Ab(B) ◦ πAb = πAb ◦ ∂B .

Moreover, (Ab(B), ∂Ab(B)) becomes a commutative unital differential algebra
over (A, dA). Then, it follows that (Ab(B), ∂Ab(B)) is the abelianization of (B, ∂B).
The following two results are easily proved.

Lemma 20. Let (B, ∂B) be a unital differential R-algebra, and (A, dA) be a
commutative unital differential R-algebra. Then, (A⊗RAb(B), dA⊗∂Ab(B)) is the
abelianization of (A⊗R B, dA ⊗ ∂B) (where (Ab(B), ∂Ab(B)) is the abelianization
of (B, ∂B) as a unital differential R-algebra).

Lemma 21. Let M is any monoid (respectively, commutative monoid). Then,
A⊗R R�M� ∼= A�M� (respectively, A⊗R R{M} ∼= A{M}) as unital A-algebras
(where we equip A⊗RR�M�, respectively, A⊗RR{M}, with its A-algebra struc-
ture). Moreover, let us define the R-linear derivation ∂′ on A�M� (respectively,
A{M}) by ∂′(aπ(x(i))) = dA(a)π(x

(i)) + aπ(x(i+1)). Then, (A ⊗R R�M�, dA ⊗
∂) ∼= (A�M�, ∂′) (respectively, (A ⊗R R{M}dA ⊗ ∂) ∼= (A{M}, ∂′)) as unital
differential R-algebras over (A, dA).

Using the results from Subsection 4.7, for any commutative unital differen-
tial R-algebra (A, dA), and for any set X , A�X∗� ∼= A〈X × N〉 (respectively,
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A{M (X)} ∼= A[X × N]) as unital A-algebras. Moreover, under this isomor-
phism, in the commutative case, we recover the usual differential polynomials
over (A, dA).

The previous Lemmas 20 and 21, together with all the previous results of
this paper, allow us to give a complete view on our panorama as a commutative
diagram of functors (every path from a given source to a given target we can
follow in this large graph gives the same functor).

(A, dA)-DiffAlg
Ab ��

(A, dA)-CDiffAlg
1

R-DiffAlg1

A⊗RL
��

Ab 


R-CDiffAlg1

A⊗RL
��

R-DiffAlg

(·)1���
����

Ab 


R-CDiffAlg

(·)1����
�����

R-Alg
1

D

��

Ab 


R-CAlg

1

CD

��

R-Alg

(·)1����

������
D

��

Ab ��
R-CAlg

CD

��

(·)1�����

������

Mon

R�·�

��

Ab

��

R[·]

��

CMon

R[·]

��
R{·}

��

SemGrp

R�·�

��

R[·]

��

Ab 


(·)1����

�������

CSemGrp
(·)1����

�������

R{·}

��

R[·]

��

Set

R[·]

��

R〈·〉

��

R[·]+

��

R〈·〉+

��

(·)+						

��				
S






��



(·)∗

��

M

��

(13)
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15. Mansfield, E.: Differential Gröbner bases, PhD thesis, University of Sydney (1991)
16. Poinsot, L.: Wronskian envelope of a Lie algebra. Algebra 2013, Article ID 341631,

8 (2013)
17. Pareigis, B.: Categories and functors. Pure and Applied Mathematics, vol. 39.

Academic Press (1970)
18. van der Put, M., Singer, M.F.: Galois theory of linear differential equations.

Grundlehren der mathematischen Wissenschaften, vol. 328. Springer (2003)
19. Ritt, J.F.: Differential equations from the algebraic standpoint. Colloquium Pub-

lications, vol. XIV. American Mathematical Society (1932)
20. Viennot, G.X.: Heaps of pieces I: Basic definitions and combinatorial lemmas. In:

Labelle, G., et al. (eds.) Proceedings Combinatoire Énumérative, Montréal, Québec
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