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Objectives of the module

@ introduce formal models for critical systems specification
@ automata
o Petri nets
e their extensions
@ use model-checking to verify their properties
e reachability
e deadlocks
e properties expressed in LTL and CTL logics
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Outline

© Automata © Temporal logic
@ Introductory notions @ Language
@ Automata o LTL

@ Execution and execution tree

_ _ @ Formal syntax and semantics
@ Atomic properties

@ lllustration
@ Formal definitions @ Examples of LTL formulae
@ Automata o CTL

@ Behaviour @ Formal syntax and semantics

@ Extensions of automata @ lllustration
@ Automata with variables @ Examples of CTL formulae

@ Synchronised product of automata e Symbolic model-checking
@ Synchronisation by message e Computation of state sets
passin . .. .
& @ Binary Decision Diagrams
© Model-checking Aut ¢ tati
. °
o CTL model-checking utomata representation

o LTL model-checking © Reachability Properties
@ Reachability in temporal logic

@ Computation of the reachability
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Automata

Outline

© Automata

@ Introductory notions
@ Automata
@ Execution and execution tree
@ Atomic properties
@ Formal definitions
@ Automata
@ Behaviour
@ Extensions of automata
@ Automata with variables
@ Synchronised product of automata
@ Synchronisation by message passing
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Automata Introductory notions

Automata

Intuitively, an automaton is a machine evolving from one state to another
under the action of transitions.

Laure Petrucci Advanced modelling techniques 5/95



Automata Introductory notions

Automata

Intuitively, an automaton is a machine evolving from one state to another
under the action of transitions.

Example: Digital clock

Laure Petrucci Advanced modelling techniques 5/95



Automata Introductory notions

Automata

Intuitively, an automaton is a machine evolving from one state to another
under the action of transitions.

Example: Digital clock

Laure Petrucci Advanced modelling techniques 5/95



Automata Introductory notions

Automata

Intuitively, an automaton is a machine evolving from one state to another
under the action of transitions.

Example: Digital clock

Laure Petrucci Advanced modelling techniques 5/95



Automata Introductory notions

Automata

Intuitively, an automaton is a machine evolving from one state to another
under the action of transitions.

Example: Digital clock

Laure Petrucci Advanced modelling techniques 5/95



Automata Introductory notions

Automata

Example: Modulo 3 counter

@ counts 0, 1, 2

@ initial value 0

@ allows operations increment and decrement
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Automata Introductory notions

Automata

Example: Digicode

@ 3keys A, B, C
@ code to open door ABA

o if the wrong key is pressed the whole operation has to start again
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Example: Digicode
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@ code to open door ABA

o if the wrong key is pressed the whole operation has to start again

B,C
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Laure Petrucci Advanced modelling techniques 7/ 95



Automata Introductory notions

Automata

Example: Digicode

@ 3keys A, B, C
@ code to open door ABA

o if the wrong key is pressed the whole operation has to start again

B,C

OamO=n0
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Automata Introductory notions

Automata

Example: Digicode

@ 3keys A, B, C
@ code to open door ABA

o if the wrong key is pressed the whole operation has to start again

Remark: The numbers in the states are the number of correct keys that
have already been pressed.
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Automata Introductory notions

Executions of a model

An execution is a sequence of
states describing a possible
evolution of the system.
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Automata Introductory notions

Executions of a model

— e 0123
An execution is a sequence of 001201
states describing a possible °
e 001123

evolution of the system.
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Automata Introductory notions

Executions of a model

e

An execution is a sequence of 001201
states describing a possible °
evolution of the system. e 001123 )

v

@ Which executions lead to
opening the door?

@ Is there a possible infinite
execution? |

Advanced modelling techniques
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Automata Introductory notions

Executions of a model

Execution

S 0123
An execution is a sequence of 001201
states describing a possible
evolution of the system. 001123 )

.
Questions

@ Which executions lead to
opening the door?

All those that end in state 3
For example 00000000... J

@ Is there a possible infinite
execution?

V.
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Automata Introductory notions

Execution tree

A tree to represent all possible executions
@ root: initial state of the automaton

@ children of a node: its immediate successors (states accessible from
the node in one step)
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Automata Introductory notions

Execution tree

A tree to represent all possible executions
@ root: initial state of the automaton

o children of a node: its immediate successors (states accessible from
the node in one step)

The digicode example

0
o . 0/ \1
0/ \1 o/%\’z

A B A
° C 0 /N ZIN /N I N
00101 20 10 1 20 3
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Automata Introductory notions

Exercise

Execution tree for the m
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Automata Introductory notions

Exercise

Execution tree for the modulo 3 counter
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Automata Introductory notions

Atomic properties

@ Atomic properties are elementary properties known to be true or false
@ some atomic properties can be associated with each state
@ used to define more complex properties
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Automata Introductory notions

Atomic properties

@ Atomic properties are elementary properties known to be true or false
@ some atomic properties can be associated with each state
@ used to define more complex properties

Associate properties with states

Digicode atomic properties

@ Pa: A has just been pressed
@ Pg: B has just been pressed
@ Pc: C has just been pressed

Prove the correct code was entered when the door opens

The door is open only in state 3. Its only predecessor is 2 and transition A
is used from state 2 to state 3. So A is the last key pressed.

The only predecessor of 2 is 1, and transition B was used.

State 1 has two possible predecessors: 0 and 1, and both used A.
Therefore, the code entered ends with ABA.
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Automata Formal definitions

Formal definition of automata

Let Prop be a set of atomic propositions. An automaton is a tuple
A=(Q,E, T,qo,!, F) such that:

Q is a finite set of states

E is a finite set of transition labels
T CQxE x Q@ is a set of transitions
qo is the initial state

I : Q@ —> 2ProP associates with each state a finite set of atomic
propositions

F is a set of final states
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Automata Formal definitions

Example

The digicode example

Laure Petrucci Advanced modelling techniques 13 / 95



Automata Formal definitions

Example

The digicode example

e @=1{0,1,2,3}
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Automata Formal definitions

Example

e @=1{0,1,2,3}
o E—{A B,C}

The digicode example
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Automata Formal definitions

Example

e @=1{0,1,2,3}
o E—{A B,C}

(1? Aa 1)7
(27A7 3)7

(
(

o T =1{(0,A,1),(0,

0
1
2

)

)

B
B
B

)

il

)

0)
2)
0)

The digicode example

,(0,C,0),
(1, €,0),
,(2,C,0)}
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Automata Formal definitions

Example

The digicode example

e @=1{0,1,2,3}

o E={AB,C}

o T =1{(0,A4,1),(0,B,0),(0,C,0),
(1,A,1),(1,B,2),(1,C,0),
(2,A,3),(2,B,0),(2,C,0)}

@ go=0
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Automata Formal definitions

Example

The digicode example

e @=1{0,1,2,3}

o E={AB,C}
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Automata Formal definitions

Example

The digicode example

e @=1{0,1,2,3}
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(1’ Aa 1)7 (17 B’ 2)’ (17 C’ O)a
(2,A,3),(2,B,0),(2,C,0)}

@ g=0

o Prop = {PA, PB, Pc}

1(0) =0, I(1) = {Pa},
I(2) = {Pg}, I(3) = {Pa}
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Automata Formal definitions

Example

The digicode example

e @=1{0,1,2,3}

o E={AB,C}

o T =1{(0,A4,1),(0,B,0),(0,C,0),
(1’ Aa 1)7 (17 B’ 2)’ (17 C’ O)a
(2,A,3),(2,B,0),(2,C,0)}

@ g=0

o Prop = {PA, PB, Pc}

1(0) =0, /(1) = {Pa},
I(2) = {Pg}, I(3) = {Pa}
F—(3)
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Automata Formal definitions

Exercise

Formal representation of the modulo 3 counter (no property)
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Automata Formal definitions

Exercise

Formal representation of the modulo 3 counter (no property)

e Q=1{0,1,2}

e E = {inc, dec}

o T ={(0,inc,1),(0, dec,?2),
(1,inc,?2), (1, dec,0),
(2, inc,0), (2, dec, 1),

qo =0

Prop = ()

1(0)=1(1)=1(2)=10

F=0
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Automata Formal definitions

Behaviour

Runs (or paths)

@ A run (or path) of an automaton A is a sequence o of successive
transitions (qj, e, g¢) of A, i.e. such that Vi, gi11 = ¢/
e & e
C=qr— G2 —> g3 —> G4...
@ The length of a run o is its number of transitions |o| € NU {w}
where w denotes infinity.

@ The /" state of & is the state gis+1 reached after i transitions.
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Behaviour

Runs (or paths)

@ A run (or path) of an automaton A is a sequence o of successive
transitions (qj, e, g¢) of A, i.e. such that Vi, gi11 = ¢/
e e e
C=qr— G2 —> g3 —> G4...
@ The length of a run o is its number of transitions |o| € NU {w}
where w denotes infinity.

@ The /" state of & is the state gis+1 reached after i transitions.

Executions

|

@ A partial execution of A is a run starting from the initial state qo.

@ A complete execution of A is an execution that is maximal. It is
either infinite or ends in a state where no transition is possible. This
state might be final (in F), or a deadlock.

@ A state is reachable if there exists an execution in which it appears.

@ The complete executions define the behaviour of the automaton.
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Automata Formal definitions

Exercise

Mutual exclusion between two processes

@ two processes execute and need access to the same resource

@ each process can request access to a critical section of its code
@ they must not execute this part at the same time

@ when they have finished they signal they exit their critical section and
loop back to their initial state

v

© Model this problem with an automaton

© Associate atomic properties with each state
© Is the mutual exclusion requirement satisfied?

Q Is the system fair?

© What would happen if you wanted to add a third process?

Laure Petrucci Advanced modelling techniques 16 / 95



Automata Formal definitions

Exercise
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Automata Formal definitions

Exercise

P;: Process i is requesting access,
C;: Process i is in its critical section,
R;: Process i is at rest.

Py: states 1, 3, 7; P>: states 2, 3, 6;
Ci: states 4, 6; Cy: states b, 7;

Rq: states 0, 2, 5; Ry: states 0, 1, 4
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P;: Process i is requesting access,
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Automata Formal definitions

Exercise

P;: Process i is requesting access,
C;: Process i is in its critical section,
R;: Process i is at rest.

Py: states 1, 3, 7; P>: states 2, 3, 6;
Ci: states 4, 6; Cy: states b, 7;

Rq: states 0, 2, 5; Ry: states 0, 1, 4
© Yes: no state has both ¢; and G

@ No: run 0137137.. . never allows
process 1 to enter its critical section

© The number of states would blow up
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Automata Extensions of automata

Extension with variables

Why and how to use variables?
@ more compact models, improving readability

@ guards and assignments on transitions
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var ctr: int;
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Automata Extensions of automata

Extension with variables

Why and how to use variables?
@ more compact models, improving readability

@ guards and assignments on transitions

Example: The digicode limited to 3 errors
var ctr: int;

ctri=ctr +1
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Automata Extensions of automata

Extension with variables

Why and how to use variables?

@ more compact models, improving readability

@ guards and assignments on transitions

Example: The digicode limited to 3 errors

var ctr: int;

ctr=3
B,.C
ctr:= ctr + 2

ctri=ctr +1
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@ guards and assignments on transitions
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Example: The digicode limited to 3 errors
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Automata Extensions of automata

Extension with variables

Exercise: The digicode with 3 errors with

v
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Automata Extensions of automata

Extension with variables

v
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Automata Extensions of automata

Synchronised product

@ each component of the system is designed as an automaton

@ composition of automata
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Automata Extensions of automata

Synchronised product

@ each component of the system is designed as an automaton

@ composition of automata

v

@ independent actions lead to a cartesian product of states

@ synchronised actions occur simultaneously
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Automata Extensions of automata

Synchronised product

3 counters, modulo 2, 3, 4: states

Laure Petrucci

Advanced modelling techniques

3 counters: transitions
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Automata Extensions of automata

Example: Synchronised counters

Modulo 2 counter Modulo 3 counter Modulo 4 counter
inc inc

inc,dec

inc,dec
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Automata Extensions of automata

Example: Synchronised counters

Modulo 2 counter Modulo 3 counter Modulo 4 counter
inc inc

inc,dec

inc,dec

Synchronised actions: all counters increment or decrement simultaneously

inc
@ @
[= N
o

a

T — T — e — S —
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Automata Extensions of automata

Example: Synchronised counters

Modulo 2 counter Modulo 3 counter Modulo 4 counter
inc inc

inc,dec

inc,dec

Synchronised actions: all counters increment or decrement simultaneously

T — T — e — S —
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Automata Extensions of automata

Formal definition of the cartesian product

Let (Ai)i<i<n be a family of automata A; = (Q;, Ei, Tj, qo;, li, Fi)-

Cartesian product of automata

The cartesian product A; X --- X A, of the automata in the family is the
automaton A = (Q, E, T, qo, !, F) such that :

0 Q=01 x - xQp
o E=[[;<;j<,(E;U{—}) (where — represents an empty action)
C

T = {((ql,...,q,,) )(qla--'7qn))|
V1</<n( :_/\q,_QI)\/(eI?é /\(qhel?ql)ET)}

® qo = (qo1;- -+ Gon)
¥(ans- s an) € Q: 1(@1: -+ 4n) = Urciey ()
F:{(Cha---,%) € Q|31 S[S n,q; € FI}
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Automata Extensions of automata

Formal definition of the synchronised product

Let (Ai)i<i<n be a family of automata A; = (Q;, Ei, Tj, qo;, li, Fi)-

Synchronisation set
The synchronisation set, denoted Sync describes all permitted
simultaneous actions:

synec I (Eu{-}

1<i<n
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Automata Extensions of automata

Formal definition of the synchronised product

Let (Aj)1<i<n be a family of automata A; = (Q;, E;, Tj, qo;. li, Fi).

Synchronisation set
The synchronisation set, denoted Sync describes all permitted
simultaneous actions:

synec I (Eu{-}

1<i<n

Synchronised product of automata

The synchronised product of (A;)1<i<n over a set Sync is the cartesian
product restricted to E = Sync.
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Automata Extensions of automata

Synchronisation by message passing

Message passing: a special case of synchronised product

Im send a message m

?m receive a message m

@ reception and sending occur simultaneously

4 they concern the same message
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Automata Extensions of automata

Synchronisation by message passing

Example: a small lift

Model of a lift in a 3 floors building, composed of:

the cabin which goes up and down according to the current floor and
the lift controller commands

3 doors (one per floor) which open and close according to the
controller's commands

a controller which operates the lift
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Example: the lift

Automata Extensions of automata

oller

Iclose,

Iclose;

lopen;
[=%
S

Icloseq
e

Advanced modelling techniques
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Automata Extensions of automata

Example: the lift

ller

Iclose,

?close; ?open;

7open;

—(& (x)
lopeng

?close; y

Properties

@ A door on a floor cannot open while the cabin is on a different floor

@ The cabin cannot move while one of the doors is open
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Automata Extensions of automata

Exercise

tual exclusion problem

© Model the mutual exclusion problem with message passing:

e one automaton per participating process (2 processes)
e a controller

@ How do you add a new process? Give the model for 3 processes, and
explain how to generalise it to n processes

v
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lend;
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Automata Extensions of automata
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© Model the mutual exclusion problem with message passing:

e one automaton per participating process (2 processes)
e a controller

@ How do you add a new process? Give the model for 3 processes, and
explain how to generalise it to n processes
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Automata Extensions of automata

Exercise

tual exclusion problem

© Model the mutual exclusion problem with message passing:
e one automaton per participating process (2 processes)

e a controller
@ How do you add a new process? Give the model for 3 processes, and

explain how to generalise it to n processes

process i, i € {1,2, } controller
!request,— enter; e @

lend;

?requests

@ n process automata

@ controller: n states occ )
4
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Temporal logic

Outline

© Temporal logic
@ Language
o LTL

@ Formal syntax and semantics
@ lllustration
@ Examples of LTL formulae

o CTL
@ Formal syntax and semantics
@ lllustration
@ Examples of CTL formulae
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Temporal logic Language

Introduction to temporal logics

@ express dynamic behaviour of the system
@ use formal syntax and semantics to avoid any ambiguity

@ capture statements and reasoning that involve the notion of order in
time
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Introduction to temporal logics

@ express dynamic behaviour of the system
@ use formal syntax and semantics to avoid any ambiguity

@ capture statements and reasoning that involve the notion of order in
time

The lift example

@ any request must ultimately be satisfied

@ the lift never traverses a floor for which a request is pending without
satisfying the request
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Temporal logic Language

Introduction to temporal logics

@ express dynamic behaviour of the system
@ use formal syntax and semantics to avoid any ambiguity

@ capture statements and reasoning that involve the notion of order in
time

The lift example

@ any request must ultimately be satisfied
False: The lift can continuously go up and down without opening
doors (run (atO,CO,Cl,C2,O)u—p>(at1,Co,C1,C2,1)u—p>
(at2,C0,C1,C2,2)‘m—wg(at1,Co,C1,C2,1). .. )

@ the lift never traverses a floor for which a request is pending without
satisfying the request
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Temporal logic Language

Introduction to temporal logics

@ express dynamic behaviour of the system
@ use formal syntax and semantics to avoid any ambiguity

@ capture statements and reasoning that involve the notion of order in
time

The lift example

@ any request must ultimately be satisfied
False: The lift can continuously go up and down without opening
doors (run (atO,CO,Cl,C2,O)u—p>(at1,Co,C1,C2,1)u—p>
(at2,C0,C1,C2,2)‘m—wg(at1,Co,C1,C2,1). .. )

@ the lift never traverses a floor for which a request is pending without
satisfying the request
False: consequence of the previous property
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Temporal logic Language

The language CTL*

@ atomic propositions
@ boolean combinators:
e true, false
- (negation)
A (and), V (or)
= (logical implication), <= (if and only if)

@ temporal combinators:

o X (neXt), F (Future), G (Globally)
o U (Until), W (Weak until)

e quantifiers: A (Always), E (Exists)
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Temporal logic Language

The language CTL*

@ atomic propositions
@ boolean combinators:
e true, false
- (negation)
A (and), V (or)
= (logical implication), <= (if and only if)

@ temporal combinators:

o X (neXt), F (Future), G (Globally)
o U (Until), W (Weak until)

e quantifiers: A (Always), E (Exists)

Main temporal logics

LTL Linear-time Temporal Logic
CTL Computation Tree Logic
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Temporal logic LTL

LTL: Linear-time Temporal Logic
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Temporal logic LTL

Semantics of LTL

Let o be a run and p € Prop an atomic proposition.
o, = ¢ denotes that at time / of its execution, o satisfies formula ¢.

o,iE=p iff pel(o(i))

o,i |E ¢ iff o,ifE¢

o, iEoNY iff oiE¢ando,ikE=1y

o,i = Xo iff i<|o|ando,i+1FE¢

o,i=Fp iff Jj,i<j<|o|l:0jE¢

oiEGs i Vji<j<lol:iojlEo

o iEeUy iff Jj,i<j<|o|:o,jEvandVk,i<k<j:oklEao
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Temporal logic LTL

[llustration of the LTL semantics

°p &0 O O O——O0——0 -~ >
P it

° Xo O—® O O O—>O0——>0O---->
i J

o Fo O—0 o e & >O0— 0 --->
)

° Go o——0 ® ® oo -~
i j
oo ® ® OO0 -~ >

o p1Ugn ° 5 o o RN
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Temporal logic LTL

Examples of LTL formulae

@ What do the following formulae mean?

@ Which runs satisfy the LTL property?

Modulo 3 counter

Q@ XXX0

Q@ F(1v2)

QO F1

Laure Petrucci Advanced modelling techniques 35 /95



Temporal logic LTL

Examples of LTL formulae

@ What do the following formulae mean?

@ Which runs satisfy the LTL property?

Modulo 3 counter
@ XXXO0
The third state reached is 0

Q@ F(1v2)

QO F1
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Temporal logic LTL

Examples of LTL formulae

@ What do the following formulae mean?
@ Which runs satisfy the LTL property?

Q@ XXX0
The third state reached is 0
All runs starting with 0120 or 0210

Q@ F(1v2)

QO F1
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Temporal logic LTL

Examples of LTL formulae

@ What do the following formulae mean?
@ Which runs satisfy the LTL property?

Q@ XXX0
The third state reached is 0
All runs starting with 0120 or 0210
Q@ F(1v2)
In the future state 1 or state 2 will be reached

QO F1
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Temporal logic LTL

Examples of LTL formulae

@ What do the following formulae mean?
@ Which runs satisfy the LTL property?

Q@ XXX0
The third state reached is 0
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Q@ F(1v2)
In the future state 1 or state 2 will be reached
All runs

QO F1
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Temporal logic LTL

Examples of LTL formulae

@ What do the following formulae mean?
@ Which runs satisfy the LTL property?

Modulo 3 counter

@ XXXO0
The third state reached is 0
All runs starting with 0120 or 0210

Q@ F(1v2)
In the future state 1 or state 2 will be reached
All runs

Q F1

In the future state 1 will be reached
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Temporal logic LTL

Examples of LTL formulae

@ What do the following formulae mean?
@ Which runs satisfy the LTL property?

Q@ XXX0
The third state reached is 0
All runs starting with 0120 or 0210
Q@ F(1v2)
In the future state 1 or state 2 will be reached
All runs

Q Fl1
In the future state 1 will be reached
All runs containing 1, i.e. all runs except 020202. ..
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Temporal logic LTL

Examples of LTL formulae

@ What do the following formulae mean?

@ Which runs satisfy the LTL property?

The digicode

Q F3

Q@ G-3
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Temporal logic LTL

Examples of LTL formulae

@ What do the following formulae mean?

@ Which runs satisfy the LTL property?

The digicode
Q F3

The door can open

Q@ G-3
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Temporal logic LTL

Examples of LTL formulae

@ What do the following formulae mean?
@ Which runs satisfy the LTL property?

The digicode

O F3
The door can open
All runs ending in state 3

Q@ G-3
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Temporal logic LTL

Examples of LTL formulae

@ What do the following formulae mean?
@ Which runs satisfy the LTL property?

The digicode

O F3

The door can open

All runs ending in state 3
Q@ G-3

The door never opens
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Temporal logic LTL

Examples of LTL formulae

@ What do the following formulae mean?
@ Which runs satisfy the LTL property?

The digicode

Q F3
The door can open
All runs ending in state 3
Q@ G-3
The door never opens
All runs not ending in state 3
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Temporal logic LTL

Exercises

Express V, =, <, W with -, A, X, F, G, U

(W is similar to U but 1) may never happen)
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Temporal logic LTL

Exercises

(W is similar to U but 1) may never happen)
° ¢V =(pA1)
oo = YP=-9VY
° ¢ = Y=(9VY)A(pV )
o oWy = (¢Uy) V Go
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Temporal logic LTL

Exercises

Prove that:

Q F¢ = truelo

@ Gop=—F¢
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Temporal logic LTL

Exercises

Q F¢ = truelo
truelo = 3j,i<j<|o|:0,jE oAk, i< k<j:o0k | true
=Jj,i<j<|ol:0jF¢
= Fo¢

@ Gop=—F¢

Laure Petrucci Advanced modelling techniques 38 /95



Temporal logic LTL

Exercises

Prove that:

Q F¢ = truelo
truelo = 3j,i<j<|o|:0,jE oAk, i< k<j:o0k | true
=Jj,i<j<|ol:0jF¢
= Fo¢
Q Gop=-F-¢
—Fo¢ = ~(3j,i <j <ol :0,j E —¢)

Vj,i <j<|o|:o,jlE—e)
Vj,i<j<|o|:0,jE¢)
Go
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Temporal logic LTL

Exercises

Digicode
@ Write a LTL formula satisfied by all runs where keys A and B have
successively been pressed

@ Write a LTL formula that characterises the infinite loop on state 0

© Same question using atomic propositions Pa, Pg, Pc

Laure Petrucci Advanced modelling techniques
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Temporal logic LTL

Exercises

Digicode

@ Write a LTL formula satisfied by all runs where keys A and B have
successively been pressed
F(PA = XPB)

@ Write a LTL formula that characterises the infinite loop on state 0

© Same question using atomic propositions Pa, Pg, Pc
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Temporal logic LTL

Exercises

Digicode

@ Write a LTL formula satisfied by all runs where keys A and B have
successively been pressed
F(PA = XPB)

@ Write a LTL formula that characterises the infinite loop on state 0
GO

© Same question using atomic propositions Pa, Pg, Pc
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Temporal logic LTL

Exercises

@ Write a LTL formula satisfied by all runs where keys A and B have
successively been pressed
F(PA — XPB)

@ Write a LTL formula that characterises the infinite loop on state 0
GO

© Same question using atomic propositions Pa, Pg, Pc
G—P4
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Temporal logic LTL

Exercises

Mutual exclusion between two processes (synchronised product)

Write an LTL formula satisfied by all runs where:

© The two processes are not simultaneously in their critical section

@ Whenever process 1 requests to enter its critical section, it will
eventually succeed
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Temporal logic LTL

Exercises

Mutual exclusion between two processes (synchronised product)

Write an LTL formula satisfied by all runs where:

© The two processes are not simultaneously in their critical section
G—(cs1 A csp)

@ Whenever process 1 requests to enter its critical section, it will
eventually succeed
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Temporal logic LTL

Exercises

Mutual exclusion between two processes (synchronised product)

Write an LTL formula satisfied by all runs where:
© The two processes are not simultaneously in their critical section
G—(cs1 A csp)

@ Whenever process 1 requests to enter its critical section, it will
eventually succeed
G(req; = Fcs1)
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Temporal logic CTL

CTL: Computation Tree Logic
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Temporal logic CTL

Semantics of CTL

Same as LTL plus:

o,i =E¢ iff 3o’ :0(0)...0(i) =0'(0)...0'(i) and &', i |= ¢
o,i =A¢ iff Vo' :0(0)...0(i) =0'(0)...0'(i) we have o’,i = ¢

In CTL, each use of a temporal operator (X, F, G, U) is in the immediate
scope of a quantifier (E, A)
This restriction does not apply in CTL*
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Temporal logic CTL

lllustration of the CTL semantics (1/8)

EX¢
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Temporal logic CTL

lllustration of the CTL semantics (2/8)

EGo
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Temporal logic CTL

lllustration of the CTL semantics (3/8)

EsUys
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Temporal logic CTL

lllustration of the CTL semantics (4/8)

EFo
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Temporal logic CTL

lllustration of the CTL semantics (5/8)

AX¢
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Temporal logic CTL

lllustration of the CTL semantics (6/8)

AGo
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Temporal logic CTL

lllustration of the CTL semantics (7/8)

AFo
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Temporal logic CTL

lllustration of the CTL semantics (8/8)

ApUy
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Temporal logic CTL

Examples of CTL formulae

Explain the following CTL formulae, and if they are true or false:

Mutual exclusion between 2 processes (synchronised product)
O AG—(cs1 A cs2)

@ AG(req; = AFcsy)

© AG(EF(idley A idles))

v
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Temporal logic CTL

Examples of CTL formulae

Explain the following CTL formulae, and if they are true or false:

Mutual exclusion between 2 processes (synchronised product)

O AG—(cs1 A cs2)
Whatever happens, the two processes cannot be simultaneously in
their critical section

true

@ AG(req; = AFcsy)

© AG(EF(idley A idles))

v
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Temporal logic CTL

Examples of CTL formulae

Explain the following CTL formulae, and if they are true or false:

Mutual exclusion between 2 processes (synchronised product)

O AG—(cs1 A cs2)
Whatever happens, the two processes cannot be simultaneously in
their critical section

true

@ AG(req; = AFcsy)
It is always the case that when process 1 requests access to its critical
section, it will eventually be granted
false

© AG(EF(idley A idle;))

v
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Temporal logic CTL

Examples of CTL formulae

Explain the following CTL formulae, and if they are true or false:

Mutual exclusion between 2 processes (synchronised product)

O AG—(cs1 A cs2)
Whatever happens, the two processes cannot be simultaneously in
their critical section
true

@ AG(req; = AFcsy)
It is always the case that when process 1 requests access to its critical
section, it will eventually be granted
false

@ AG(EF(idle1 A idles))
Whatever the state of the system, it is possible to have both
processes idle in the future.

true

v
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Temporal logic CTL

Exercises

Prove that:

©Q EF¢ = EtrueU¢

@ AXo = —~EX—¢

@ AG¢ = —(EtrueU—¢)

O AFp = —-EG—¢
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Temporal logic CTL

Exercises

Prove that:

O EF¢ = EtrueUo
We already proved that F¢ = trueU¢. Hence: EF¢ = E(truelUo¢)

@ AX6 = —-EX—¢

@ AG¢ = —(EtrueU—¢)

Q AFp = —-EG—¢
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Temporal logic CTL

Exercises

Prove that:

O EF¢ = EtrueUo
We already proved that F¢ = trueU¢. Hence: EF¢ = E(truelUo¢)

@ AX6 = —-EX—¢

—EX-¢ = —(30’ : 0(0)...0(i

-
~—

=0'(0)...0'(I) Ao, i | X—¢)
Vo' :(0)...0(i) =6'(0)...0'(i) we have o', i [ X—¢
Vo' :0(0)...0(i) = 0’(0)...0'(i) we have o/, i = X¢
AX)

@ AG¢ = —(EtrueU—¢)

Q AFp = —-EG—¢
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Temporal logic CTL

Exercises

Prove that:

O EF¢ = EtrueUo
We already proved that F¢ = trueU¢. Hence: EF¢ = E(truelUo¢)

@ AX6 = —-EX—¢

—EX-¢ = —(30’ : 0(0)...0(i

-
~—

=0'(0)...0'(I) Ao, i | X—¢)
Vo' :0(0)...0(i) = 0’(0)...0'(i) we have o', i [= X—¢
Vo' :0(0)...0(i) = 0’(0)...0'(i) we have o/, i = X¢
AXop
@ AG¢ = —(EtrueU—¢)
We know that EF¢ = EtrueU¢ and G¢p = —=F—¢. Hence:

—(EtrueU—¢) = —EF-¢
A—F—¢
AG¢

Q AFp = —-EG—¢
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Temporal logic CTL

Exercises

Prove that:

O EF¢ = EtrueUo
We already proved that F¢ = trueU¢. Hence: EF¢ = E(truelUo¢)

@ AX6 = —-EX—¢

—EX-¢ = —(30’ : 0(0)...0(i

-
~—

=0'(0)...0'(I) Ao, i | X—¢)
Vo' :0(0)...0(i) = 0’(0)...0'(i) we have o', i [= X—¢
Vo' :0(0)...0(i) = 0’(0)...0'(i) we have o/, i = X¢
AXop
@ AG¢ = —(EtrueU—¢)
We know that EF¢ = EtrueU¢ and G¢p = —=F—¢. Hence:

—(EtrueU—¢) = —EF-¢
A—F—¢
AG¢

O AF$ = —EG—¢
—~EG—¢ = A-G—¢
= AF$
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Temporal logic CTL

LTL and CTL do not recognise the same behaviours

Runs for both automata: Ay = AX(EXQ A EX-Q)
o {P,Q} {P} {-} Ay = AX(EXQ A EX-Q)

o {P.Q} {P} {Q}
Vo: A= ¢ = A= o
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Model-checking

Outline

© Model-checking
o CTL model-checking
@ LTL model-checking
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Model-checking CTL model-checking

CTL model-checking algorithm

@ algorithm marking states where a formula is satisfied
@ memorises the already computed results

@ reuses the computed results of sub-formulae to compute new formulae
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Model-checking CTL model-checking

CTL model-checking algorithm

Procedure marking(¢)

case ¢ = p do
forall g € Q do
if p € I(q) then

| q.¢:=true
else
| q.¢:=false
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Model-checking CTL model-checking

CTL model-checking algorithm

Procedure marking(¢)

case ¢ = p do
forall g € Q do
if p € I(q) then

| q.¢:=true
else
| q.¢:=false
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Model-checking CTL model-checking

marking(1);
forall g € Q do
L 9.¢:=—q.9
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Model-checking CTL model-checking

marking(1);
forall g € Q do
L 9.¢:=—q.9
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Model-checking CTL model-checking

marking(1);
forall g € Q do
L 9.¢:=—q.9
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Model-checking CTL model-checking

Case 3: ¢ =1 ANy

marking(12);

marking(12);
forall g € Q do

L 9.9:=q.91Aq.92
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Model-checking CTL model-checking

Case 3: ¢ =1 ANy

¢ = reqq N reqs

marking(12);

marking(12);
forall g € Q do

L 9.9:=q.91Aq.92
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Model-checking CTL model-checking

Case 3: ¢ =1 ANy

¢ = req; A req,

marking(12);

marking(12);
forall g € Q do

L 9.9:=q.91Aq.92
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Model-checking CTL model-checking

Case 3: ¢ =1 ANy

¢ = req; A req,

marking(12);

marking(12);
forall g € Q do

L 9.9:=q.91Aq.92
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Model-checking CTL model-checking

Case 4: ¢ = EX¢

marking(v));
forall g € Q do

| q.¢:=false

forall (g,_,q¢') € T do
if q".¢p=true then
| g.¢:=true
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Model-checking CTL model-checking

Case 4: ¢ = EX¢
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Model-checking CTL model-checking

Case 4: ¢ = EX¢

marking(v));
forall g € Q do

| q.¢:=false

forall (g,_,q¢') € T do
if q".¢p=true then
| g.¢:=true
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Model-checking CTL model-checking

Case 4: ¢ = EX¢

marking(v));
forall g € Q do

| q.¢:=false

forall (g,_,q¢') € T do
if q".¢p=true then
| g.¢:=true
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Model-checking CTL model-checking

Case 5: ¢ = Ey1Uyy

marking(v1);
marking(v»);

forall g € Q do ¢ = EreqUcs;

q.¢p:=false;

| q.seenbefore:=false
L:=0;

forall g € Q do

if q.19,=true then

| L b=tu{a}

while L#£ () do
pick g from L; L:=L\{q};
q.p:=true;
forall (¢',_,q) € T do o
if q'.seenbefore=false then °
q'.seenbefore:=true;
if q'.1p1=true then
L L=Lu{q'}

e“d\’

seenbefore L
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Model-checking CTL model-checking

Case 5: ¢ = Ey1Uyy

marking(v1);

marking(v»);

q.¢p:=false;

| q.seenbefore:=false

L:=0;

forall g € Q do

if q.19,=true then
[ Li=Lu{q}

while L#£ () do
pick g from L; L:=L\{q};
q.p:=true;
forall (¢',_,q) € T do
if q'.seenbefore=false then
q'.seenbefore:=true;
if q'.1p1=true then
L L=Lu{q'}

seenbefore L
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Model-checking CTL model-checking

Case 5: ¢ = Ey1Uyy

marking(v1);

marking(v»);

q.¢p:=false;

| q.seenbefore:=false

L:=0;

forall g € Q do

if q.19,=true then
[ Li=Lu{q}

while L#£ () do
pick g from L; L:=L\{q};
q.p:=true;
forall (¢',_,q) € T do
if q'.seenbefore=false then
q'.seenbefore:=true;
if q'.1p1=true then
L L=Lu{q'}

seenbefore L
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Model-checking CTL model-checking

Case 5: ¢ = Ey1Uy,

marking(v1);

marking(v»);

q.¢p:=false;

| q.seenbefore:=false

L:=0;

forall g € Q do

if q.19,=true then
[ Li=Lu{q}

while L#£ () do
pick g from L; L:=L\{q};
q.p:=true;
forall (¢',_,q) € T do
if q'.seenbefore=false then

q'.seenbefore:=true;
if q'.¢1=true then seenbefore L

| L=LU{q} 0
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Model-checking CTL model-checking

Case 5: ¢ = Ey1Uy,

marking(v1);

marking(v»);

q.¢p:=false;

| q.seenbefore:=false

L:=0;

forall g € Q do

if q.19,=true then
[ Li=Lu{q}

while L#£ () do
pick g from L; L:=L\{q};
q.p:=true;
forall (¢',_,q) € T do
if q'.seenbefore=false then

q'.seenbefore:=true;
if q'.¢1=true then seenbefore L

| L:=Lu{q'} U] {4.6}
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Model-checking CTL model-checking

Case 5: ¢ = Ey1Uy,

marking(v1);

marking(v»);

q.¢p:=false;

| q.seenbefore:=false

L:=0;

forall g € Q do

if q.19,=true then
[ Li=Lu{q}

while L#£ () do
pick g from L; L:=L\{q};
q.p:=true;
forall (¢',_,q) € T do
if q'.seenbefore=false then

q'.seenbefore:=true;
if q'.¢1=true then seenbefore L

RS [ {6}
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Model-checking CTL model-checking

Case 5: ¢ = Ey1Uy,

marking(v1);

marking(v»);

q.¢p:=false;

| q.seenbefore:=false

L:=0;

forall g € Q do

if q.19,=true then
[ Li=Lu{q}

while L#£ () do
pick g from L; L:=L\{q};
q.p:=true;
forall (¢',_,q) € T do
if q'.seenbefore=false then

q'.seenbefore:=true;
if q'.¢1=true then seenbefore L

L L=lu{a} {1} {1.6}
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Model-checking CTL model-checking

Case 5: ¢ = Ey1Uy,

marking(v1);

marking(v»);

q.¢p:=false;

| q.seenbefore:=false

L:=0;

forall g € Q do

if q.19,=true then
[ Li=Lu{q}

while L#£ () do
pick g from L; L:=L\{q};
q.p:=true;
forall (¢',_,q) € T do
if q'.seenbefore=false then

q'.seenbefore:=true;
if q'.¢1=true then seenbefore L

L L=lu{a} {1} {6}
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Model-checking CTL model-checking

Case 5: ¢ = Ey1Uy,

marking(v1);

marking(v»);

q.¢p:=false;

| q.seenbefore:=false

L:=0;

forall g € Q do

if q.19,=true then
[ Li=Lu{q}

while L#£ () do
pick g from L; L:=L\{q};
q.p:=true;
forall (¢',_,q) € T do
if q'.seenbefore=false then

q'.seenbefore:=true;
if q'.¢1=true then seenbefore L

L L=lu{a} {0.1} {6}
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Model-checking CTL model-checking

Case 5: ¢ = Ey1Uy,

marking(v1);

marking(v»);

q.¢p:=false;

| q.seenbefore:=false

L:=0;

forall g € Q do

if q.19,=true then
[ Li=Lu{q}

while L#£ () do
pick g from L; L:=L\{q};
q.p:=true;
forall (¢',_,q) € T do
if q'.seenbefore=false then

q'.seenbefore:=true;
if q'.¢1=true then seenbefore L

| L=Lu{q'} {0,1,7} {6,7}
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Model-checking CTL model-checking

Case 5: ¢ = Ey1Uy,

marking(v1);

marking(v»);

q.¢p:=false;

| q.seenbefore:=false

L:=0;

forall g € Q do

if q.19,=true then
[ Li=Lu{q}

while L#£ () do
pick g from L; L:=L\{q};
q.p:=true;
forall (¢',_,q) € T do
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Case 6: ¢ = AyY1Ue),
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forall g € Q do
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L LeLu {a'}
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Model-checking CTL model-checking

Exercises

Check AG(EF(idley A idle,))
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Model-checking CTL model-checking

Exercise

marking(v1);

marking()

forall g € Q do
q.nb:=degree(q);
| q.¢:=false

forall g € Q do

if g.¢¥»=true then

| L L=tu{a}

while L# 0 do
pick q from L; L:=L\{q};
q.¢:=true;
forall (¢',_,q) € T do
q'.nb:=q’.nb - 1;
if q'.nb=0 and q'.¢)1=true
and q'.¢p=false then
L LeLu {a'}

nb
01234567
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forall (¢',_,q) € T do
q'.nb:=q’.nb - 1;
if q'.nb=0 and q'.¢)1=true
and q'.¢p=false then
L LeLu {a'}

nb
01234567

22112111
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Model-checking LTL model-checking

LTL model-checking

Algorithm working on path formulae

Principle for checking if A = ¢

© construct automaton - recognising all executions not satisfying ¢
@ construct the synchronised product A ® B-
@ if its recognised language is empty, then A | ¢
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Model-checking LTL model-checking

Example

o for ¢ = G(P = XFQ)
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Model-checking LTL model-checking

Example

B4 for ¢ = G(P = XFQ)

A® B-g
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Model-checking LTL model-checking

Exercise
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Model-checking LTL model-checking

Exercise

B for ¢ = G~(cs1 / cs2)

—¢p = =G—(cs1 A cs2)
= —\(—\F—|(CS]_ N C52))
= F(Csl A\ CS2)
= truel(cs1 A cs7)
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Model-checking LTL model-checking

Exercise

for ¢ = G—(cs1 A cs2)

= —G—(cs1 A cs2)
= —\(—\F—|(CS]_ N C52))
= F(Csl A\ CS2)

= truel(cs1 A cs7)

cs1, ¢S Sl &
-
b 2 uy: CS1,CS2 —CS1, CSY)
up: TCs1,Cs2 up:
—cs1, €52
—Cs1, €S2
€S, €S2,

4
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Model-checking LTL model-checking

Exercise

B for ¢ = G~(cs1 / cs2)

—¢p = =G—(cs1 A cs2)
= —\(—\F—\(csl N C52))
= F(cs1 A cs2)
= truel(cs1 A cs7)

cs1, ¢S Sl &
-
b 2 uy: CS1,CS2 —CS1, CSY)
up: TCs1,Cs2 up:
—cs1, €52
—Cs1, €S2
€S, €S2,

4

All transitions of A synchronise with wug.
So there is no accepting state and the formula is true.
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Symbolic model-checking

Outline

@ Symbolic model-checking
@ Computation of state sets
@ Binary Decision Diagrams
@ Automata representation
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Symbolic model-checking

Motivation for symbolic approaches

@ state space explosion problem

e main obstacle with model-checking algorithms
e because of the necessity to construct the state space

@ represent symbolically states and transitions

@ it aims at representing concisely large sets of states
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Symbolic model-checking Computation of state sets

Symbolic computation of state sets

Let A=(Q,E, T,qo,/,F) be an automaton, and S C @ a set of its
states. Let ¢ be a CTL formula.

o Pre(S)={qe€ Q| (q,-,4") € TAG € S} is the set of immediate
predecessors of states in S

e Sat(p) = {qg € Q| g = ¢} is the set of states of the automaton
satisfying formula ¢

o Pre*(S) is the set of predecessors of states in S, whatever the
number of steps
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Symbolic model-checking Computation of state sets

Computing Sat(¢)

Sat(—¢) = Q\ Sat(¢)

Sat(yr A o) = Sat(yr) N Sat(y2)
Sat(EX¢) = Pre(Sat(¢))
Sat(AX¢) = Q\ Pre(Q \ Sat(¢))
Sat(EF¢) = Pre*(Sat(¢))
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Symbolic model-checking Computation of state sets

Symbolic features

@ symbolic representations of the state sets

@ functions to manipulate these symbolic representations
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Symbolic model-checking Computation of state sets

Symbolic features

@ symbolic representations of the state sets

@ functions to manipulate these symbolic representations

Example

@ suppose the automaton has 2 integer variables a, b € {0,...,255}
@ each state is a triple (g, va, v5) where v, and v}, are values for a and b
o the set of reachable states can contain |Q| x 256 x 256 states (huge!)

@ a possible symbolic representation could be (g2, 3, ) for all states in
g2 with a = 3 and any value for b
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Symbolic model-checking Computation of state sets

Requirements for symbolic model-checking

@ symbolic representation of Sat(p) for each proposition p € Prop

@ algorithm to compute a symbolic representation of Pre(S) from a
symbolic representation of S

© algorithms to compute the complement, union and intersection of
symbolic representations of the sets

@ algorithm to compare symbolic representations of sets
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Symbolic model-checking Binary Decision Diagrams

Binary Decision Diagrams

@ data structure commonly used for the symbolic representation of state
sets

o Efficiency: cheap basic operations, compact data structure

@ Simplicity: data structure and associated algorithms simple to
describe and implement

@ Easy adaptation: appropriate for problems dealing with loosely
correlated data

@ Generality: not tied to a particular family of automata
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Symbolic model-checking Binary Decision Diagrams

BDD structure

n boolean variables x1, ..., X,

@ suppose n = 4. (by, by, b3, ba) associates values with x1, ..., xs
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Symbolic model-checking Binary Decision Diagrams

BDD structure

n boolean variables x1, ..., X,
@ suppose n = 4. (by, by, b3, ba) associates values with x1, ..., xs
o Let us represent S = {(b1, bo, b3, ba) | (b1 V b3) A (b = ba)}
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Symbolic model-checking Binary Decision Diagrams

BDD structure

n boolean variables x1, ..., X,
@ suppose n = 4. (by, by, b3, ba) associates values with x1, ..., xs
o Let us represent S = {(b1, bo, b3, ba) | (b1 V b3) A (b = ba)}
@ Possible representations:

S={ (F,F, T,F),(F,.F, T, T),(F, T, T, T),
o |S|=09: (T,F,F,F),(T,F,F, T),(T,F,T,F),
(T,F, T, T), (T, T,F, T),(T, T, T, T)}
o the formula itself: (by V b3) A (b = bs)

o the formula in disjunctive normal form:
(b1 A =b2) V (b1 A by) V (b3 A —bo) V (b3 A by)
o a decision tree
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Symbolic model-checking Binary Decision Diagrams

Representation with a decision tree

(by V b3) A (by => by)
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Symbolic model-checking Binary Decision Diagrams

BDD: a reduced decision tree

e identical subtrees are shared ~~ directed acyclic graph (dag)
e internal superfluous nodes are deleted (where no choice is possible)

(b1 V B3) A (by = ba)

Laure Petrucci Advanced modelling techniques 76 / 95



Symbolic model-checking Binary Decision Diagrams

BDD: a reduced decision tree

e identical subtrees are shared ~~ directed acyclic graph (dag)
e internal superfluous nodes are deleted (where no choice is possible)

(b1 V B3) A (by = ba)

F
[F] [¢] [7) (7] [e) [€] [F] o] (7] [7) (7] [7) [F) o) () [7]
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Symbolic model-checking Binary Decision Diagrams

BDD: a reduced decision tree

e identical subtrees are shared ~~ directed acyclic graph (dag)
e internal superfluous nodes are deleted (where no choice is possible)

(b1 V B3) A (by = ba)

v
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Symbolic model-checking Binary Decision Diagrams

Testing whether a tuple belongs to the set

Are <T,F,T7F>, <F7F«T,F> in S?
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Symbolic model-checking Binary Decision Diagrams

Exercise

BDD for =((b1 A (b2 V ba) A bs) V =b3) V (ba = (b3 A bs))
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Exercise

BDD for =((b1 A (b2 V ba) A bs) V =b3) V (ba = (b3 A bs))
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Symbolic model-checking Binary Decision Diagrams

Exercise

BDD for ﬁ((bl VAN (b2 \ b4) AN b5) V —|b3) V (b4 = (b3 VAN b5)) with
ordering bz, bs, bs, b1, by
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Symbolic model-checking Binary Decision Diagrams

Exercise

BDD for ﬁ((bl VAN (b2 \ b4) AN b5) V —|b3) V (b4 = (b3 VAN b5)) with

ordering bz, bs, bs, b1, by
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Symbolic model-checking Binary Decision Diagrams

Advantages of BDDs

@ small representations
@ existence of a canonical BDD structure :

e unicity for a fixed order of the variables
e test the equivalence of two symbolic representations

test the emptyness

simple operations: complement, union, intersection, projection
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Advantages of BDDs

@ small representations
@ existence of a canonical BDD structure :

e unicity for a fixed order of the variables
e test the equivalence of two symbolic representations

Identical canonical BDDs )

o test the emptyness

e simple operations: complement, union, intersection, projection
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Symbolic model-checking Binary Decision Diagrams

Advantages of BDDs

@ small representations
@ existence of a canonical BDD structure :

e unicity for a fixed order of the variables
e test the equivalence of two symbolic representations

Identical canonical BDDs )

o test the emptyness

Reduced to the F leaf )

e simple operations: complement, union, intersection, projection
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Symbolic model-checking Binary Decision Diagrams

Exercise

Complement
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Symbolic model-checking Binary Decision Diagrams

Exercise
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Exercise
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Symbolic model-checking Binary Decision Diagrams

Exercise

Intersection
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Symbolic model-checking Binary Decision Diagrams

Exercise

Intersectio
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Symbolic model-checking Binary Decision Diagrams

Exercise

ction S[bs
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Symbolic model-checking Binary Decision Diagrams

Exercise
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Symbolic model-checking Automata representation

Representing automata by BDDs

Encoding of states
@ boolean encoding of states

@ boolean encoding of each individual variable

Let us consider an automaton with:
° Q:{q07"'7q6}
@ an integer variable digit € {0,...,9}
@ a boolean variable ready

It can be encoded with 8 bits. For example, (g3, 8, F) is represented by:
g3 8

——
(F, T, T,T,F,F,F.F)
bl b2 b3 bl b2 b3 b} b}
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Symbolic model-checking Automata representation

Representing a set of states

Sat(ready = (digit > 2))

v
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Symbolic model-checking Automata representation

Representing a set of states

Sat(ready = (digit > 2))

v
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Symbolic model-checking Automata representation

Representing a transition

Transition seen as a pair of states

(g3,8,F) — (q5,0 F) is represented by
g3 gs

f—'hf—/% /—/A/—’—
(F,T,7.T,F,F,F,F, T,F, T, F,F, F, F, F)
bl b2 b3 bl b2 b3 b4 bl b/l b/2 b/3 b/l b/2 b/3 b/4 b/l
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Reachability Properties

Outline

© Reachability Properties
@ Reachability in temporal logic
@ Computation of the reachability graph
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Reachability Properties

Reachability properties

How to characterise reachability properties?

A reachability property states that some particular situation can be
reached.

It may:
@ be simple

@ be conditional: restrict the form of paths reaching the state

@ apply to any reachable state

Often, the negation of reachability is the interesting property.
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Reachability Properties

Reachability properties

we can obtain n < 0

we can enter the critical section

we cannot have n < 0

we cannot reach the crash state

we can enter the critical section without traversing n =0
we can always return to the initial state

we can return to the initial state
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we can enter the critical section (simple)

we cannot have n < 0 (negation)
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Reachability Properties

Reachability properties

@ we can obtain n < 0 (simple)

we can enter the critical section (simple)

we cannot have n < 0 (negation)

we cannot reach the crash state (negation)

we can enter the critical section without traversing n = 0 (conditional)
we can always return to the initial state (any reachable state)

we can return to the initial state (simple)
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Reachability Properties Reachability in temporal logic

Reachability in temporal logic

Form of formulae in CTL
@ use the EF combinator: EF¢

@ ¢ is a propositional formula without temporal combinators
e E U_ for conditional reachability
o

nesting AG and EF when considering any reachable state
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Reachability Properties Reachability in temporal logic

Reachability in temporal logic

@ we can obtain n < 0:

we can enter the critical section:
we cannot have n < 0:

we cannot reach the crash state:

we can enter the critical section without traversing n = 0:

we can always return to the initial state:

@ we can return to the initial state:
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Reachability Properties Reachability in temporal logic

Reachability in temporal logic

@ we can obtain n < 0: EF(n < 0)

we can enter the critical section:
we cannot have n < 0:

we cannot reach the crash state:

we can enter the critical section without traversing n = 0:

we can always return to the initial state:

@ we can return to the initial state:
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Reachability in temporal logic

@ we can obtain n < 0: EF(n < 0)

we can enter the critical section: EFcs
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we cannot reach the crash state:
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@ we can return to the initial state:
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Reachability Properties Reachability in temporal logic

Reachability in temporal logic

we

we

we

we

we

we

we

can obtain n < 0: EF(n < 0)

can enter the critical section: EFcs

cannot have n < 0: =EF(n < 0) = AG(n > 0)
cannot reach the crash state:

can enter the critical section without traversing n = 0:

can always return to the initial state:

can return to the initial state:
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can obtain n < 0: EF(n < 0)

can enter the critical section: EFcs

cannot have n < 0: =EF(n < 0) = AG(n > 0)
cannot reach the crash state: =EFcrash = AG—crash

can enter the critical section without traversing n = 0:

can always return to the initial state:

can return to the initial state:
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Reachability in temporal logic
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Reachability Properties Reachability in temporal logic

Reachability in temporal logic

@ we can obtain n < 0: EF(n < 0)

we can enter the critical section: EFcs
we cannot have n < 0: =EF(n < 0) = AG(n > 0)
we cannot reach the crash state: —EFcrash = AG—crash

we can enter the critical section without traversing n = 0:
E(n # 0)Ucs
@ we can always return to the initial state: AGEFinit

@ we can return to the initial state: EFinit
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Reachability Properties Computation of the reachability graph

Computation of the reachability graph

Forward chaining
@ start from the initial state
@ add its successors

@ continue until saturation

Drawback: potential explosion of the set being constructed
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Reachability Properties Computation of the reachability graph

Computation of the reachability graph

Backward chaining

Construct the set of states which can lead to some target states

@ start from target states

@ add their immediate predecessors

@ continue until saturation

@ test whether some initial state is in the computed set
Drawbacks:

@ identify target states

@ computing predecessors can be more difficult than computing
successors (e.g. for automata with variables)

@ target states may be unreachable
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Reachability Properties Computation of the reachability graph

Computation of the reachability graph

On-the-fly exploration
@ check the property during exploration

@ only partially construct the state space
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