

SafeRiver

« SME
« Independent- founded december 2005

« 18 consultants highly skilled in Software and Formal methods
o Turnover 2015: 1,5M€ (excluding R&D public fundings)

Added Value Solutions for Embedded Systems
o Functional Safety (FuSa)

« Software Security
e Tools for FuSa and Software Security
» Packaged Services

e CIR agreed

Functional Safety

Inputs Inputs

Simulink | | Scade | | ControlBuild | | C | |ADA | | HLL |

| |

G G

- 50x Faster

- Maintainability - Identify complexity - Fully automated prover

- Scalability hot spots - Large scale models

- Testability - Navigate / learn — - Formal proof exhaustiveness

- Formal proof ability large models - CEx at model level
- Proof coverage metrics
| - EN50128 T2

v \ 2
Outputs Outputs Outputs
Violated rules log | Model metrics | Counter Satisfied

examples properties

Call graph

Proof coverage

e Modeling rules
* Models metrology (technical debt, change management)

e Formal Proof of Functional safety requirements and System level
safety properties -

e Model- Code Equivalence

Software Security

Inputs

C C++

7 7 \l/

Outputs
\ 4
Vv - Attack Surface Computation - SW boundaries and interactions
T Security Design and Coding Rules - CWE detection - II;lreedomlfrqm Interference analysis
- Security Code Production Rules - RTE, buffer OVFL ow analysis
- Format string

- Command injection
- Data exposure

Carto-C supports Vulnerability Analysis (SVA) - Benchmarked on Juliet Database

IFFree addresses Software architecture analysis with respect to trust/integrity
domains both for safety and security. Supports FFI analysis and helps in
interfaces mastering- ISO 26262-6

SAFRE

Safety

B’ER Static Analysis for SW Security:

key issues

e 150 to 200 tools

e What does mean « Perform a static analysis » ?

« Tools classification /underlying techniques
- Sound
- Unsound

« Verification objectives

. Rules Verification/Detection of Coding Rules violations
- DSIG Cert-C CERT-Java

. Detection of well known vulnerabilities
-NIST, CVE, CWE

. Run Time Errors detection

« Level of assurance and errors coverage
- Public reference
. Evaluation

Results from sound tools
o Fit a small subset of security flaws
« Are subject to false positive
« But are not subject to false negatives

Static tools for security:

Observations

« Do not take the security environment into account

Results from unsound tools
« Fit a large subset of security flaws
« Are subject to false positive
« Are subject to false negative
« Do take the security environment into account

Sound

RTE (subset of CWE)

False positive

Unsound | CWE, CVE, CAPEC or

CERT C, CERT java, JavaSec, DISA
STIG

False positive and False
negative

= Adequate tool is difficult to choose and use

Static Analysis for Security :
Configuration kits

e Detection objectives

o Eliminate most current vulnerabilities as defined by
- SANS Top25
. OWASP Top 10
o Configuration kit content
« Sets of checkers to be activated
o Detection parameters
« Definition of criticality levels

» Result filters and synthesis

e Available kits
« Klocwork for Java or C: 69 checkers for 22 CWE
o Coverity for java or C: 30 checkers for 20 CWE

Static Analysis for security:
Evaluation kit

e Juliet

« Is developed in SAMATE SATE project to challenge static tools
o Is composed of ~45000 C codes

« Analyzable in « flaw » and « fix » mode
. Flaw: the source code contains a flaw
. Fix: the source code contains a fix of the flaw

« Covering more than 121 main classes of CWE flaws

e Juliet User kit by SafeRiver

« Libraries Support
.- libC, POSIX

o Automatic launch

o Automatic synthesis

SAFE

Safety

Ef§tatic Analysis for Security: Carto-C

e Why Carto-C ?

« Use cases
. Support of Secure Development
. Support of Security audits

« Only sound static tool to detect
. Missing input filtering
-Impact on known flaws

. Missing asset protections
-Impact on asset exposure

e Evaluation with Juliet Test base
« Internationally recognized tests base

« Independent test base

Carto-C

e Carto-C is a static Analyzer based on the open source
platform Frama-C, that we have specialized for Security

« Attack Surface Computation

« Format String and Injection Related Weaknesses Detection

« Risk analysis support

. Identification of assets that can be reached/controlled by malevolent
actions through attack surface

. Verification of protections

o« Freedom from Interference Analysis

. Characterization of cascading failures that can be caused by
uncontrolled or malevolent interactions

. Use cases : document interactions between software that have
different integrity or assurance levels

10

Compilation
module

RTE
module

Frama-C modules

Carto-C architecture

CIL modules

11

Added Value analysis

e Frama-C modules
« Static analysis algorithms
« RTE detection

» asserts

o Carto-C Proprietary modules for end user generic needs

« Usability for complete applications
. Stubs (ACSL description)

« False positive reduction

e Carto-C Proprietary modules for customer needs
« Attack Surface
« Detection of weaknesses according to CWE model

o Freedom From Interference analysis

12

Carto-C Feature 1
Identify Attack surface

Attack Ways
« All the entry points and exit points methods
« The set of input / output channels
« The set of input / output data
o All the calls to external code (third party tool, open source)

Protection functions
« Resource connection and authentication
o Authorization
« Data validation and encoding
« Events logging

User defined declarations
« I/0O functions
« Protection functions
o Trusted channels

13

Carto-C Feature 1
Identify Attack surface

* Attack objectives

« Assets of the application
. confidential, sensitive, regulated data

. secrets and keys, intellectual property, critical business data, personal data and
PI

. (user defined)

* Protection functions
« Encryption, digest
« access and authorization
- data integrity and operational security controls

e User defined declaration
« Valuable data
o Protection functions

14

& oS Feature 2
Detect exhaustively certain classes of flaws

o Extracted from Frama-C RTE

« CWE119: Improper Restriction of Operations within the Bounds of a Memory Buffer

. CWE787
. CWE121_Stack_ Based_Buffer_Overflow
. CWE122_Heap_Based_Buffer_Overflow
. CWE124_Buffer_Underwrite

. CWE125
. CWE126_Buffer_Overread
. CWE127_Buffer_Underread

« CWE664 : Improper Control of resources through lifetime
. CWE401_Improper release of memory before removing last reference
. CWE457_use of uninitialized variable
. CWE665_Improper Initialization

« CWE682: Incorrect Calculation
. CWE190: Integer Overflow or Wraparound
. CWE191: Integer Underflow or Wraparound
. CWE369: Divide_by_Zero
. CWEG681: Incorrect Conversion between Numeric Types

15

SAFRE

Safety

VER Feature 2

Detect exhaustively certain classes of flaws

e Carto-C specific Plug ins/modules
« Cartography

. CWE-749: Exposed Dangerous Method or Function (format and command
execution function)

« Syntactic Verification

. CWE-628: Function Call with Incorrectly Specified Arguments
. CWE685_Function_Call_With_Incorrect_Number_of_Arguments
. CWE686:Function with Incorrect Argument Type
. CWE688_Function_Call_With_Incorrect_Variable_or_Reference_as_Argument

« Dependency analysis
. CWE-134: Uncontrolled Format String)

. CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS
Command Injection’)

16

ssaéfwgrgPCarto C results on Juliet benchmark

CWE Entry ID ~ CWE Entry Name * Flaw tes = Flaw detect Rate +* Fix test ca¢ * | Fix detect Rate | *
Improper Neutralization of Special Elements used inan OS

78 Command ('OS Command Injection’) 40 100% 40 100%
134 Uncontrolled Format String 30 100% 60 100%
191 Integer Underflow (Wrap or Wraparound) 29 79% 66 14%
190 Integer Overflow or Wraparound 48 75% 108 70%
681 Incorrect Conversion between Numeric Types 3 67% 3 33%
369 Divide By Zero 16 63% 36 78%
126 Buffer Over-read 23 39% 30 83%
124 Buffer Underwrite (‘Buffer Underflow’) 19 32% 32 97%
127 Buffer Under-read 21 29% 32 97%
122 Heap-based Buffer Overflow 66 21% 75 75%
121 Stack-based Buffer Overflow 48 19% 68 93%

e Carto-C specific Plug ins/modules -> detection rate 100%

o Extracted Results (underflw and overflow, buffer errors) surprising ->
open point under investigation

Feature 3
Exploitation of flaws

o Controllable from the attack surface entry points
Example: command read from the keyboard is highly dangerous

Controllability : high / low / unknown

e Observable from the attack surface exit points
« Example: password printed in a log

o Observability: high / low / unknown

18

RTE 2 CWE

e Problematic

« Formal Backend analyzers detect errors that have an unambiguous
specification

« Some analyzers detect errors wrt
. Patterns
- Rules

« CWE model is an enumeration, not a clear classification tool

e RTE2CWE module
« Maps RTE detected by Frama-C in terms of CWE flaws

« Helps for benchmarking and comparison of tools

19

SAFRE

Safety

=R Open Source Model Applicability

o Strengths
« Recognized static analyzers
o Public Static Analyzers may be evaluated

« Hard problems to be addressed by the community

e Weaknesses

« Usage restrictions of formal static analysis methods
. Language restrictions
- Requires semantic specification at language level

« Lack of interest or lack of cooperation for evaluation and
benchmarks

« Security analysis do not match directly to static analysis results
. Many customer data to be taken into account

20

U\VER

2TGE'ER Open Source Model Applicability

Safety

e Opportunities for cooperation
« Development of static analysis market

« Languages to be covered
. C++
. Java
. Script

« Relaxed analysis methods
- Confidence level requirements
. Benchmarks/labels
e Threats
« Stubs and Libraries are necessary but user does not want to pay for
« Same for « false positive » reduction

o Competition among many SMEs

21

Cyber-security References

e ANSSI (on going study)

« Development of a Referential for Static Analysis Tools labellisation
with respect to detection of cyber security flaws

e THALES Communication & Security & DGA

« Study and business case on formal methods for cryptographic
modules development, creation of a prototype

« Development of a certified XML parser, Assurance level EAL4+

e ANSSI

« Study (state of the art, security analysis) of the functional
Languages For Secure applications (LaFoSec), Development
Guide for Ocaml language and tools usage

« Development of an XML parser, with proof of robustness
(vulnerabilities detection and analysis)

22

Cyber-security References

e DGA (CORAC) 2013-2014-2015

« Cyber-security methods and tools for the future avionic platform

e SAFRAN (2013-2014)

« Code Analysis Tools Configuration (Klocwork) for CWE detection

« Development of a document of the functional security requirements for a
flight recorder, using the EBIOS method

o Airbus (2008-2010)

« Risks Analysis on the safety and the security of the information system
embedded on the Aircraft

« Security Guidelines for the information system components suppliers
(coding rules, COTS evaluation guidelines, vulnerabilities analysis

23

« Use case : Verification of Design with respect to functional safety

Formal Verification

requirements in an MBD process

Safety Analysis (FHA) Safety Req
L — + Hyp
FHA V4
Contradictions, Safety Requirement
Shortcomings Design Safety
— Properties
Safety Prop + Env + Model + Env Safety Prop + Env + Model
Formal Proof [
/ Instrumentation Test Generation '\
Proven Properties or _ _ Test Cases
Counter-examples Coding nit
Tests
Embedded code + Env Model / Embedded code
¢/ Static Analysis Co-Simulation '\,
Run Time Error Model / Code

Detection

Equivalence

24

SafeProver tool chain

Simulink Scade Dvel ADA ControlBuild C HLL

\Z

SafeRiver Translators

¢

Imperative Common Language (ICL)
v

4)

Optimization
v

Proof Strategies
(BMC, K-Induction, IC3/PDR)

Kernel

_ J
v
4)
Automatic
Lemma Generation
_ J
¥ A AN v
SAT SMT

Solvers Solvers

User Accessibility

o SMT solvers are very powerful
« Deduction part

« Can solve problems with many many variables

e But users do not interact with low level formulas

« Representation of models and formulas in high level formalisms
(e.g. Simulink, SCADE, Control Build etc..)

« Translation from High level formalisms to intermediate format
- High level optimizations -> help in proof convergence
« Proof strategy -> compliance with expected results, soundness

o Automatic Lemma Generation « the hard problem »

26

nel is the key for user accessibility

e Kernel components importance
o Guarantee soundness of deduction parts
« Ensure convergence and mastering of scalability issues
« Are responsible of taking benefits of backend solvers

o Not only results of the verification are provided but many other
information:

. Counterexamples, traced back to the high level model
. Proof coverage

. Proof log or evidence that the whole process is auditable

o Kernel development is a very expensive effort

« Needs for verification and certification of the kernel imply a very rigourous
documentation and development process, quite centralized rather than cooperative

o Kernel is a very important asset for expertise and service

27

BYER confidence in formal Verification

e Low level engines and solvers
- May be diversified

« Some benchmarks exist

e Verification kernel is safety critical

« Failure or even false positive may be caused by translation and
optimization errors

« Verified checkers are required (strategy implementation)

e Needs for « proven » or « verified » kernel

« Impacts the applicability of Open source model

28

Service level Metrology

Time to make the model able to be analyzed/proved
o Compatibility (syntactic)
« Convergence

» Iterations with the model owner

Time to implement and execute one proof
« Memory/execution time consumption

« Scalability
Time to analyze counter-examples

Proof Coverage

29

Return from Experience

e Intensive use on large CBTC models (railway domain)

o Complex Functions modelled in Matlab/Simulink
. Localization,
. Train Tracking
. Evacuation
. Passenger exchange
. Etc.

o Time for Compatibility and Convergence :
. 40 days about for the whole model

o More than 700 properties
. Functional safety requirements traceable with the design requirements level

« Average Cycle time for one property
. 2.5 days the first issue
. 1.5 days for rework.

30

SARE

Safety

=R Open Source Model Applicability

e Opportunities

« Cooperation on backend solvers
. Parametrization
. Distributed models
. Etc.

« Strategies development

« Many contributors at academic level (SAT, SMT, Proof assistants etc.)

e Threats

o COTS editors are more aggressive than they were on the topic
. E.g. The Mathworks

« Certification -> Kernel shall be evaluated
. Development cost
. Changes and evolutions are more difficult to manage

31

e Formal Methods

« Many backend solvers are being developed

o User accessibility bottlenecks still the same
. Scalability
. Abstraction level

. Controllability of results
- False positive
- Proof coverage

e Cooperation between actors
« Academic and Expertise companies

« TRL assignment depending on actors

Conclusion

32

