

2

SafeRiver

• SME

• Independent- founded december 2005

• 18 consultants highly skilled in Software and Formal methods

• Turnover 2015: 1,5M€ (excluding R&D public fundings)

• Added Value Solutions for Embedded Systems

• Functional Safety (FuSa)

• Software Security

• Tools for FuSa and Software Security

• Packaged Services

• CIR agreed

3

Functional Safety

• Modeling rules

• Models metrology (technical debt, change management)

• Formal Proof of Functional safety requirements and System level
safety properties –

• Model- Code Equivalence

4

Software Security

• Carto-C supports Vulnerability Analysis (SVA) – Benchmarked on Juliet Database

• IFFree addresses Software architecture analysis with respect to trust/integrity
domains both for safety and security. Supports FFI analysis and helps in
interfaces mastering- ISO 26262-6

C C++

- Security Design and Coding Rules
- Security Code Production Rules

Outputs

- Attack Surface Computation
- CWE detection
 - RTE, buffer OVFL
 - Format string
 - Command injection
 - Data exposure

- SW boundaries and interactions
- Freedom from Interference analysis
- Flow analysis

Expertise Carto-C IFFree

Inputs

5

Static Analysis for SW Security:
key issues

• 150 to 200 tools

• What does mean « Perform a static analysis » ?

• Tools classification /underlying techniques

• Sound

• Unsound

• Verification objectives

• Rules Verification/Detection of Coding Rules violations

• DSIG Cert-C CERT-Java

• Detection of well known vulnerabilities

• NIST, CVE, CWE

• Run Time Errors detection

• Level of assurance and errors coverage

• Public reference

• Evaluation

6

Static tools for security:
Observations

• Results from sound tools

• Fit a small subset of security flaws

• Are subject to false positive

• But are not subject to false negatives

• Do not take the security environment into account

• Results from unsound tools

• Fit a large subset of security flaws

• Are subject to false positive

• Are subject to false negative

• Do take the security environment into account

•  Adequate tool is difficult to choose and use

Sound RTE (subset of CWE) False positive

Unsound CWE, CVE, CAPEC or

CERT C, CERT java, JavaSec, DISA
STIG

False positive and False
negative

7

Static Analysis for Security :
Configuration kits

• Detection objectives

• Eliminate most current vulnerabilities as defined by

• SANS Top25

• OWASP Top 10

• Configuration kit content

• Sets of checkers to be activated

• Detection parameters

• Definition of criticality levels

• Result filters and synthesis

• Available kits

• Klocwork for Java or C: 69 checkers for 22 CWE

• Coverity for java or C: 30 checkers for 20 CWE

8

Static Analysis for security:
Evaluation kit

• Juliet

• Is developed in SAMATE SATE project to challenge static tools

• Is composed of ~45000 C codes

• Analyzable in « flaw » and « fix » mode

• Flaw: the source code contains a flaw

• Fix: the source code contains a fix of the flaw

• Covering more than 121 main classes of CWE flaws

• Juliet User kit by SafeRiver

• Libraries Support

• libC, POSIX

• Automatic launch

• Automatic synthesis

9

Static Analysis for Security: Carto-C

• Why Carto-C ?

• Use cases

• Support of Secure Development

• Support of Security audits

• Only sound static tool to detect

• Missing input filtering

• Impact on known flaws

• Missing asset protections

• Impact on asset exposure

• Evaluation with Juliet Test base

• Internationally recognized tests base

• Independent test base

10

Carto-C

• Carto-C is a static Analyzer based on the open source
platform Frama-C, that we have specialized for Security

• Attack Surface Computation

• Format String and Injection Related Weaknesses Detection

• Risk analysis support

• Identification of assets that can be reached/controlled by malevolent
actions through attack surface

• Verification of protections

• Freedom from Interference Analysis

• Characterization of cascading failures that can be caused by
uncontrolled or malevolent interactions

• Use cases : document interactions between software that have
different integrity or assurance levels

11

Carto-C architecture

Frama-C modules

Lib C
Lib C99

Hearders
POSIX

Headers

Compilation
module

Cartography
module

Dependency
module

Cartography Data Base
Attack Surface

Format functions
Command execution

RTE-to-CWE
module

ACSL description

RTE
module

CIL modules

IFFree
module

Config.
Extractor:

Tasking
Compiler

 Built
System

Ext.
GNU C

12

Added Value analysis

• Frama-C modules

• Static analysis algorithms

• RTE detection

• asserts

• Carto-C Proprietary modules for end user generic needs

• Usability for complete applications

• Stubs (ACSL description)

• False positive reduction

• Carto-C Proprietary modules for customer needs

• Attack Surface

• Detection of weaknesses according to CWE model

• Freedom From Interference analysis

13

Carto-C Feature 1
 Identify Attack surface

• Attack Ways

• All the entry points and exit points methods

• The set of input / output channels

• The set of input / output data

• All the calls to external code (third party tool, open source)

• Protection functions

• Resource connection and authentication

• Authorization

• Data validation and encoding

• Events logging

• User defined declarations

• I/O functions

• Protection functions

• Trusted channels

14

Carto-C Feature 1
 Identify Attack surface

• Attack objectives

• Assets of the application

• confidential, sensitive, regulated data

• secrets and keys, intellectual property, critical business data, personal data and
PI

• (user defined)

• Protection functions

• Encryption, digest

• access and authorization

• data integrity and operational security controls

• User defined declaration

• Valuable data

• Protection functions

15

Feature 2
 Detect exhaustively certain classes of flaws

• Extracted from Frama-C RTE

• CWE119: Improper Restriction of Operations within the Bounds of a Memory Buffer
• CWE787

• CWE121_Stack_Based_Buffer_Overflow

• CWE122_Heap_Based_Buffer_Overflow

• CWE124_Buffer_Underwrite

• CWE125
• CWE126_Buffer_Overread

• CWE127_Buffer_Underread

• CWE664 : Improper Control of resources through lifetime
• CWE401_Improper release of memory before removing last reference

• CWE457_use of uninitialized variable

• CWE665_Improper Initialization

• CWE682: Incorrect Calculation
• CWE190: Integer Overflow or Wraparound

• CWE191: Integer Underflow or Wraparound

• CWE369: Divide_by_Zero

• CWE681: Incorrect Conversion between Numeric Types

16

Feature 2
 Detect exhaustively certain classes of flaws

• Carto-C specific Plug ins/modules

• Cartography

• CWE-749: Exposed Dangerous Method or Function (format and command
execution function)

• Syntactic Verification

• CWE-628: Function Call with Incorrectly Specified Arguments
• CWE685_Function_Call_With_Incorrect_Number_of_Arguments

• CWE686:Function with Incorrect Argument Type

• CWE688_Function_Call_With_Incorrect_Variable_or_Reference_as_Argument

• Dependency analysis
• CWE-134: Uncontrolled Format String)

• CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS
Command Injection')

17

Carto C results on Juliet benchmark

CWE Entry ID CWE Entry Name Flaw test casesFlaw detect Rate Fix test cases Fix detect Rate

78

Improper Neutralization of Special Elements used in an OS

Command ('OS Command Injection') 40 100% 40 100%

134 Uncontrolled Format String 30 100% 60 100%

191 Integer Underflow (Wrap or Wraparound) 29 79% 66 74%

190 Integer Overflow or Wraparound 48 75% 108 70%

681 Incorrect Conversion between Numeric Types 3 67% 3 33%

369 Divide By Zero 16 63% 36 78%

126 Buffer Over-read 23 39% 30 83%

124 Buffer Underwrite (‘Buffer Underflow’) 19 32% 32 97%

127 Buffer Under-read 21 29% 32 97%

122 Heap-based Buffer Overflow 66 21% 75 75%

121 Stack-based Buffer Overflow 48 19% 68 93%

• Carto-C specific Plug ins/modules -> detection rate 100%

• Extracted Results (underflw and overflow, buffer errors) surprising ->
open point under investigation

18

Feature 3
 Exploitation of flaws

• Controllable from the attack surface entry points

۷ Example: command read from the keyboard is highly dangerous

۷ Controllability : high / low / unknown

• Observable from the attack surface exit points

• Example: password printed in a log

• Observability: high / low / unknown

19

RTE 2 CWE

• Problematic

• Formal Backend analyzers detect errors that have an unambiguous
specification

• Some analyzers detect errors wrt

• Patterns

• Rules

• CWE model is an enumeration, not a clear classification tool

• RTE2CWE module

• Maps RTE detected by Frama-C in terms of CWE flaws

• Helps for benchmarking and comparison of tools

20

Open Source Model Applicability

• Strengths

• Recognized static analyzers

• Public Static Analyzers may be evaluated

• Hard problems to be addressed by the community

• Weaknesses

• Usage restrictions of formal static analysis methods

• Language restrictions

• Requires semantic specification at language level

• Lack of interest or lack of cooperation for evaluation and
benchmarks

• Security analysis do not match directly to static analysis results

• Many customer data to be taken into account

21

Open Source Model Applicability

• Opportunities for cooperation

• Development of static analysis market

• Languages to be covered

• C++

• Java

• Script

• Relaxed analysis methods

• Confidence level requirements

• Benchmarks/labels

• Threats

• Stubs and Libraries are necessary but user does not want to pay for

• Same for « false positive » reduction

• Competition among many SMEs

22

Cyber-security References

• ANSSI (on going study)

• Development of a Referential for Static Analysis Tools labellisation
with respect to detection of cyber security flaws

• THALES Communication & Security & DGA

• Study and business case on formal methods for cryptographic
modules development, creation of a prototype

• Development of a certified XML parser, Assurance level EAL4+

• ANSSI

• Study (state of the art, security analysis) of the functional
Languages For Secure applications (LaFoSec), Development
Guide for Ocaml language and tools usage

• Development of an XML parser, with proof of robustness
(vulnerabilities detection and analysis)

23

Cyber-security References

• DGA (CORAC) 2013-2014-2015

• Cyber-security methods and tools for the future avionic platform

• SAFRAN (2013-2014)

• Code Analysis Tools Configuration (Klocwork) for CWE detection

• Development of a document of the functional security requirements for a
flight recorder, using the EBIOS method

• Airbus (2008-2010)

• Risks Analysis on the safety and the security of the information system
embedded on the Aircraft

• Security Guidelines for the information system components suppliers
(coding rules, COTS evaluation guidelines, vulnerabilities analysis

24

Formal Verification

• Use case : Verification of Design with respect to functional safety
requirements in an MBD process

25

SafeProver tool chain

Scade Simulink C ADA Dvel ControlBuild HLL

SafeRiver Translators

Kernel
Imperative Common Language (ICL)

Optimization

Proof Strategies

(BMC, K-Induction, IC3/PDR)

Automatic
Lemma Generation

SMT
Solvers

SAT
Solvers

26

User Accessibility

• SMT solvers are very powerful

• Deduction part

• Can solve problems with many many variables

• But users do not interact with low level formulas

• Representation of models and formulas in high level formalisms
(e.g. Simulink, SCADE, Control Build etc..)

• Translation from High level formalisms to intermediate format

• High level optimizations -> help in proof convergence

• Proof strategy -> compliance with expected results, soundness

• Automatic Lemma Generation « the hard problem »

27

Kernel is the key for user accessibility

• Kernel components importance

• Guarantee soundness of deduction parts

• Ensure convergence and mastering of scalability issues

• Are responsible of taking benefits of backend solvers

• Not only results of the verification are provided but many other
information:

• Counterexamples, traced back to the high level model

• Proof coverage

• Proof log or evidence that the whole process is auditable

• Kernel development is a very expensive effort

• Needs for verification and certification of the kernel imply a very rigourous
documentation and development process, quite centralized rather than cooperative

• Kernel is a very important asset for expertise and service

28

Confidence in formal Verification

• Low level engines and solvers

• May be diversified

• Some benchmarks exist

• Verification kernel is safety critical

• Failure or even false positive may be caused by translation and
optimization errors

• Verified checkers are required (strategy implementation)

• Needs for « proven » or « verified » kernel

• Impacts the applicability of Open source model

29

Service level Metrology

• Time to make the model able to be analyzed/proved

• Compatibility (syntactic)

• Convergence

• Iterations with the model owner

• Time to implement and execute one proof

• Memory/execution time consumption

• Scalability

• Time to analyze counter-examples

• Proof Coverage

30

Return from Experience

• Intensive use on large CBTC models (railway domain)

• Complex Functions modelled in Matlab/Simulink

• Localization,

• Train Tracking

• Evacuation

• Passenger exchange

• Etc.

• Time for Compatibility and Convergence :

• 40 days about for the whole model

• More than 700 properties

• Functional safety requirements traceable with the design requirements level

• Average Cycle time for one property

• 2.5 days the first issue

• 1.5 days for rework.

31

Open Source Model Applicability

• Opportunities

• Cooperation on backend solvers

• Parametrization

• Distributed models

• Etc.

• Strategies development

• Many contributors at academic level (SAT, SMT, Proof assistants etc.)

• Threats

• COTS editors are more aggressive than they were on the topic

• E.g. The Mathworks

• Certification -> Kernel shall be evaluated

• Development cost

• Changes and evolutions are more difficult to manage

32

Conclusion

• Formal Methods

• Many backend solvers are being developed

• User accessibility bottlenecks still the same

• Scalability

• Abstraction level

• Controllability of results

• False positive

• Proof coverage

• Cooperation between actors

• Academic and Expertise companies

• TRL assignment depending on actors

