
F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

Fabrice.Kordon@lip6.fr

Building and verifying a
quasi-certification entity

over Distributed Hash Tables
Join work with X. Bonnaire, R. Cortes & O. Marin

UPMC (France), UFSM (Chile), NYUS (China)

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

Certification, why?

Motivations
Digital filling for tax purpose

‣ Certify that somebody did it before a given deadline

Certified emails

‣ Use emails for legal purposes

Online game refereeing

e-voting, etc.

2

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

Certification, why?

Motivations
Digital filling for tax purpose

‣ Certify that somebody did it before a given deadline

Certified emails

‣ Use emails for legal purposes

Online game refereeing

e-voting, etc.

Existing Solutions
Centralized

‣ Public Key Infrastructures (traditional PKI)
‣ Scaling problem/prone to faults/implementation (atomic multicast)

Decentralized

‣ Certification on top of Distributed Hash Tables (DHT)
‣ Rapidly brings Byzantine consensus (for a 100.0% guarantee)

2

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

Certification, why?

Motivations
Digital filling for tax purpose

‣ Certify that somebody did it before a given deadline

Certified emails

‣ Use emails for legal purposes

Online game refereeing

e-voting, etc.

Existing Solutions
Centralized

‣ Public Key Infrastructures (traditional PKI)
‣ Scaling problem/prone to faults/implementation (atomic multicast)

Decentralized

‣ Certification on top of Distributed Hash Tables (DHT)
‣ Rapidly brings Byzantine consensus (for a 100.0% guarantee)

2

Objective
(quasi)-certify that a given action has been performed at a certain time

Distributed context (DHT)

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

DHT in a nutshell

Retrieve data (key + value)
put (v,k)

get(k) → v

3

Large Scale Distributed System, Design Principles 47

Figure 3.6. Data insertion in a DHT

3.4. Building Trust in Peer to Peer Systems

Building trust is a major concern in Peer to Peer systems [ABE 01][YU 04]. The
self organization of the nodes as well as the non existing control of which node can
enter or not into the system makes the presence of malicious nodes inevitable. In this
context, the self organization and maintenance of the nodes, that appears to be initially
one of the strongest features of a P2P system, becomes one of the most vulnerable one
because of the presence of malicious nodes.

A malicious node is a node that does not follow the normal rules of the system. It
can be a byzantine node, or a node that do not always behave maliciously (alternative
nodes). The behaviour of malicious nodes can have various consequences on the Peer
to Peer system. Malicious nodes can:
– Reject queries and may not respond to Get() or Put() operations. The transaction

will then fail.
– Make the routing algorithm to fail, denying to forward a message (this is a typical

behaviour in Distributed Hash Tables).
– Provide false information to other nodes (data integrity problems).
– Prevent other nodes from correctly achieve their maintenance tasks.

Using traditional solutions to build trust based on a set of servers providing certifica-
tion or any kind of control over the nodes that are members of the system is impossible

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

DHT in a nutshell

Retrieve data (key + value)
put (v,k)

get(k) → v

3

Large Scale Distributed System, Design Principles 47

Figure 3.6. Data insertion in a DHT

3.4. Building Trust in Peer to Peer Systems

Building trust is a major concern in Peer to Peer systems [ABE 01][YU 04]. The
self organization of the nodes as well as the non existing control of which node can
enter or not into the system makes the presence of malicious nodes inevitable. In this
context, the self organization and maintenance of the nodes, that appears to be initially
one of the strongest features of a P2P system, becomes one of the most vulnerable one
because of the presence of malicious nodes.

A malicious node is a node that does not follow the normal rules of the system. It
can be a byzantine node, or a node that do not always behave maliciously (alternative
nodes). The behaviour of malicious nodes can have various consequences on the Peer
to Peer system. Malicious nodes can:
– Reject queries and may not respond to Get() or Put() operations. The transaction

will then fail.
– Make the routing algorithm to fail, denying to forward a message (this is a typical

behaviour in Distributed Hash Tables).
– Provide false information to other nodes (data integrity problems).
– Prevent other nodes from correctly achieve their maintenance tasks.

Using traditional solutions to build trust based on a set of servers providing certifica-
tion or any kind of control over the nodes that are members of the system is impossible

access in log(n)
Totally decentralized + built)in redundancy for fault tolerance

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

DHT in a nutshell

Retrieve data (key + value)
put (v,k)

get(k) → v

3

Root node

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

DHT in a nutshell

Retrieve data (key + value)
put (v,k)

get(k) → v

3

Root node

Leafset

L close nodes (+ root)

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

DHT in a nutshell

Retrieve data (key + value)
put (v,k)

get(k) → v

3

Root node

Leafset

L close nodes (+ root)

Classical values for L

8, 16, 32 (best)

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

Quasi-certification — entities

A → an actor performing a service

4

A

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

Quasi-certification — entities

A → an actor performing a service

S → leafset hash(service) offering the service

4

A S

1 - request init

answers

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

Quasi-certification — entities

A → an actor performing a service

S → leafset hash(service) offering the service

4

A S

1 - request init

answers

2 - transaction

End ack

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

Quasi-certification — entities

A → an actor performing a service

S → leafset hash(service) offering the service

C → certification authority leafset hash(A/service)

4

A S

1 - request init

answers

2 - transaction

End ack

C

3 - transaction ack

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

Quasi-certification — entities

A → an actor performing a service

S → leafset hash(service) offering the service

C → certification authority leafset hash(A/service)

4

A S

1 - request init

answers

2 - transaction

End ack

C

3 - transaction ack

Certificate

Log Entry

4 - certificate
 generation

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

Quasi-certification — protocol structure
5

A S C

5

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

Quasi-certification — protocol structure
5

A S C

A requests cert. service

ack cert. service

A requests leaf set

receive leaf set

5

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

Quasi-certification — protocol structure
5

A S C

A requests cert. service

ack cert. service

A requests leaf set

receive leaf set

the service

5

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

Quasi-certification — protocol structure
5

A S C

A requests cert. service

ack cert. service

A requests leaf set

receive leaf set

the service

nodes ack transaction

nodes request leaf set

nodes receive leaf set

5

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

Quasi-certification — protocol structure
5

A S C

A requests cert. service

ack cert. service

A requests leaf set

receive leaf set

the service

nodes ack transaction

nodes request leaf set

nodes receive leaf set

}1: A & S secure
exchanges

}3: S get trustset from C

}2: exchanges to perform
the service

}4: C elaborates the
side certificate

5

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

Quasi-certification — protocol structure
5

A S C

A requests cert. service

ack cert. service

A requests leaf set

receive leaf set

the service

nodes ack transaction

nodes request leaf set

nodes receive leaf set

}1: A & S secure
exchanges

}3: S get trustset from C

}2: exchanges to perform
the service

}4: C elaborates the
side certificate

5

Majority

⇒ L/2+1 answers

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

Quasi-certification — protocol structure
5

A S C

A requests cert. service

ack cert. service

A requests leaf set

receive leaf set

the service

nodes ack transaction

nodes request leaf set

nodes receive leaf set

}1: A & S secure
exchanges

}3: S get trustset from C

}2: exchanges to perform
the service

}4: C elaborates the
side certificate

5

Diversity routing To serre the leafset

Majority

⇒ L/2+1 answers

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

The verification process

Proof (by any method?)
Proven to be undecidable [FLP 85]

6

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

The verification process

Proof (by any method?)
Proven to be undecidable [FLP 85]

So what?
Being pragmatic

Going for «quasi»

6

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

The verification process

Proof (by any method?)
Proven to be undecidable [FLP 85]

So what?
Being pragmatic

Going for «quasi»

Two steps
1. modeling the protocol in a perfect world (no error)

Use of Petri nets

2. Probabilistic analysis to evaluate the failure rate
Use of a classical fault model,
building a formula + numeric evaluation

6

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

Hypotheses
H1: perfect world

H2: service reduced to 1 interaction

H3: L+1 answer requested instead of L/2+1

‣ Symmetric net with Bags?

Modeling the protocol (step 1)
7

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

Modeling the protocol (step 1)
7

Types and variables

type tsid is 0..L;

type tsidxtsid is <tsid, tsid
>;

var i in tsid;

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

Modeling the protocol (step 1)
7

Types and variables

type tsid is 0..L;

type tsidxtsid is <tsid, tsid
>;

var i in tsid;

<i>

<i>
<i>

<i><i>

<i>

<i>

<tsid.all> <i>

<tsid.all>

<tsid.all> <i>

<tsid.all>

<i>

<i>

malicious_reservoir

malS3

malS2

malS1

malA3

malA4

malA2

malA1

n4

n3

n2

n1

Sstart

s2

s3

SsendTS

SackCS

AackCS

AreqCS

AgetTS

AreqTS

a4

a3

a2

a1

Astart

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

Modeling the protocol (step 1)
7

Types and variables

type tsid is 0..L;

type tsidxtsid is <tsid, tsid
>;

var i in tsid;

<i>

<i>
<i>

<i><i>

<i>

<i>

<tsid.all> <i>

<tsid.all>

<tsid.all> <i>

<tsid.all>

<i>

<i>

malicious_reservoir

malS3

malS2

malS1

malA3

malA4

malA2

malA1

n4

n3

n2

n1

Sstart

s2

s3

SsendTS

SackCS

AackCS

AreqCS

AgetTS

AreqTS

a4

a3

a2

a1

Astart

<i>
<i>

<i>

<i>

<tsid.all> <i>

<tsid.all>

<i>

<i>

malicious_reservoir

malS4

malS3

malA5

malA4

SstopAbort

AstopAbort

n6

n5

s3

s4

Sperform

AendCS

AstartCS

a5

a4

AstopOK

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

Modeling the protocol (step 1)
7

Types and variables

type tsid is 0..L;

type tsidxtsid is <tsid, tsid
>;

var i in tsid;

<i>

<i>
<i>

<i><i>

<i>

<i>

<tsid.all> <i>

<tsid.all>

<tsid.all> <i>

<tsid.all>

<i>

<i>

malicious_reservoir

malS3

malS2

malS1

malA3

malA4

malA2

malA1

n4

n3

n2

n1

Sstart

s2

s3

SsendTS

SackCS

AackCS

AreqCS

AgetTS

AreqTS

a4

a3

a2

a1

Astart

<i>
<i>

<i>

<i>

<tsid.all> <i>

<tsid.all>

<i>

<i>

malicious_reservoir

malS4

malS3

malA5

malA4

SstopAbort

AstopAbort

n6

n5

s3

s4

Sperform

AendCS

AstartCS

a5

a4

AstopOK

<i>

<i>

<tsid.all, i> <i>

<i>

<i>

<i>

<tsid.all, i><i, tsid.all>

<i, tsid.all>

<tsid.all, i><i, tsid.all>

<i>

<i>

<i>

<i>

<i>

<i>

<i>

<i>

malicious_reservoir

malC1

malS6

malS5

malS4

CstopAbort

SstopAbort

n9

n8

n7

CgenCertif

CsendTS1

c1

Cstarts4

s5

s6

SstopOK

SreqTS

SgetTS

ScertCS

CstopOK

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

Modeling the protocol (step 1)
7

Types and variables

type tsid is 0..L;

type tsidxtsid is <tsid, tsid
>;

var i in tsid;

<i>

<i>
<i>

<i><i>

<i>

<i>

<tsid.all> <i>

<tsid.all>

<tsid.all> <i>

<tsid.all>

<i>

<i>

malicious_reservoir

malS3

malS2

malS1

malA3

malA4

malA2

malA1

n4

n3

n2

n1

Sstart

s2

s3

SsendTS

SackCS

AackCS

AreqCS

AgetTS

AreqTS

a4

a3

a2

a1

Astart

<i>
<i>

<i>

<i>

<tsid.all> <i>

<tsid.all>

<i>

<i>

malicious_reservoir

malS4

malS3

malA5

malA4

SstopAbort

AstopAbort

n6

n5

s3

s4

Sperform

AendCS

AstartCS

a5

a4

AstopOK

<i>

<i>

<tsid.all, i> <i>

<i>

<i>

<i>

<tsid.all, i><i, tsid.all>

<i, tsid.all>

<tsid.all, i><i, tsid.all>

<i>

<i>

<i>

<i>

<i>

<i>

<i>

<i>

malicious_reservoir

malC1

malS6

malS5

malS4

CstopAbort

SstopAbort

n9

n8

n7

CgenCertif

CsendTS1

c1

Cstarts4

s5

s6

SstopOK

SreqTS

SgetTS

ScertCS

CstopOK

●

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

Modeling the protocol (step 1)
7

Types and variables

type tsid is 0..L;

type tsidxtsid is <tsid, tsid
>;

var i in tsid;

<i>

<i>
<i>

<i><i>

<i>

<i>

<tsid.all> <i>

<tsid.all>

<tsid.all> <i>

<tsid.all>

<i>

<i>

malicious_reservoir

malS3

malS2

malS1

malA3

malA4

malA2

malA1

n4

n3

n2

n1

Sstart

s2

s3

SsendTS

SackCS

AackCS

AreqCS

AgetTS

AreqTS

a4

a3

a2

a1

Astart

<i>
<i>

<i>

<i>

<tsid.all> <i>

<tsid.all>

<i>

<i>

malicious_reservoir

malS4

malS3

malA5

malA4

SstopAbort

AstopAbort

n6

n5

s3

s4

Sperform

AendCS

AstartCS

a5

a4

AstopOK

<i>

<i>

<tsid.all, i> <i>

<i>

<i>

<i>

<tsid.all, i><i, tsid.all>

<i, tsid.all>

<tsid.all, i><i, tsid.all>

<i>

<i>

<i>

<i>

<i>

<i>

<i>

<i>

malicious_reservoir

malC1

malS6

malS5

malS4

CstopAbort

SstopAbort

n9

n8

n7

CgenCertif

CsendTS1

c1

Cstarts4

s5

s6

SstopOK

SreqTS

SgetTS

ScertCS

CstopOK

●

<tsid.all>

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

Modeling the protocol (step 1)
7

Types and variables

type tsid is 0..L;

type tsidxtsid is <tsid, tsid
>;

var i in tsid;

<i>

<i>
<i>

<i><i>

<i>

<i>

<tsid.all> <i>

<tsid.all>

<tsid.all> <i>

<tsid.all>

<i>

<i>

malicious_reservoir

malS3

malS2

malS1

malA3

malA4

malA2

malA1

n4

n3

n2

n1

Sstart

s2

s3

SsendTS

SackCS

AackCS

AreqCS

AgetTS

AreqTS

a4

a3

a2

a1

Astart

<i>
<i>

<i>

<i>

<tsid.all> <i>

<tsid.all>

<i>

<i>

malicious_reservoir

malS4

malS3

malA5

malA4

SstopAbort

AstopAbort

n6

n5

s3

s4

Sperform

AendCS

AstartCS

a5

a4

AstopOK

<i>

<i>

<tsid.all, i> <i>

<i>

<i>

<i>

<tsid.all, i><i, tsid.all>

<i, tsid.all>

<tsid.all, i><i, tsid.all>

<i>

<i>

<i>

<i>

<i>

<i>

<i>

<i>

malicious_reservoir

malC1

malS6

malS5

malS4

CstopAbort

SstopAbort

n9

n8

n7

CgenCertif

CsendTS1

c1

Cstarts4

s5

s6

SstopOK

SreqTS

SgetTS

ScertCS

CstopOK

●

<tsid.all>

Px ●

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

Modeling the protocol (step 1)
7

<i>

<i>
<i>

<i><i>

<i>

<i>

<tsid.all> <i>

<tsid.all>

<tsid.all> <i>

<tsid.all>

<i>

<i>

malicious_reservoir

malS3

malS2

malS1

malA3

malA4

malA2

malA1

n4

n3

n2

n1

Sstart

s2

s3

SsendTS

SackCS

AackCS

AreqCS

AgetTS

AreqTS

a4

a3

a2

a1

Astart

<i>
<i>

<i>

<i>

<tsid.all> <i>

<tsid.all>

<i>

<i>

malicious_reservoir

malS4

malS3

malA5

malA4

SstopAbort

AstopAbort

n6

n5

s3

s4

Sperform

AendCS

AstartCS

a5

a4

AstopOK

<i>

<i>

<tsid.all, i> <i>

<i>

<i>

<i>

<tsid.all, i><i, tsid.all>

<i, tsid.all>

<tsid.all, i><i, tsid.all>

<i>

<i>

<i>

<i>

<i>

<i>

<i>

<i>

malicious_reservoir

malC1

malS6

malS5

malS4

CstopAbort

SstopAbort

n9

n8

n7

CgenCertif

CsendTS1

c1

Cstarts4

s5

s6

SstopOK

SreqTS

SgetTS

ScertCS

CstopOK

F
ok

= |SstopOK| = L+ 1 �
|CstopOK| = L+ 1

F
ok

= |SstopOK| > L

2
^

|CstopOK| > L

2

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

Modeling the protocol (step 1)
7

<i>

<i>
<i>

<i><i>

<i>

<i>

<tsid.all> <i>

<tsid.all>

<tsid.all> <i>

<tsid.all>

<i>

<i>

malicious_reservoir

malS3

malS2

malS1

malA3

malA4

malA2

malA1

n4

n3

n2

n1

Sstart

s2

s3

SsendTS

SackCS

AackCS

AreqCS

AgetTS

AreqTS

a4

a3

a2

a1

Astart

<i>
<i>

<i>

<i>

<tsid.all> <i>

<tsid.all>

<i>

<i>

malicious_reservoir

malS4

malS3

malA5

malA4

SstopAbort

AstopAbort

n6

n5

s3

s4

Sperform

AendCS

AstartCS

a5

a4

AstopOK

<i>

<i>

<tsid.all, i> <i>

<i>

<i>

<i>

<tsid.all, i><i, tsid.all>

<i, tsid.all>

<tsid.all, i><i, tsid.all>

<i>

<i>

<i>

<i>

<i>

<i>

<i>

<i>

malicious_reservoir

malC1

malS6

malS5

malS4

CstopAbort

SstopAbort

n9

n8

n7

CgenCertif

CsendTS1

c1

Cstarts4

s5

s6

SstopOK

SreqTS

SgetTS

ScertCS

CstopOK

F
ok

= |SstopOK| = L+ 1 �
|CstopOK| = L+ 1

F

abort

= |SstopAbort| > 0 �
|CstopAbort| > 0

F

abort

= |SstopAbort| > L

2
_

|CstopAbort| > L

2

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

Modeling the protocol (step 1)
7

<i>

<i>
<i>

<i><i>

<i>

<i>

<tsid.all> <i>

<tsid.all>

<tsid.all> <i>

<tsid.all>

<i>

<i>

malicious_reservoir

malS3

malS2

malS1

malA3

malA4

malA2

malA1

n4

n3

n2

n1

Sstart

s2

s3

SsendTS

SackCS

AackCS

AreqCS

AgetTS

AreqTS

a4

a3

a2

a1

Astart

<i>
<i>

<i>

<i>

<tsid.all> <i>

<tsid.all>

<i>

<i>

malicious_reservoir

malS4

malS3

malA5

malA4

SstopAbort

AstopAbort

n6

n5

s3

s4

Sperform

AendCS

AstartCS

a5

a4

AstopOK

<i>

<i>

<tsid.all, i> <i>

<i>

<i>

<i>

<tsid.all, i><i, tsid.all>

<i, tsid.all>

<tsid.all, i><i, tsid.all>

<i>

<i>

<i>

<i>

<i>

<i>

<i>

<i>

malicious_reservoir

malC1

malS6

malS5

malS4

CstopAbort

SstopAbort

n9

n8

n7

CgenCertif

CsendTS1

c1

Cstarts4

s5

s6

SstopOK

SreqTS

SgetTS

ScertCS

CstopOK

F
abort

F
ok

AF (_))

F
ok

= |SstopOK| = L+ 1 �
|CstopOK| = L+ 1

F

abort

= |SstopAbort| > 0 �
|CstopAbort| > 0

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

Verifying the perfect world

About the complexity of the state space
Roughly 10L states

1 state= 13 int + 17 multistep ⇒ memory problem to check for L=32

8

1E+02
1E+04
1E+06
1E+08
1E+10
1E+12
1E+14
1E+16
1E+18
1E+20
1E+22

 2 4 6 8 10 12 14 16 18 20 22

N
um

be
r o

f s
ta

te
s

Leaf set size

Size of the state space

Reachability graph
Symb. reach. graph

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

Verifying the perfect world

About the complexity of the state space
Roughly 10L states

1 state= 13 int + 17 multistep ⇒ memory problem to check for L=32

GreatSPN (use of symmetries)
L=24 fails after 11h45mn of CPU (costly canonisation function)

‣ Implementation limit = size of a hash table

8

1E+02
1E+04
1E+06
1E+08
1E+10
1E+12
1E+14
1E+16
1E+18
1E+20
1E+22

 2 4 6 8 10 12 14 16 18 20 22

N
um

be
r o

f s
ta

te
s

Leaf set size

Size of the state space

Reachability graph
Symb. reach. graph

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

Verifying the perfect world

About the complexity of the state space
Roughly 10L states

1 state= 13 int + 17 multistep ⇒ memory problem to check for L=32

GreatSPN (use of symmetries)
L=24 fails after 11h45mn of CPU (costly canonisation function)

‣ Implementation limit = size of a hash table

PNXDD (decision diagrams + variable ordering)
Unfolding to P/T nets

L=10 fails after 3h20mn (memory overflow > 16GB)

8

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

Verifying the perfect world

About the complexity of the state space
Roughly 10L states

1 state= 13 int + 17 multistep ⇒ memory problem to check for L=32

GreatSPN (use of symmetries)
L=24 fails after 11h45mn of CPU (costly canonisation function)

‣ Implementation limit = size of a hash table

PNXDD (decision diagrams + variable ordering)
Unfolding to P/T nets

L=10 fails after 3h20mn (memory overflow > 16GB)

ITS-Tools (hierarchical decision diagrams)
Completed for L=32 in less than one minute

‣ Handling of symmetries in the system by means of a dedicated encoding

8

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

Verifying the perfect world
8

http://cosyverif.org

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

Probabilistic analysis (step 2)

Classical approach of the domain
Based on p, probability of node failure

‣ Hypotheses required
‣ Diversity routing to avoid coalitions

9

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

Probabilistic analysis (step 2)

Classical approach of the domain
Based on p, probability of node failure

‣ Hypotheses required
‣ Diversity routing to avoid coalitions

Origin of problems
Source 1 → failure of the protocol

‣ No answer to A + no ack to A
‣ Interactions between A, S (leafset)

Source 2 → inappropriate certificate

‣ Lost of a certificate (inconsistency)
‣ Interactions between S (leafset) and C (leafset)

9

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

Probabilistic analysis (step 2)

Classical approach of the domain
Based on p, probability of node failure

‣ Hypotheses required
‣ Diversity routing to avoid coalitions

Origin of problems
Source 1 → failure of the protocol

‣ No answer to A + no ack to A
‣ Interactions between A, S (leafset)

Source 2 → inappropriate certificate

‣ Lost of a certificate (inconsistency)
‣ Interactions between S (leafset) and C (leafset)

9

Numerical applications p = 0.3 («untrusted») P = 0.05 («trusted»)

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

Formulas and experimental values

Protocol failure
More that L/2 nodes are malicious

The formula:

10

PL+1
i=1

�L+1
i

�
pi(1� p)L+1�i �

PL
2
i=1

�L+1
i

�
pi(1� p)L+1�i

at most L+1
malicious nodes

at most L/2
malicious nodes⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

Formulas and experimental values

Protocol failure
More that L/2 nodes are malicious

The formula:

10

PL+1
i=1

�L+1
i

�
pi(1� p)L+1�i �

PL
2
i=1

�L+1
i

�
pi(1� p)L+1�i

at most L+1
malicious nodes

at most L/2
malicious nodes⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠

ASCENT: a formally verified decentralized quasi-certification authority 15

 1.16e-43

 4.1e-14

 1e-06

 0.007

 1 4 8 12 16 20 24 28 32

P
ro

b
a
b
ili

ty

Amount of faulty nodes [k]

DHT 30% of faulty nodesDHT 15% of faulty nodesCORPS 5% of faulty nodes

FIGURE 5.1. Probability to have more than k maliciousnodes

L DHT - p = 0.3 CORPS - p = 0.058 0.188 6.64⇥ 10�5
16 0.079 6.57⇥ 10�8
32 0.016 8.24⇥ 10�14

TABLE 3. Probability of failure of the transaction betweenA and S

From equation 5.6 we can deduce the probability thatS won’t respond to the RequestInit or won’t send thefinal ACKs as

PAS = (1� P>L/2)P>|L|/2 + P>|L|/2PAS = 2P>|L|/2 � P 2
>|L|/2

(5.7)
Table 3 shows the probability of failure between Aand S, for a trustset size of |L| = {8, 16, 32} nodes, andcompares a quasi CA built directly above the DHT toone built above CORPS. We consider that the worstcase is when the malicious nodes represent 30% of theDHT nodes. In this case, the CORPS reduces theprobability of failure for each node of the trustset top = 0.05.

5.2.2. Message complexityFirst, A must get the trustset of S. The associated costis n = 5⇥O(log2b(N)) +Q+ 4 (see section 5.1.2).The number of messages inherent to the transactionitself is given by

n = 2(|L|+ 1)| {z } + r(|L|+ 1)| {z } + |L|+ 1| {z }Init Data ACKs

n = (r + 3)(|L|+ 1)
r corresponds to the number of data messages sentby A to S, and fully depends on the transaction. Thetotal cost is then

ntotal = 5⇥O(log2b(N)) +Q+ 4 + (r + 3)(|L|+ 1)
The total cost only depends on the size L of thetrustset, which is a constant, and O(log(N)). In thebest case,

ntotal = O(log(N)) + (r + 3)(|L|+ 1)
Therefore, the cost of the transaction between A andservice S is scalable when the size N of the TrustedRingincreases.

5.3. Lazy Log Coherency Maintenance
Case 1 - A new node X enters the trustset. Themaintenance of the certificate logs fails if X encountersL
2 erroneous results consecutively when building thenode interval to retrieve the logs, or if more than L

2nodes are malicious and make it impossible to obtainat least L
2 + 1 identical answers.The probability P1of having L

2 consecutive maliciousnodes is given by equation (5.1)

P1 = p|L|/2

The probability of not being able to retrieve at least|L|
2 + 1 identical answers is given by equation (5.6)

P2 = P>|L|/2
Hence the total probability for a maintenanceoperation to fail is

Ptotal = P1 + (1� P1)P2
Case 2 - A node is leaving the trustset. Thecertificate logs cannot be repaired if the node cannotrepair its trustset (ie. add a node on the left or rightside), or if it is impossible to find at least |L|

2 +1 identicalanswers upon downloading the logs.A node cannot repair its trustset if |L|
2 �1 consecutivenodes are malicious with a probability of

P1 = p|L|/2�1

and the download of the logs fails with a probabilityof

P2 = P>|L|/2
Hence the total probability of failure is

Ptotal = P1 + (1� P1)P2

Table 4 gives the results for each probability for avarying trustset size of |L| = {8, 16, 32} nodes.
5.4. Certificate Generation
This section first evaluates the probability of failure ofa Certificate Generation and then assesses its messagecomplexity.

The Computer Journal, Vol. ??, No. ??, ????

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

Formulas and experimental values

Protocol failure
More that L/2 nodes are malicious

The formula:

Inappropriate certificate generation
Two parts

‣ Existence of more L/2 malicious nodes
‣ Unable to retrieve at least L/2 + 1 identical answers

The formula (combines problems between S and C)

10

PL+1
i=1

�L+1
i

�
pi(1� p)L+1�i �

PL
2
i=1

�L+1
i

�
pi(1� p)L+1�i

at most L+1
malicious nodes

at most L/2
malicious nodes⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠

ASCENT: a formally verified decentralized quasi-certification authority 15

 1.16e-43

 4.1e-14

 1e-06

 0.007

 1 4 8 12 16 20 24 28 32

P
ro

b
a
b
ili

ty

Amount of faulty nodes [k]

DHT 30% of faulty nodesDHT 15% of faulty nodesCORPS 5% of faulty nodes

FIGURE 5.1. Probability to have more than k maliciousnodes

L DHT - p = 0.3 CORPS - p = 0.058 0.188 6.64⇥ 10�5
16 0.079 6.57⇥ 10�8
32 0.016 8.24⇥ 10�14

TABLE 3. Probability of failure of the transaction betweenA and S

From equation 5.6 we can deduce the probability thatS won’t respond to the RequestInit or won’t send thefinal ACKs as

PAS = (1� P>L/2)P>|L|/2 + P>|L|/2PAS = 2P>|L|/2 � P 2
>|L|/2

(5.7)
Table 3 shows the probability of failure between Aand S, for a trustset size of |L| = {8, 16, 32} nodes, andcompares a quasi CA built directly above the DHT toone built above CORPS. We consider that the worstcase is when the malicious nodes represent 30% of theDHT nodes. In this case, the CORPS reduces theprobability of failure for each node of the trustset top = 0.05.

5.2.2. Message complexityFirst, A must get the trustset of S. The associated costis n = 5⇥O(log2b(N)) +Q+ 4 (see section 5.1.2).The number of messages inherent to the transactionitself is given by

n = 2(|L|+ 1)| {z } + r(|L|+ 1)| {z } + |L|+ 1| {z }Init Data ACKs

n = (r + 3)(|L|+ 1)
r corresponds to the number of data messages sentby A to S, and fully depends on the transaction. Thetotal cost is then

ntotal = 5⇥O(log2b(N)) +Q+ 4 + (r + 3)(|L|+ 1)
The total cost only depends on the size L of thetrustset, which is a constant, and O(log(N)). In thebest case,

ntotal = O(log(N)) + (r + 3)(|L|+ 1)
Therefore, the cost of the transaction between A andservice S is scalable when the size N of the TrustedRingincreases.

5.3. Lazy Log Coherency Maintenance
Case 1 - A new node X enters the trustset. Themaintenance of the certificate logs fails if X encountersL
2 erroneous results consecutively when building thenode interval to retrieve the logs, or if more than L

2nodes are malicious and make it impossible to obtainat least L
2 + 1 identical answers.The probability P1of having L

2 consecutive maliciousnodes is given by equation (5.1)

P1 = p|L|/2

The probability of not being able to retrieve at least|L|
2 + 1 identical answers is given by equation (5.6)

P2 = P>|L|/2
Hence the total probability for a maintenanceoperation to fail is

Ptotal = P1 + (1� P1)P2
Case 2 - A node is leaving the trustset. Thecertificate logs cannot be repaired if the node cannotrepair its trustset (ie. add a node on the left or rightside), or if it is impossible to find at least |L|

2 +1 identicalanswers upon downloading the logs.A node cannot repair its trustset if |L|
2 �1 consecutivenodes are malicious with a probability of

P1 = p|L|/2�1

and the download of the logs fails with a probabilityof

P2 = P>|L|/2
Hence the total probability of failure is

Ptotal = P1 + (1� P1)P2

Table 4 gives the results for each probability for avarying trustset size of |L| = {8, 16, 32} nodes.
5.4. Certificate Generation
This section first evaluates the probability of failure ofa Certificate Generation and then assesses its messagecomplexity.

The Computer Journal, Vol. ??, No. ??, ????

1� (1� P>L
2
)2

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

Formulas and experimental values

Protocol failure
More that L/2 nodes are malicious

The formula:

Inappropriate certificate generation
Two parts

‣ Existence of more L/2 malicious nodes
‣ Unable to retrieve at least L/2 + 1 identical answers

The formula (combines problems between S and C)

10

PL+1
i=1

�L+1
i

�
pi(1� p)L+1�i �

PL
2
i=1

�L+1
i

�
pi(1� p)L+1�i

at most L+1
malicious nodes

at most L/2
malicious nodes⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠

ASCENT: a formally verified decentralized quasi-certification authority 15

 1.16e-43

 4.1e-14

 1e-06

 0.007

 1 4 8 12 16 20 24 28 32

P
ro

b
a
b
ili

ty

Amount of faulty nodes [k]

DHT 30% of faulty nodesDHT 15% of faulty nodesCORPS 5% of faulty nodes

FIGURE 5.1. Probability to have more than k maliciousnodes

L DHT - p = 0.3 CORPS - p = 0.058 0.188 6.64⇥ 10�5
16 0.079 6.57⇥ 10�8
32 0.016 8.24⇥ 10�14

TABLE 3. Probability of failure of the transaction betweenA and S

From equation 5.6 we can deduce the probability thatS won’t respond to the RequestInit or won’t send thefinal ACKs as

PAS = (1� P>L/2)P>|L|/2 + P>|L|/2PAS = 2P>|L|/2 � P 2
>|L|/2

(5.7)
Table 3 shows the probability of failure between Aand S, for a trustset size of |L| = {8, 16, 32} nodes, andcompares a quasi CA built directly above the DHT toone built above CORPS. We consider that the worstcase is when the malicious nodes represent 30% of theDHT nodes. In this case, the CORPS reduces theprobability of failure for each node of the trustset top = 0.05.

5.2.2. Message complexityFirst, A must get the trustset of S. The associated costis n = 5⇥O(log2b(N)) +Q+ 4 (see section 5.1.2).The number of messages inherent to the transactionitself is given by

n = 2(|L|+ 1)| {z } + r(|L|+ 1)| {z } + |L|+ 1| {z }Init Data ACKs

n = (r + 3)(|L|+ 1)
r corresponds to the number of data messages sentby A to S, and fully depends on the transaction. Thetotal cost is then

ntotal = 5⇥O(log2b(N)) +Q+ 4 + (r + 3)(|L|+ 1)
The total cost only depends on the size L of thetrustset, which is a constant, and O(log(N)). In thebest case,

ntotal = O(log(N)) + (r + 3)(|L|+ 1)
Therefore, the cost of the transaction between A andservice S is scalable when the size N of the TrustedRingincreases.

5.3. Lazy Log Coherency Maintenance
Case 1 - A new node X enters the trustset. Themaintenance of the certificate logs fails if X encountersL
2 erroneous results consecutively when building thenode interval to retrieve the logs, or if more than L

2nodes are malicious and make it impossible to obtainat least L
2 + 1 identical answers.The probability P1of having L

2 consecutive maliciousnodes is given by equation (5.1)

P1 = p|L|/2

The probability of not being able to retrieve at least|L|
2 + 1 identical answers is given by equation (5.6)

P2 = P>|L|/2
Hence the total probability for a maintenanceoperation to fail is

Ptotal = P1 + (1� P1)P2
Case 2 - A node is leaving the trustset. Thecertificate logs cannot be repaired if the node cannotrepair its trustset (ie. add a node on the left or rightside), or if it is impossible to find at least |L|

2 +1 identicalanswers upon downloading the logs.A node cannot repair its trustset if |L|
2 �1 consecutivenodes are malicious with a probability of

P1 = p|L|/2�1

and the download of the logs fails with a probabilityof

P2 = P>|L|/2
Hence the total probability of failure is

Ptotal = P1 + (1� P1)P2

Table 4 gives the results for each probability for avarying trustset size of |L| = {8, 16, 32} nodes.
5.4. Certificate Generation
This section first evaluates the probability of failure ofa Certificate Generation and then assesses its messagecomplexity.

The Computer Journal, Vol. ??, No. ??, ????

1�
⇣
1�

PL+1
i=1

�L+1
i

�
pi(1� p)L+1�i +

PL
2
i=1

�L+1
i

�
pi(1� p)L+1�i

⌘2

1� (1� P>L
2
)2

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

Formulas and experimental values

Protocol failure
More that L/2 nodes are malicious

The formula:

Inappropriate certificate generation
Two parts

‣ Existence of more L/2 malicious nodes
‣ Unable to retrieve at least L/2 + 1 identical answers

The formula (combines problems between S and C)

10

PL+1
i=1

�L+1
i

�
pi(1� p)L+1�i �

PL
2
i=1

�L+1
i

�
pi(1� p)L+1�i

at most L+1
malicious nodes

at most L/2
malicious nodes⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠

ASCENT: a formally verified decentralized quasi-certification authority 15

 1.16e-43

 4.1e-14

 1e-06

 0.007

 1 4 8 12 16 20 24 28 32

P
ro

b
a
b
ili

ty

Amount of faulty nodes [k]

DHT 30% of faulty nodesDHT 15% of faulty nodesCORPS 5% of faulty nodes

FIGURE 5.1. Probability to have more than k maliciousnodes

L DHT - p = 0.3 CORPS - p = 0.058 0.188 6.64⇥ 10�5
16 0.079 6.57⇥ 10�8
32 0.016 8.24⇥ 10�14

TABLE 3. Probability of failure of the transaction betweenA and S

From equation 5.6 we can deduce the probability thatS won’t respond to the RequestInit or won’t send thefinal ACKs as

PAS = (1� P>L/2)P>|L|/2 + P>|L|/2PAS = 2P>|L|/2 � P 2
>|L|/2

(5.7)
Table 3 shows the probability of failure between Aand S, for a trustset size of |L| = {8, 16, 32} nodes, andcompares a quasi CA built directly above the DHT toone built above CORPS. We consider that the worstcase is when the malicious nodes represent 30% of theDHT nodes. In this case, the CORPS reduces theprobability of failure for each node of the trustset top = 0.05.

5.2.2. Message complexityFirst, A must get the trustset of S. The associated costis n = 5⇥O(log2b(N)) +Q+ 4 (see section 5.1.2).The number of messages inherent to the transactionitself is given by

n = 2(|L|+ 1)| {z } + r(|L|+ 1)| {z } + |L|+ 1| {z }Init Data ACKs

n = (r + 3)(|L|+ 1)
r corresponds to the number of data messages sentby A to S, and fully depends on the transaction. Thetotal cost is then

ntotal = 5⇥O(log2b(N)) +Q+ 4 + (r + 3)(|L|+ 1)
The total cost only depends on the size L of thetrustset, which is a constant, and O(log(N)). In thebest case,

ntotal = O(log(N)) + (r + 3)(|L|+ 1)
Therefore, the cost of the transaction between A andservice S is scalable when the size N of the TrustedRingincreases.

5.3. Lazy Log Coherency Maintenance
Case 1 - A new node X enters the trustset. Themaintenance of the certificate logs fails if X encountersL
2 erroneous results consecutively when building thenode interval to retrieve the logs, or if more than L

2nodes are malicious and make it impossible to obtainat least L
2 + 1 identical answers.The probability P1of having L

2 consecutive maliciousnodes is given by equation (5.1)

P1 = p|L|/2

The probability of not being able to retrieve at least|L|
2 + 1 identical answers is given by equation (5.6)

P2 = P>|L|/2
Hence the total probability for a maintenanceoperation to fail is

Ptotal = P1 + (1� P1)P2
Case 2 - A node is leaving the trustset. Thecertificate logs cannot be repaired if the node cannotrepair its trustset (ie. add a node on the left or rightside), or if it is impossible to find at least |L|

2 +1 identicalanswers upon downloading the logs.A node cannot repair its trustset if |L|
2 �1 consecutivenodes are malicious with a probability of

P1 = p|L|/2�1

and the download of the logs fails with a probabilityof

P2 = P>|L|/2
Hence the total probability of failure is

Ptotal = P1 + (1� P1)P2

Table 4 gives the results for each probability for avarying trustset size of |L| = {8, 16, 32} nodes.
5.4. Certificate Generation
This section first evaluates the probability of failure ofa Certificate Generation and then assesses its messagecomplexity.

The Computer Journal, Vol. ??, No. ??, ????

1�
⇣
1�

PL+1
i=1

�L+1
i

�
pi(1� p)L+1�i +

PL
2
i=1

�L+1
i

�
pi(1� p)L+1�i

⌘2

1� (1� P>L
2
)2

L DHT - p = 0.3 CORPS - p = 0.058 0.216 4.97⇥ 10�416 0.075 3.50⇥ 10�832 0.014 4.24⇥ 10�13

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

Conclusion

Quasi-certification entity (elaboration + verification)
Low probability of failure + Good message complexity (not discussed)

11

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

Conclusion

Quasi-certification entity (elaboration + verification)
Low probability of failure + Good message complexity (not discussed)

11

Application to digital tax filling in France

‣ 36.5 M revenues declarations (in 2012)
‣ a wrong tax certificate every 5132 years
‣ lost of a tax certificate every 997 years

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

Conclusion

Quasi-certification entity (elaboration + verification)
Low probability of failure + Good message complexity (not discussed)

3 years of work (details recently fixed)
‣ Work partially published in TrustCom’2013
‣ Without formal proof (there was yet glitches details with hypotheses)

11

Application to digital tax filling in France

‣ 36.5 M revenues declarations (in 2012)
‣ a wrong tax certificate every 5132 years
‣ lost of a tax certificate every 997 years

F.
 K

or
do

n
-

U
ni

ve
rs

it
é

P.
 &

 M
. C

ur
ie

 -
 C

C
20

16

Conclusion

Quasi-certification entity (elaboration + verification)
Low probability of failure + Good message complexity (not discussed)

3 years of work (details recently fixed)
‣ Work partially published in TrustCom’2013
‣ Without formal proof (there was yet glitches details with hypotheses)

Realistic problem with applicability to e-government
Probably numerous applications in the future

The model is now a metric for the Model Checking Contest

Potential applicability for Symmetric Nets with Bags

‣ Excellent playground for this type of problems

11

Application to digital tax filling in France

‣ 36.5 M revenues declarations (in 2012)
‣ a wrong tax certificate every 5132 years
‣ lost of a tax certificate every 997 years

