
SQLite	with	a	
Fine-Toothed	Comb	

	
John	Regehr	

Trust-in-So1	/	University	of	Utah	

Feasible	states	for	a	
system	we	care	about	

Feasible	states	for	a	
system	we	care	about	

Some	execu<on	
reaches	this	state	

No	execu<on	
reaches	this	state	

Ini<al	state	

Feasible	states	

Figuring	out	whether	an	arbitrary	state	is	
feasible	is	very,	very	hard	

Feasible	states	

Feasible	states	

Erroneous	
states	

Feasible	states	

Erroneous	
states	

BUG!!!	

Verifica<on	

Verifica<on	

Verifica<on	

Alarm	

Alarm	

Alarm	

Alarm	

Alarm	

Alarm	

Tes<ng	

Tes<ng	

Tes<ng	

Tes<ng	

Tes<ng	

AHA!	

•  Tes8ng	is	unsa8sfying	because	it	gives	no	
guarantees	
–  In	prac8ce,	tes8ng	almost	invariably	misses	
cri8cal	bugs	

– Even	microprocessors	and	rockets	ship	with	
nasty	bugs	

However,	it	always	makes	sense	to	do	tes8ng	
first,	verifica8on	second	
•  Of	course	we	need	to	be	con8nuously	tes8ng	
our	so1ware	anyway	

•  Finding	bugs	during	verifica8on	makes	
verifica8on	more	difficult	
– We	want	verifica8on	to	be	about	proving	absence	
of	bugs,	not	about	finding	bugs	

•  8s-interpreter	lets	us	detect	a	wide	variety	of	
very	subtle	undefined	behaviors	(UBs)	in	C	
code	as	a	side	effect	of	normal	tes8ng	

An	undefined	behavior	in	C	and	C++	(and	other	
languages)	is	a	program	error	that	
–  Is	not	caught	by	the	compiler	or	run8me	library	
–  Is	assumed	to	not	happen	by	the	compiler	
–  Invalidates	all	guarantees	made	by	the	compiler	
Basically	all	non-trivial	C	and	C++	programs	execute	
undefined	behaviors	
– Thus,	according	to	the	standards,	almost	all	C	and	
C++	programs	are	meaningless	

–  Including,	for	example,	most	of	the	SPEC	CPU	
2006	benchmarks	

•  This	func8on	executes	undefined	behavior:

int foo(int x, int y) {
 return (x + y) >> 32;
}	

•  This	func8on	executes	undefined	behavior:

int foo(int x, int y) {
 return (x + y) >> 32;
}	

Latest	version	of	LLVM	emits:	
	
foo:
 retq

•  Most	safety-cri8cal	and	security	cri8cal	
so1ware	is	wriZen	in	C	and	C++	

•  Undefined	behavior	is	a	huge	problem	
– Responsible	for	a	large	frac8on	of	major	security	
problems	over	the	last	20	years	

•  The	solu8on	is	tools	
– Sta8c	analysis	to	find	bugs	at	compile	8me	
– Dynamic	analysis	to	find	bugs	at	run8me	

All	UBs	

UBs	found	by	
	<s-interpreter	

UBs	found	by		
ASan	or	Valgrind	

UBs	found	
by	UBSan	

varargs	bugs	

comparisons	of	
unrelated	pointers	

uses	(not	dereferences)	
of	invalid	pointers	 signed	integer	

overflows	
OOB	array	accesses	

viola<ons	of	
strict	aliasing	

infinite	loops	
w/o	side	effects	

double	frees,	
uses	aRer	free	

unsequenced	
variable	accesses	

We’ve	been	applying	8s-interpreter	to	widely	
used,	security-cri8cal	open	source	libraries	
•  Crypto	
– PolarSSL,	OpenSSL,	LibreSSL,	s2n	

•  File	processing		
–  libjpeg,	libpng,	libwebp,	bzip,	zlib	

•  Databases	
– SQLite	

Where	do	we	get	test	cases?	
•  Test	suites	
•  afl-fuzz	

SQLite	
•  Open	source	embedded	SQL	database	
•  ~113,000	lines	of	C	
•  Most	widely	deployed	SQL	database	(probably	
by	mul8ple	orders	of	magnitude)	

•  One	of	the	most	widely	deployed	so1ware	
packages	period	
– Most	phones,	web	browser	instances,	smart	TVs,	
set	top	boxes	contain	at	least	one	instance	

•  hZps://www.sqlite.org	

SQLite	is	extensively	tested	
•  Test	cases	are	wriZen	by	hand	
–  100%	MC/DC	coverage!	
–  Every	entry	and	exit	point	is	invoked	
–  Every	decision	takes	every	outcome	
–  Every	condi8on	in	a	decision	takes	every	outcome	
–  Every	condi8on	in	a	decision	is	shown	to	
independently	affect	the	outcome	of	the	decision	

•  Test	cases	are	generated	automa8cally	by	fuzzers	
•  hZps://www.sqlite.org/tes8ng.html	
•  Execu8ons	are	examined	by	checking	tools	such	
as	Valgrind	

Are	there	problems	in	SQLite	le1	for	us	to	find?	

Library	func8ons	such	as	memcpy()	and	
memset()	assume	that	their	pointer	arguments	
are	non-null	
•  SQLite	some8mes	calls	these	func8ons	with	
null	arguments	

	
void foo(char *p1, char *p2, size_t n) {
 memcpy(p1, p2, n);
 if (!p1)
 error_handler();
}

Library	func8ons	such	as	memcpy()	and	
memset()	assume	that	their	pointer	arguments	
are	non-null	
•  SQLite	some8mes	calls	these	func8ons	with	
null	arguments	

	
void foo(char *p1, char *p2, size_t n) {
 memcpy(p1, p2, n);
 if (!p1)
 error_handler();
}

Code	generated	by	GCC:	
	
foo:
 jmp memcpy

int sqlite3_config(int op, ...) {
 …
 var1 = va_arg(ap, void *);
 var2 = va_arg(ap, void *);
 …
}

	
OK	to	call	like	this?	

sqlite3_config(CONFIG_LOG, 0, pLog);

int sqlite3_config(int op, ...) {
 …
 var1 = va_arg(ap, void *);
 var2 = va_arg(ap, void *);
 …
}

	
Correct	call:	

sqlite3_config(CONFIG_LOG, (void *)0, pLog);

How	can	this	kind	of	bug	go	undetected?	

int sqlite3_config(int op, ...) {
 …
 var1 = va_arg(ap, void *);
 var2 = va_arg(ap, void *);
 …
}

	
Correct	call:	

sqlite3_config(CONFIG_LOG, (void *)0, pLog);

How	can	this	kind	of	bug	go	undetected?	

On	x86:	
•  int	and	pointer	are	the	same	size	
•  Integer	0	and	null	pointer	have	the	same	
representa8on	

•  No	problem!	
On	x86-64:	
•  int	has	size	4	and	pointer	has	size	8	
•  First	six	integer	arguments	are	passed	in	registers	
•  No	problem!	
On	other	planorms,	memory	corrup8on	is	possible	

•  Many	occurrences	of	integer	zero	values	being	
passed	as	null	pointers	

•  Also,	a	few	other	bugs	such	as	more	
arguments	being	popped	than	pushed	

•  Are	varargs	bugs	common?	
– We	don’t	know	
– Bugs	in	calls	to	variadic	standard	library	func8ons	
are	caught	by	custom	compiler	warnings	

– Bugs	in	user-wriZen	variadic	code	get	no	checking	
whatsoever	

C	does	not	ini8alize	func8on-scoped	variables	
Valgrind	tracks	ini8aliza8on	at	bit	level,	allowing	
detec8on	of	accesses	to	unini8alized	storage	
•  But	Valgrind	analyzes	compiled	code	
•  The	compiler	can	hide	errors,	for	example	by	
reusing	stack	memory	that	was	already	
ini8alized	

tis-interpreter	always	finds	these	bugs	
–  Including	several	in	SQLite	

int dummy;
some sort of loop {
 ...
 // we don't care about function()’s
 // return value (but its other
 // callers might)
 dummy += function();
 ...
}
// dummy is not used again

A	pointer	in	C	becomes	illegal	to	use	once	the	
storage	to	which	it	points	is	freed	
•  We	found	many	loca8ons	where	SQLite	frees	
memory	and	then	con8nues	to	use	the	invalid	
pointers	

	
req1_malloc02_alignment(p, z);
sqlite3_realloc(z, 0);
th3testCheckTrue(p, z!=0);

Crea8ng	a	pointer	ahead	of	or	more	than	one	
element	past	the	end	of	a	block	of	storage	is	
illegal	in	C	
	
int a[10];
int *p1 = &a[-1]; // illegal
int *p2 = &a[9]; // pointer to last element
int *p3 = &a[10]; // OK (one past the end)
int *p4 = &a[11]; // illegal

SQLite	computed	illegal	pointers…	
•  On	purpose:	systema8c	use	of	pointers	to	
array[-1]	
– 1-based	array	indexing	w/o	was8ng	RAM	

•  Accidentally,	as	part	of	input	valida8on	
– This	error	is	seen	in	almost	all	C	code	

Result	of	tes8ng	SQLite	using	8s-interpreter:	
•  Many	bugs	fixed	
•  Developers	are	now	more	aware	of	subtle8es	
of	the	C	standard	
– They	had	been	wri8ng	“1990s	C	code”	which	
ignores	many	undefined	behaviors	

•  The	C	language	is	full	of	subtle	undefined	
behaviors	
– Some	are	directly	harmful	
– Others	maZer	because	compilers	assume	they	will	
not	happen	

•  8s-interpreter	makes	tes8ng	work	beZer	by	
using	exis8ng	test	cases	to	find	these	bugs	

•  Tes8ng	using	8s-interpreter	is	a	very	useful	
prelude	to	formal	verifica8on	

•  8s-interpreter	is	open	source	
– hZp://trust-in-so1.com/8s-interpreter/	

