
Efficient Malware Detection using
Model-Checking

Tayssir Touili

LIPN, CNRS & Univ. Paris 13

Motivation: Malware Detection
• The number of new malware exceeds 75 million by the end of 2011, and is still

increasing.
• The number of malware that produced incidents in 2010 is more than 1.5 billion.
• The worm MyDoom slowed down global internet access by 10% in 2004.
• Authorities investigating the 2008 crash of Spanair flight 5022 have discovered a

central computer system used to monitor technical problems in the aircraft was
infected with malware

Motivation: Malware Detection
• The number of new malware exceeds 75 million by the end of 2011, and is still

increasing.
• The number of malware that produced incidents in 2010 is more than 1.5 billion.
• The worm MyDoom slowed down global internet access by 10% in 2004.
• Authorities investigating the 2008 crash of Spanair flight 5022 have discovered a

central computer system used to monitor technical problems in the aircraft was
infected with malware

 Malware detection is
important!!

Limitations of classic anti-virus
techniques

• Signature (pattern) matching: Every known malware
has one signature

Limitations of classic anti-virus
techniques

• Signature (pattern) matching: Every known malware
has one signature
o Easy to get around
o New variants of viruses with the same behavior cannot

be detected by these techniques
o Nop insertion, code reordering, variable renaming, etc
o Virus writers frequently update there viruses to make

them undetectable

Limitations of classic anti-virus
techniques

• Signature (pattern) matching: Every known malware
has one signature
o Easy to get around
o New variants of viruses with the same behavior cannot

be detected by these techniques
o Nop insertion, code reordering, variable renaming, etc
o Virus writers frequently update there viruses to make

them undetectable
• Code emulation: Executes binary code in a virtual

environment

Limitations of classic anti-virus
techniques

• Signature (pattern) matching: Every known malware
has one signature
o Easy to get around
o New variants of viruses with the same behavior cannot

be detected by these techniques
o Nop insertion, code reordering, variable renaming, etc
o Virus writers frequently update there viruses to make

them undetectable
• Code emulation: Executes binary code in a virtual

environment
o Checks program’s behavior only in a limited time interval

Limitations of classic anti-virus
techniques

• Signature (pattern) matching: Every known malware has one
signature
o Easy to get around
o New variants of viruses with the same behavior cannot be detected by

these techniques
o Nop insertion, code reordering, variable renaming, etc
o Virus writers frequently update there viruses to make them undetectable

• Code emulation: Executes binary code in a virtual environment
o Checks program’s behavior only in a limited time interval

 Solution:
Check the behavior (not the syntax) of

the program without executing it

Limitations of classic anti-virus
techniques

• Signature (pattern) matching: Every known malware has one
signature
o Easy to get around
o New variants of viruses with the same behavior cannot be detected by

these techniques
o Nop insertion, code reordering, variable renaming, etc
o Virus writers frequently update there viruses to make them undetectable

• Code emulation: Executes binary code in a virtual environment
o Checks program’s behavior only in a limited time interval

 Solution:
Check the behavior (not the syntax) of

the program without executing it

 Model Checking is a good candidate

Goal: Model-checking for malware
detection

Goal: Model-checking for malware
detection

 Binary code ╞ Malicious behavior ?

Goal: Model-checking for malware
detection

 Binary code ╞ Malicious behavior ?

 Model?

Goal: Model-checking for malware
detection

 Binary code ╞ Malicious behavior ?

 Model? Specification
formalism?

Goal: Model-checking for malware
detection

Existing works: use finite automata to model the
programs

 Binary code ╞ Malicious behavior ?

 Model? Specification
formalism?

Goal: Model-checking for malware
detection

Existing works: use finite automata to model the
programs

Stack?

 Binary code ╞ Malicious behavior ?

 Model? Specification
formalism?

Stack: important for malware detection

• To achieve their goal, malware have to call functions of
the operating system
• Antiviruses determine malware by checking the calls
to the operating systems.
• Virus writers try to hide these calls.

Stack: important for malware detection

• To achieve their goal, malware have to call functions of
the operating system
• Antiviruses determine malware by checking the calls
to the operating systems.
• Virus writers try to hide these calls.

L0 : call f
L1: …
 …
…
f : function f

L0 : push L1
L’0: jmp f
L1: …
 …
 …
f : function f

Stack: important for malware detection

• To achieve their goal, malware have to call functions of
the operating system
• Antiviruses determine malware by checking the calls
to the operating systems.
• Virus writers try to hide these calls.

L0 : call f
L1: …
 …
…
f : function f

L0 : push L1
L’0: jmp f
L1: …
 …
 …
f : function f

 Important to analyse the program’s
stack

Stack: important for malware detection

• To achieve their goal, malware have to call functions of
the operating system
• Antiviruses determine malware by checking the calls
to the operating systems.
• Virus writers try to hide these calls.

L0 : call f
L1: …
 …
…
f : function f

L0 : push L1
L’0: jmp f
L1: …
 …
 …
f : function f

 Important to analyse the program’s
stack

 Solution:
Use pushdown systems to model

programs

Goal: Model-checking for malware
detection

 Binary code ╞ Malicious behavior ?

 Pushdown
Systems

 Specification
formalism?

Goal: Model-checking for malware
detection

 Binary code ╞ Malicious behavior ?

 Pushdown
Systems

 Specification
formalism?

Specification of malicious behaviors?
Example: fragment of email worm Avron

Call the API GetModuleHandleA
with 0 as parameter.
This returns the entry address of its
own executable.
Copy itself to other locations.

mov eax, 0
push eax
call GetModuleHandleA

Specification of malicious behaviors?
Example: fragment of email worm Avron

Call the API GetModuleHandleA
with 0 as parameter.
This returns the entry address of its
own executable.
Copy itself to other locations.

mov eax, 0
push eax
call GetModuleHandleA

How to describe this specification?

Specification of malicious behaviors?
Example: fragment of email worm Avron

mov eax, 0
push eax
call GetModuleHandleA

In CTL (Branching-time temporal logic) :
mov(eax,0)˄EX (push(eax)˄EX call GetModuleHandleA)

Specification of malicious behaviors?
Example: fragment of email worm Avron

mov eax, 0
push eax
call GetModuleHandleA

In CTL (Branching-time temporal logic) :
mov(eax,0)˄EX (push(eax)˄EX call GetModuleHandleA)

EX p: there is a path where p holds at the next state

p
EX p

Specification of malicious behaviors?
Example: fragment of email worm Avron

mov eax, 0
push eax
call GetModuleHandleA

In CTL (Branching-time temporal logic) :
mov(eax,0)˄EX (push(eax)˄EX call GetModuleHandleA)

˅
mov(ebx,0)˄EX (push(ebx)˄EX call GetModuleHandleA)

˅
mov(ecx,0)˄EX (push(ecx)˄EX call GetModuleHandleA)

˅ ….. all the other registers

EX p: there is a path where p holds at the next state

p
EX p

Specification of malicious behaviors?
Example: fragment of email worm Avron

mov eax, 0
push eax
call GetModuleHandleA

In CTL (Branching-time temporal logic) :
mov(eax,0)˄EX (push(eax)˄EX call GetModuleHandleA)

˅
mov(ebx,0)˄EX (push(ebx)˄EX call GetModuleHandleA)

˅
mov(ecx,0)˄EX (push(ecx)˄EX call GetModuleHandleA)

˅ ….. all the other registers

EX p: there is a path where p holds at the next state

p
EX p

Huge!

Specification of malicious behaviors?
Example: fragment of email worm Avron

mov eax, 0
push eax
call GetModuleHandleA

In CTL:
mov(eax,0)˄EX (push(eax)˄EX callGetModuleHandleA)

˅
mov(ebx,0)˄EX (push(ebx)˄EX callGetModuleHandleA)

˅
mov(ecx,0)˄EX (push(ecx)˄EX callGetModuleHandleA)

˅ ….. all the other registers

∀∃,
 CTPL = CTL +
 variables +

Specification of malicious behaviors?
Example: fragment of email worm Avron

mov eax, 0
push eax
call GetModuleHandleA

In CTL:
mov(eax,0)˄EX (push(eax)˄EX callGetModuleHandleA)

˅
mov(ebx,0)˄EX (push(ebx)˄EX callGetModuleHandleA)

˅
mov(ecx,0)˄EX (push(ecx)˄EX callGetModuleHandleA)

˅ ….. all the other registers

∀∃,
 CTPL = CTL +
 variables +

In CTPL:
 ᴲ r (mov(r,0)˄EX (push(r)˄ EX call GetModuleHandleA))

Specification of malicious behaviors?
Example: fragment of email worm Avron

mov eax, 0
push eax
call GetModuleHandleA

In CTL:
mov(eax,0)˄EX (push(eax)˄EX callGetModuleHandleA)

˅
mov(ebx,0)˄EX (push(ebx)˄EX callGetModuleHandleA)

˅
mov(ecx,0)˄EX (push(ecx)˄EX callGetModuleHandleA)

˅ ….. all the other registers

∀∃,
 CTPL = CTL +
 variables +

In CTPL:
 ᴲ r (mov(r,0)˄EX (push(r)˄ EX call GetModuleHandleA))

 CTPL cannot describe the stack:
needed for malicious behaviors

description

Specification of malicious behaviors?
Example: fragment of email worm Avron

In CTPL:
 ᴲ r (mov(r,0)˄EX (push(r)˄ EX call GetModuleHandleA))

mov eax, 0
push eax
call GetModuleHandleA

Call the API GetModuleHandleA
with 0 as parameter.
This returns the entry address of its
own executable.
Copy itself to other locations.

Specification of malicious behaviors?
Example: fragment of email worm Avron

In CTPL:
 ᴲ r (mov(r,0)˄EX (push(r)˄ EX call GetModuleHandleA))

mov eax, 0
push ebx
pop ebx
push eax
call GetModuleHandleA

Call the API GetModuleHandleA
with 0 as parameter.
This returns the entry address of its
own executable.
Copy itself to other locations.

Specification of malicious behaviors?
Example: fragment of email worm Avron

In CTPL:
 ᴲ r (mov(r,0)˄EX (push(r)˄ EX call GetModuleHandleA))

mov eax, 0
push ebx
pop ebx
push eax
call GetModuleHandleA

Call the API GetModuleHandleA
with 0 as parameter.
This returns the entry address of its
own executable.
Copy itself to other locations.

Our solution: Consider predicates over the stack

Specification of malicious behaviors?
Example: fragment of email worm Avron

In CTPL:
 ᴲ r (mov(r,0)˄EX (push(r)˄ EX call GetModuleHandleA))

mov eax, 0
push ebx
pop ebx
push eax
call GetModuleHandleA

Call the API GetModuleHandleA
with 0 as parameter.
This returns the entry address of its
own executable.
Copy itself to other locations.

Our solution: Consider predicates over the stack

In SCTPL:
 EF (call GetModuleHandleA ˄ (head_stack = 0))

EF p: there is a path where p holds in the future

Expressing Obfuscated Calls in SCTPL

L0 : call f
L: …
 …
…
f : function f

L0 : push L
L’0: jmp f
L: …
 …
 …
f : function f

Expressing Obfuscated Calls in SCTPL

L0 : call f
L: …
 …
…
f : function f

L0 : push L
L’0: jmp f
L: …
 …
 …
f : function f

ᴲL (E !(ᴲ f call(f) ˄ AX (head_stack=L))
U (ret ˄ (head_stack= L)))

Expressing Obfuscated Calls in SCTPL

L0 : call f
L: …
 …
…
f : function f

L0 : push L1
L’0: jmp f
L: …
 …
 …
f : function f

ᴲL (E !(ᴲ f call(f) ˄ AX (head_stack=L))
U (ret ˄ (head_stack= L)))

L is not a return address of a function call

Expressing Obfuscated returns in SCTPL

L0 : call f
a : …
 …
f: …
 …
 pop eax
 jmp eax

h_s=
a

h_s=
a

h_s : head-stack

!

Expressing Appending Viruses in SCTPL

L0 : call f
a :
…
f: pop eax

An appending virus append itself at the end of the host file
The virus has to compute its address in memory

h_s
= a

h_s
= a

h_s : head-stack

Goal: Model-checking for malware
detection

 Binary code ╞ Malicious behavior ?

Goal: Model-checking for malware
detection

 Binary code ╞ Malicious behavior ?

 Pushdown
Systems SCTPL

Goal: Model-checking for malware
detection

 Binary code ╞ Malicious behavior ?

 Pushdown
Systems SCTPL

 Pushdown System╞ SCTPL ?

SCTPL model-checking for Pushdown Systems

Non trivial: stack can be unbounded

SCTPL model-checking for Pushdown Systems

Non trivial: stack can be unbounded

Theorem: Given a Pushdown System P and a SCTPL
formula ᵠ, whether P satisfies ᵠ can be effectively
decided.

Implementation

 We implemented our techniques in a tool for virus
detection

IdaPro
+

Jakstab

CFGBinary Code
Translator

PDS

Model-checking
engine

Malware behaviors
as SCTPL formulas

YES/NO

Experiments of POMMADE

1. Our tool was able to detect more than 800 malwares

2.We checked 400 real benign programs from
Windows XP system. Benign programs are proved
benign with only three false positives.

3.Our tool was able to detect all the 200 new
malwares generated by two malware creators

4.Analyze the Flame malware that was not detected
for more than 5 years by any anti-virus

Our tool vs. known anti-viruses
NGVCK and VCL32 malware generators
1.generate 200 new malwares
2. the best malware generators
3.generate complex malwares

Gener
ator

No.
Of

Vari
ant
s

PO
MM
ADE

Avi
ra

Kasp
ersk

y
Ava
st

Qiho
o

360
McA
fee AVG BitDef

ender

Eset
Nod3

2

F-
Sec
ure

Nort
on

Pan
da

Tre
nd

Micr
o

NGVC
K 100 100

% 0% 23% 18
% 68% 100

% 11% 97% 81% 0% 46% 0% 0%

VCL32 100 100
% 0% 2% 100

% 99% 0% 100
% 100% 76% 0% 30% 0% 0%

Analyze The Flame Malware
 Flame is being used for targeted cyber

espionage in Middle Eastern countries.
 It can
1.sniff the network traffic
2.take screenshots
3.record audio conversations
4.intercept the keyboard
5.and so on
It was not detected by any anti-virus for 5 years

Analyze The Flame Malware
 Flame is being used for targeted cyber

espionage in Middle Eastern countries.
 It can
1.sniff the network traffic
2.take screenshots
3.record audio conversations
4.intercept the keyboard
5.and so on
It was not detected by any anti-virus for 5 years

Our tool can detect this malware Flame

Conclusion

• We introduced a new logic SCTPL to precisely specify malicious
behaviors

• We proposed efficient SCTPL model-checking algorithms for
pushdown systems.

• We implemented our techniques in a tool for malware detection:
POMMADE
•POMMADE was able to detect more than 800 malwares, several
of them cannot be detected by well-known anti-viruses, such as,
Avast, Kaspersky, McAfee, Norton, Avira, etc

Questions?

