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 Solution: 
Check the behavior (not the syntax) of 
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 Model Checking is a good candidate
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L0 : call f 
L1: … 
 … 
… 
f :  function f
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 … 
 … 
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 Important to analyse the program’s 
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 Solution: 
Use pushdown systems to model 

programs
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Example: fragment of email worm Avron

In CTPL:   
 ᴲ r (mov(r,0)˄EX (push(r)˄ EX call GetModuleHandleA))

mov eax, 0 
push ebx 
pop ebx 
push eax 
call GetModuleHandleA

Call the API GetModuleHandleA 
with 0 as  parameter. 
This returns the entry address of its 
own executable.  
Copy itself to other locations.

Our solution: Consider predicates over the stack 

In SCTPL:   
 EF ( call GetModuleHandleA ˄ (head_stack = 0) ) 

EF p: there is a path where p holds in the future    
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Expressing Obfuscated Calls in SCTPL

L0 : call f 
L: … 
 … 
… 
f :  function f

L0 : push L1 
L’0: jmp f 
L: … 
 … 
 … 
f :  function f

ᴲL (  E  !( ᴲ f call(f) ˄ AX (head_stack=L)) 
U   (ret ˄ (head_stack= L)))

L is not a return address of a function call



Expressing Obfuscated returns in SCTPL

L0 : call f 
a : … 
    … 
f: … 
   … 
  pop eax 
  jmp eax

h_s= 
a

h_s= 
a

h_s : head-stack

!



Expressing Appending Viruses in SCTPL

L0 : call f 
a :  
… 
f: pop eax   

An appending virus append itself at the end of the host file 
The virus has to compute its  address in  memory

h_s
= a

h_s
= a

h_s : head-stack
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SCTPL model-checking for Pushdown Systems

Non trivial: stack can be  unbounded

Theorem:  Given a Pushdown System  P  and a SCTPL 
formula ᵠ,  whether P satisfies ᵠ can be effectively 
decided. 



Implementation

   We implemented our techniques in a tool for virus 
detection  

IdaPro 
+ 

Jakstab

CFGBinary Code
Translator

PDS

Model-checking  
engine

Malware behaviors  
as SCTPL formulas

YES/NO



Experiments of POMMADE

1. Our tool was able to detect more than 800 malwares 

2.We checked 400 real benign programs from 
Windows XP system. Benign programs are proved 
benign with only three false positives. 

3.Our tool was able to detect all the 200 new 
malwares generated by two malware creators 

4.Analyze the Flame malware that was not detected 
for more than 5 years by any anti-virus



Our tool vs. known anti-viruses
NGVCK and VCL32 malware generators 
1.generate 200 new malwares   
2. the best malware generators 
3.generate complex malwares

Gener
ator

No. 
Of 

Vari
ant
s

PO
MM
ADE

Avi
ra

Kasp
ersk

y  
Ava
st  

Qiho
o 

360  
McA
fee  AVG  BitDef

ender

Eset 
Nod3

2

F-
Sec
ure

Nort
on

Pan
da

Tre
nd 

Micr
o

NGVC
K 100 100

% 0% 23% 18
% 68% 100

% 11% 97% 81% 0% 46% 0% 0%

VCL32 100 100
% 0% 2% 100

% 99% 0% 100
% 100% 76% 0% 30% 0% 0%



Analyze The Flame Malware
   Flame is being used for targeted cyber 

espionage in Middle Eastern countries.  
   It can  
1.sniff the network traffic 
2.take screenshots 
3.record audio conversations 
4.intercept the keyboard 
5.and so on  
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   It can  
1.sniff the network traffic 
2.take screenshots 
3.record audio conversations 
4.intercept the keyboard 
5.and so on  
It was not detected by any anti-virus for  5 years

Our tool can detect this malware Flame



Conclusion

• We introduced a new logic SCTPL to precisely specify malicious 
behaviors 

• We proposed  efficient SCTPL  model-checking algorithms for 
pushdown systems. 

• We implemented our techniques in a tool for malware detection: 
POMMADE  
•POMMADE was able to detect more than 800 malwares, several 
of them cannot be detected by well-known anti-viruses, such as, 
Avast, Kaspersky, McAfee, Norton, Avira, etc 





Questions?


