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1 Introduction

A Wang tile is a unit square with colored edges, such as: ; a set of Wang tiles is called a tileset.

A tiling of the plane by a tileset A is a covering of the plane with translated copies of tiles from A. A
tiling of the plane is called valid if for any pair of neighboring tiles, their adjacent edges have the same
color as, for instance, in: . Figure 1 shows an example of a tileset and a valid tiling by this tileset.

Figure 1: Example of a tileset and of a valid tiling.

These tiles were introduced by Hao Wang in 1961 [13] as a simple combinatorial problem: given a
finite tileset A, decide whether there exists a valid tiling of the plane by A. It is called the Domino
Problem. Wang conjectured that there exist no aperiodic tilesets (in other words, tilesets generating only
aperiodic tilings of the plane); assuming this, he could find an algorithm solving the Domino Problem.
However, 3 years later, Robert Berger [1] proved the Domino Problem to be undecidable and showed a
counterexample to Wang’s conjecture. Since then, researchers got involved in a kind of a “competition”
for the smallest aperiodic Wang tileset [2, 8, 11]. This competition was over in 2015 when Jeandel and
Rao found the smallest aperiodic tileset (11 tiles) and proved by an exhaustive search that there exist no
smaller aperiodic tilesets [7].

Now Wang tiles are widely studied in the context of discrete dynamical systems, combinatorics,
computability theory and geometry. However, in all of these areas, a tiling is considered as an object
given a priori. There are also applications in chemistry and physics, but they require to study the process
of creation of a given tiling; we call it growth.

There exist many processes in nature where tiny particles, forced by local conditions, assemble together
in a large structure. Crystal growth and self-assembly of DNA molecules are the most common examples
of this phenomenon. Tilings of the plane are a possible mathematical model for these processes; for
instance, Wang tilings are used to simulate molecular growth [3]. In general, tiles could have non-square
shapes with the same color-constraints mentioned above; for instance, Penrose tilings [6,10] describe the
behavior of quasicrystals. Socolar, in [12], formalized the notion of growth for Penrose tilings and, among
other things, showed that starting with a specific configuration, such a tiling can cover the whole plane
in a process of growth.
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In 1971, Raphael Robinson introduced an aperiodic set of 32 square tiles; he used this tileset to design
a simple and elegant proof of the undecidability of the Domino Problem [11]. This tileset is now classical
and is used in recent constructions from information theory (for instance, to prove the existence of tilesets
with high Kolmogorov complexity [4]).

As we have already mentioned, all tilings of the plane by the Robinson tiles are aperiodic. In other
words, for any valid Robinson tiling τ there exist no vector p ∈ Z2 such that τ(z) = τ(z + p) for any
z ∈ Z2. This holds because Robinson tilings have hierarchical (think: fractal) structure. Penrose tilings,
whose growth has been studied before, also have hierarchical structure (but different from the Robinson’s
hierarchy). The first question that we could ask is: does hiararchy imply specific growth properties?
Besides that, there exist many constructions based on the Robinson tileset, so after analysing its growth,
we could easily expand the results to these constructions.

Here we study the question of growth for Robinson tilings; we simulate this process with cellular
automata. It turns out that, by contrast with Penrose tilings [12], Robinson tilings can not grow in our
model.

In Section 2, we explain the local rules and hierarchy of Robinson tilings. The formal definition of
the growth of Robinson tilings is given in Section 3. In Section 4, we state the main result and prove it.

1.1 Preliminaries
Elements of Z2 are called cells. Given a tileset A, a tiling of the plane is a function Z2 → A. A

tiling of D ⊆ Z2 is a function D → A, it is called a configuration of D. We denote a restriction of a
configuration S : D → A to a set F ⊆ D by S|F .

Given a cell z, a square of size (2t+ 1)× (2t+ 1) centered on z is called a t-neigborhood of z and
is denoted by Bt(z). Usually it is called the Moore neighborhood. (See Figure 2).
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Figure 2: 2-neighborhood of the cell (0, 0).

We define a quadrant with origin (x0, y0) ∈ Z2 as a set Qx0y0 = {(x, y) | x ≥ x0, y ≥ y0} 1.

2 The Robinson tileset
The Robinson tileset is the set of 32 tiles obtained by rotations from the ones displayed on Figure 3.

A piece of a Robinson tiling is displayed in Figure 4.

Figure 3: The Robinson tiles, up to rotation.

1We consider only north-east quadrants since the internship took place in the north-east
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Figure 4: A piece of a Robinson tiling.

2.1 Local rules
The local rules for Robinson tiles, as they are displayed in Figure 3, are not quite color constraints.

Instead, a tiling of the plane by Robinson tiles is valid if it satisfies the rules:

(→) For any pair of neighbor tiles, arrows meeting at their adjacent edge have the same color, direction
and position on the edge. (See Figure 5 for an example).

(::) Among any four tiles sharing a corner, exactly one has yellow dots in its corners. (See Figure 6 for
an example).

Figure 5: Valid pairs of adjacent tiles. Figure 6: Four tiles sharing a corner.

It is possible to design a set of 56 Wang tiles equivalent to the Robinson tileset, but we won’t do it
here.

Given a configuration of D and a tile in this configuration, this tile is called valid in the configuration
if each 2 × 2-squares containing this tile satisfies the Robinson rules or can be extended to such square
(if D doesn’t contain one of these cells). A configuration is called valid if all its tiles are valid in it.

2.2 Hierarchy
We see red squares of different sizes in Figure4, they appear in all Robinson tilings of the plane. We

define four sequences of macrotiles an, bn, cn and dn as follows. They will help us to analyze the hierarchy
of Robinson tilings.

• Four tiles with yellow dots are called macrotiles of rank 0, they are denoted as a0, b0, c0 and d0
as shown in Figure 7.
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• Each macrotile of rank 1 is a 3× 3-square, whose corner tiles are filled with a0, b0, c0 and d0 as
shown in Figure 8. For any x ∈ {a, b, c, d}, the central cell of x1 is the same as x0 without dots,
and the 4 remaining cells are filled with the only tiles valid for these positions.

• Suppose macrotiles of rank n are defined; they are (2n+1 − 1) × (2n+1 − 1)-squares. Then each
(n+ 1)-macrotile is a (2n+2− 1)× (2n+2− 1)-square, whose corners are filled by an, bn, cn and dn
in the same order as for 1-macrotiles. For any x ∈ {a, b, c, d}, the central cell of xn+1 is the same
as x0 without dots, and the remaining cells forming a large cross are filled with the only possible
tiles for these cells.

The detailed constructions of macrotiles a1 and a2 are shown in Figures 8, 9.

a0 −

c0 −

− b0

− d0

Figure 7: Robinson macrotiles a0, b0, c0 and d0.

Figure 8: Transformation of a macrotile of level 0 (a0) in a macrotile of level 1 (a1).

Figure 9: Transformation of a1 in a2.

Observe that for each n ∈ N, macrotiles bn, dn and cn can be obtained by rotating an clockwise by
π
2 , π and 3π

2 radians respectively. Besides that, for each macrotile of rank n, for any m < n, macrotiles
of rank m appear periodically in the macrotile of rank n with vertical and horizontal periods equal to
2m+2. For instance, 0-macrotiles appear in a 2-macrotile with period (4, 4) (see Figure 9).

Theorem 1 describes all possible Robinson tilings. You can find the proof in [5, 9].

Theorem 1. In a valid Robinson tiling of the plane, for each n ∈ N, any occurrence of a n-macrotile
belongs to an occurrence of some (n+ 1)-macrotile.
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It turns out that Theorem 1 is still valid in quadrants, instead of full tilings.

Lemma 1. Given a valid tiling of a quadrant Q for any n ∈ N there exists a subquadrant Qn of Q where,
for any k < n, each occurrence of a k-macrotile is contained in an occurrence of a (k + 1)-macrotile.

Proof. As in Theorem 1.

A macrotile grid of rank n is a periodic set of n-macrotiles separated by empty rows of width 1
which can be completed to get a valid tiling of the plane. Macrotile grids of ranks 0 and n are shown in
Figures 10 and 11.

. . . . . .

...

...

Figure 10: A macrotile grid of rank 0

. . . . . .

...

...

2n+2 − 1

2n+1 − 1

Figure 11: A macrotile grid of rank n

An infinite vertical (respectively, horizontal) line for a tiling τ of a quadrant Q is a column
(respectively, line) of cells, separating the quadrant in two nonconnected components, all cells of which
contain vertical (respectively, horizontal) arrows of the same color and position on the side, while the
direction can change. Here is an example of an infinite horizontal line:

. . .

Lemma 2. For a valid Robinson tiling τ of a quadrant Q′ ⊂ Q1, if there are no infinite lines in Q′ then
there exists a macrotile grid of rank 0 which agrees with the restriction of τ to Q′.

Proof. Assume towards a contradiction that there is no 0-macrotile grid agreeing with τ |Q′ . Since τ
is valid, for any 4 tiles sharing a corner, one of them is a 0-macrotile. Moreover, since Q′ ⊂ Q1, any
0-macrotile is a part of some 1-macrotile.

By our assumption, there is no macrotile grid of rank 0, thus there exists a cell (s, t) ∈ Q′ containing a
0-macrotile such that one of the following cells: (s+2, t+1), (s+1, t+2) contains a 0-macrotile. Indeed, if
there is no such cell then for any (s, t) ∈ Q′ covered with a 0-macrotile, in cells (s, t+1), (s+1, t+1), (s+1, t)
there are no 0-macrotile because τ is valid (by rule (::)) and in (s + 2, t + 1), (s + 1, t + 2) there are no
0-macrotile because of the last assumption. Thus, by local rules, there are 0-macrotiles in cells (s+ 2, t)
and (s, t + 2). Applying this argument for all cells with 0-macrotiles in Q′, we get a 0-macrotile grid
which yields a contradiction.

Without loss of generality suppose cells z1 = (s, t) and z2 = (s + 2, t + 1) contain 0-macrotiles
(the symmetric case works the same). Both of these tiles are contained in different nonintersecting 1-
macrotiles, shifted by 1 vertically. This implies the occurence of 0-macrotiles in cells (s, t + 2), (s, t −
2), (s+ 2, t+ 3), (s+ 2, t− 1), two of which are contained in the same 1-macrotile as the ones from cells
z1, z2. Two remaining tiles are contained in two other 1-macrotiles. Going on with these arguments, we
get two vertical rows of 1-macrotiles separated by a column of width 1, all tiles of which contain horizontal
green arrows. That means all tiles of this column contain vertical arrows of the same color and position
on the side which forms a vertical infinite line. Figure 12 illustrates this reasoning.
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Figure 12: The sketch for the proof of Lemma 2: vertical arrows of the infinite line are denoted by dotted
black lines.

Lemma 3. Given a valid Robinson tiling τ of a quadrant Q, for any n ∈ N there exists a quadrant
Q′n ⊆ Q such that there exists a macrotile grid of rank n which agrees with the restriction of τ to Q′n.

Proof. Let us prove this lemma for n = 0. Consider Q1 from Lemma 1, any 0-macrotile is contained in
some 1-macrotile in Q1.

By Lemma 2, it is enough to show that there is a subquadrant of Q1 that contains no infinite lines.
We will prove that there is no more than one infinite line in each direction in Q1. It is enough to prove it
for vertical lines since the horizontal case is symmetric. Suppose there exist two vertical infinite lines in
Q1 at distance h from one another. Let n = dlog(h + 1)e, so that the sides of any n-macrotile is longer
than h. Notice that between these infinite lines, τ is valid and infinite lines can not intersect macrotiles of
finite rank (by construction of the macrotiles). Since the tiling is valid between the lines, for any k ∈ N,
each macrotile of rank k is a part of some macrotile of rank k+1 which is not possible since there are no
macrotiles of rank n between the lines. Thus, there are no more than 2 infinite lines in Q1 (one vertical
and one horizontal). All that remains is to consider a quadrant Q′ ⊂ Q1 which doesn’t contain those
lines.

We proved Lemma 3 for the case n = 0. Since macrotiles of all ranks have the same properties as
macrotiles of rank 0, the proof for the general case is the same.

Notice that for any n in N, a macrotile grid of rank n can be completed to form a macrotile grid of
rank n+1 in four different ways. Thus for m > n, a grid of n-macrotiles is a part of 4m−n different grids
of m-macrotiles.

3 Formalizing the growth of Robinson tilings
In this section, we will give a formal definition of growth for Robinson tilings.

Let A denote the Robinson tileset. From now on we will consider partial tilings, where some cells
of the plane are empty. We introduce an additional tile ⊥ denoting an absence of tile (an empty cell).
Thus, we can define a partial tiling of a set X ⊆ Z2 as a tiling of X by tiles from A⊥ = A ∪ {⊥}. The
set of nonempty cells is called the domain of the tiling.

For biological and physical systems, we consider the process of growth as follows: initially, we are
given a seed; then as time passes, in the neighborhood of the already grown structure, new particles may
be added depending on local circumstances.

We will use the following model: initially we are given a seed — a partial tiling with finite domain
(there are no restrictions: it can possibly contain tiles violating the Robinson local rules). Then at each
step we apply a growth rule for each empty cell; the growth rule can dictate that the cell should remain
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empty, that a given tile should be placed, or that an error occurred. The size of the neighborhood and
the growth rule are fixed. We will formalize this model with cellular automata.

Recall that a cellular automaton on Z2 with an alphabet A⊥ is a function AZ
2

⊥ → AZ
2

⊥ ; it is
determined by a neighborhood type and a transition function. A transition function of a cellular
automaton working with Moore neighborhoods of radius t is given by f : A

(2t+1)2

⊥ → A⊥. At each
step of the automaton, this function is applied to a neighborhood of each cell of Z2 and put the result in
this cell. Remark that in each fixed moment of time, a state of such automaton is a partial tiling of the
plane and all changes occur depending on a local configuration. That is why we use cellular automata to
formalize the growth of tilings.

We will consider automata with an additional symbol > denoting an error. If there exists at least
one cell in this state, the automaton halts: this allows to report an error in computation immediately.
From now on we consider automata whose transition functions look like f : A

(2t+1)2

⊥ → A⊥> where
A⊥> = A⊥ ∪ {>}. If there is the symbol > in some cell, then the automaton halts.

Let us define a cellular automaton simulating growth. A transition function f : A
(2t+1)2

⊥ → A⊥> of
an automaton working on Z2 is called a growth rule if for any configuration S ∈ A(2t+1)2

⊥ , the following
conditions hold:

(S) A new added cell matches the Robinson local rules with its 8 neighbors: f(S) is valid in S(

(-1,-1)

(-1,0)

(-1,1)

(0,-1)

(0,0)

(0,1)

(1,-1)

(1,0)

(1,1)

).

(b) The transition function returns an error (>) if and only if S does not occur in some Robinson tiling
of the plane. This means that S appears in some valid Robinson tiling if and only if f(S) 6= >.

A growth cellular automaton is a cellular automaton whose transition function is a growth rule.
Let us define a partial order on A⊥>: for any a ∈ A⊥, we have ⊥ ≤ a and a ≤ >. If a, b ∈ A, then a and
b are incomparable.
Let us now consider a partial order on partial tilings of t-neighborhoods. Given S, S′ ∈ A(2t+1)2

⊥ , we say
that S ≤ S′ if and only if

∀z ∈ (2t+ 1)2, S(z) ≤ S′(z)
In other words, S ≤ S′, when the domain of S is a subset of the domain of S′ and they agree on the
domain of S.

A function f : A
(2t+1)2

⊥ → A⊥ is a nondecreasing growth rule if for any S, S′ ∈ A(2t+1)2

⊥ such that
S ≤ S′, we have f(S) ≤ f(S′).

Intuitively, we can consider the information contained in each configuration: if we fill some empty
cell in a configuration, the amount of information in this configuration increases. Thus, having a
nondecreasing growth means that if with a given amount of information, we decide to add a particular
tile, then having strictly more information we should keep our decision (or return an error).

Suppose we are given two configurations S1 and S2 of a t-neighborhood with domains D1 and D2

respectively. S1 and S2 are compatible if they agree on the intersection of their domains: S1|D1∩D2
=

S2|D1∩D2 . Let us define the union operation for two compatible configurations S1, S2:

(S1 ∪ S2)(z) :=

{
S1(z) z ∈ D1

S2(z) z ∈ D2 \D1

Lemma 4. Let S1, S2 be a pair of compatible configurations of t-neighborhood and a nondecreasing
growth function f . If f(S1), f(S2) ∈ A and f(S1) 6= f(S2) then f(S1 ∪ S2) = >. That means, if a
growth rule returns two different tiles from A on two compatible configurations then the union of these
configurations never occurs in a valid Robinson tiling of the plane.

Suppose f(S1), f(S2) ∈ A and f(S1) 6= f(S2). In this case, since f do not decrease: f(S1∪S2) ≥ f(S1).
Thus, f(S1 ∪ S2) ∈ {f(S1),>}. The same holds for the second configuration: f(S1 ∪ S2) ∈ {f(S2),>}.
And since f(S1) 6= f(S2), we get that f(S1 ∪ S2) = >.
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4 Robinson tilings do not grow
We are interested in whether a tiling can grow to cover the whole plane. Given an initial configuration,

a growth cellular automaton eventually covers the plane if for any cell x ∈ Z2, there exists a moment
of time when the automaton put a tile in this cell. Notice that, if during the execution of an automaton
an error occurs, then it doesn’t cover the plane.

Theorem 2. There is no cellular automaton with nondecreasing growth rule which, working on some
initial configuration, eventually covers the plane.

To prove this theorem, we will reason by contradiction: suppose there exists an automaton with t-
neighborhood (t > 0) and a seed such that it eventually covers the whole plane. We will show that in this
case, there exist two compatible configurations of t-neighborhoods on which the growth rule returns two
different tiles and the union of which occurs in some valid Robinson tiling. This will contradict Lemma 4.

4.1 The base of the proof
Let τ denote the tiling of the plane eventually generated by the growth automaton. Consider a

quadrant Q not containing the seed. Notice that the tiling is valid on Q: indeed, assume towards a
contradiction that there is a tile which is not legal in respect to the configuration of its 1-neighborhood
S. In this case, the last added tile among tiles in S was not valid in its 1-neighborhood which contradicts
point (S) from the definition of the growth rule.

Let n = dlog te+2. A t-neighborhood is not bigger than an (n−1)-macrotile: 2n−1 = 2dlog te+2−1 ≥
4t − 1 ≥ 2t + 1, because t ≥ 1. Thus a t-neighborhood can not intersect more than 4 different (n − 1)-
macrotiles from a macrotile grid. Since τ is valid on Q, there exists a quadrant Qn+3 so that τ |Qn+3

agrees
with some (n+ 3)-macrotile grid. We call Gn the subset of Z2, where a grid of n-macrotiles compatible
with τ |Qn+3 is defined (such a grid exists since it is a subset of the (n+ 3)-grid defined above).

Let An+3 denote an occurrence of a macrotile an+3 in Qn+3. Denote by Y the vertical coordinate of
it’s central cell; denote by X the horizontal coordinate of the central cell of an occurrence of bn+2 in An+3.
From now on we will work with cells of the quadrant QXY . This construction is shown in Figure 13.
Here and later in figures we denote types of macrotiles as follows: the size of font is proportional to
the rank of a macrotile. In Figure 13, the n-macrotiles from the grid on Gn are denoted by gray font,
the (n+2)-macrotiles an+2, bn+2, cn+2, dn+2 are marked by orange and denoted by black larger font, the
An+3 macrotile is filled with yellow and is denoted by the largest font.
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Figure 13: The grid of n-macrotiles, An+3 (filled with yellow), and the quarter QXY (filled with blue
dots).

Recall that Bt(z) denotes a t-neighborhood of a cell z ∈ Z. For any set X ⊆ Z2, we write X for
Z2 \X. Let E denote the set of all cells from QXY not contained in Gn: E := QXY ∩Gn. For any cell
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z, let BEt (z) := Bt(z)∩E, we will call this set a E-neighborhood of z. Sets E and BEt (z) are shown in
Figure 14.

In Section 4.2, we will prove the following statement:

Lemma 5. For any cell z in E, for a configuration S = τ |
BE

t (z)
, there exist two cells in QXY containing

different tiles in τ whose E-neighborhoods are compatible with S. We will call these cells twins of z.

Figure 14 illustrates Lemma 5.

– E

– BE
t (z)

z

Figure 14: Twins for a cell z.

Now we show that this fact implies Theorem 2. Let u denote the cell which was added the first
among cells from E during the growth process. Let U denote the configuration of Bt(u) at the moment
just before the tile was added. All cells in E are empty in U since u is the first added tile in E. Let
U ′ := τ |

BE
t (u)

. Let v denote a twin of u such that τ(u) 6= τ(v). Let V denote the configuration of Bt(V )

at the moment just before v was filled with a tile. We get the following:

f(U) = τ(u) 6= τ(v) = f(V )

At the same time, V is compatible with U ′ which is compatible with U since U = U ∩ U ′; then V is
compatible with U . Moreover, V ∪ U is a subconfiguration of τ |Bt(v) and Bt(v) ⊂ Q, thus V ∪ U occurs
in a valid Robinson tiling which contradicts Lemma 4.

– E

– U ′

– U

– V

– u

– v

Figure 15: The first filled cell in E and its twin.

Thus, proving Lemma 5 is all that rests to prove Theorem 2.

4.2 Looking for twins: proof of Lemma 5
Our aim is to find twins in QXY for each cell of E. We will consider cells separately depending on

their E-neighborhoods. We distinguish cells z for which BEt (z) ⊂ Gn (for instance, two right-hand cells
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in Figure 16) and cells for which this doesn’t hold (two left-hand cells in Figure 16). The cells of the
first type form a set EGn

:= {z | BEt (z) ⊂ Gn}; the remaining cells form E \ EGn
. These two sets are

illustrated by Figure 17.

– E

– BE
t (z)

– (BE
t (z)) \Gn

Figure 16: The E-neighborhoods of two right-hand cells are in Gn,
while for two left-hand cells it doesn’t hold.

– EGn

– E \ EGn

Figure 17: Sets E \EGn , EGn and
the grid of n-macrotiles.

We will first show that Lemma 5 holds for cells in EGn
.

4.2.1 When the cell z is in EGn

The partial tiling τ |Gn has vertical and horizontal periods equal to 2n+2 (See Figure 11). Thus, to
prove Lemma 5 for all cells in EGn

, it is enough to prove it for all cells of any (2n+2 × 2n+2)-square from
{(x, y) | (x− t, y − t) ∈ QXY }.
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Figure 18: Twins for cells in W ∩E in the case EGn
. W ∩E is filled with yellow; the gray dashed line is

a border of a (n+ 2)-macrotile.

Consider a 2n+2 × 2n+2-square W , containing four n-macrotiles, so that they can be completed to
form a (n + 1)-macrotile, one row on the bottom of them and one column to the right of them, as it’s
shown in Figure 18: cells in E ∩W are filled with yellow.

Consider two variants to complete the n-macrotile grid to (n + 3)-macrotile grid. In the first case
denoted by (EGn,1), four n-macrotiles fromW are contained in an+1 which is contained in an+2 (Figure 18,
the left part). In the second case ((EGn,2) in Figure 18), n-macrotiles from W are contained in dn+1

which is contained in an+2 which is contained in dn+3.
Each cell in W ∩E contains different tiles in cases(EGn,1) and (EGn,2). Each of these cases is a part

of some (n+3)-macrotile, thus, they both occur in QXY infinitely many times. Thence, any cell inW ∩E
has twins in QXY , which concludes the proof for the cells in EGn

.
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4.2.2 When the cell z is in E \ EGn

By definitions of n and EGn
, a t-neighborhood of a cell in E \ EGn

intersects either two or three
(n − 1)-macrotiles from QXY . We will classify cells in E \ EGn

depending on which (n − 1)-macrotiles
from QXY are intersected by their neighborhoods. We get three classes which are shown in Figure 19:
(db), (dba) and (ba).

– QXY

– EGn

– E \ EGn

– BE
t (z)

(db)

(dba) (ba)

b

d

b

d

b a

d c

b a

d c

b a

d c

b a

d c

a b

a b

c d

Figure 19: The grid of (n− 1)-macrotiles (the smallest font) and three classes of EGn
cells.

4.2.3 Case (ba)

Suppose the E-neighborhood of a cell in E \ EGn intersects two (n− 1)-macrotiles from QXY : bn−1
on the left and an−1 on the right. Then the column between these macrotiles could be filled differently, it
depends on the macrotiles of higher ranks. All possible fillings of the column are displayed in Figure 20.
We denote each case by an arrow and one or two letters: the arrow shows the direction of the arrow
in the column and the letters are types of macrotiles in centers of which this arrow could begin. For
example, (↓b) denotes the case where the arrow is directed downwards and could come from the center of
a b-macrotile (note that between (↓a) and (↓b), the horizontal positions of the red arrows are different);
(↑a,b) denotes the upwards arrow coming from a macrotile of type a or b (their upwards arrows are the
same).

b a b a b a b a b a b a

(↓a) (↓b) (↓c,d) (↑c) (↑d) (↑a,b)

Figure 20: Variants of columns between bn−1 and an−1, intersected by BEt (z) in case (ba).

First we consider the case where the arrow in the column is directed downwards. Figure 21 shows two
twins in case (↓a). On the left, bn−1 and an−1 are contained in an+1; on the right, they are contained
in two different (n + 1)-macrotiles cn+1 and dn+1 which are both contained in an+2. For two these
configurations, the arrow is the same in the column between bn−1 and an−1, while all possible central
cells of neighborhoods contain different tiles in different configurations. The same reasoning applies for
cases (↓b) and (↓c,d): they are shown in Figures 25 and 26 in the Appendix.

In Figure 21 and later the considered cells z are filled with yellow : ; the union of sets BEt (z)∩QXY
for those z is marked with light green: .

The only cases left are those where the arrow in the column is directed upwards. Figure 22 displays
twins for cases (↑c) (on the left) and (↑d) (on the right). In the configuration (↑c1), bn−1 intersected
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b a

c d

a
b a

d c

c d

a

Figure 21: Twins for the case where the arrow between bn−1 and an−1 is (↓a).

by BEt (z) is a part of an occurence of bn which is contained in an+1 which is located in cn+2 which is
eventually a part of dn+3, while an−1 is a part of an occurence of an which is in bn+1 which is located in
the considered above occurence of cn+2. In the configuration (↑c2), bn−1 intersected by BEt (z) is a part
of an occurence of dn which is contained in an+1 from (↑c1), while an−1 is a part of an occurence of cn
which is contained in the occurence of bn+1 considered in (↑c1).

The arrow in the vertical column in both cases is the middle arrow of cn+2. For each cell z in the
considered area, the tiles contained in this cell are different in two configurations. Configurations (↑d1)
and (↑d2) work the same.

(↑c1)

(↑c2)

b a

b a
a b

c

d
(↑d1)

(↑d2)

b a

b a
a b

d
Figure 22: Twins for cases (↑c) and (↑d).

For the last case, (↑a,b), the twins are shown in Figure 23.

4.2.4 Case (db)

As we already mentioned, for all N , all N -macrotiles are rotations of aN . Thus, configurations with
twins for the case (db) can be obtained by rotating the configurations from the case (ba) by 90o.

4.2.5 Case (dba)

There is the only case where BEt (z) intersects three (n − 1)-macrotiles from QXY : these macrotiles
are located around the origin of QXY and the arrows in a line and a column between dn−1, bn−1 and
an−1 are as it’s shown in Figure 24. The twins for this case are displayed in the same figure: for any z
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(↑b1)

(↑b2)

b a

b a
a b

b

d

Figure 23: Twins for the case (↑a,b).

from the considered area, it contains two different tiles for configurations (dba1) and (dba2). Indeed, each
cell touching the top side of an−1, except the one in the corner, contains tiles with arrows of opposite
directions in these two configurations; the same is true for the cells touching the right side of dn−1. The

remaining cell is the one in the corner; in the configuration (dba1) it contains , while in (dba2) it

contains .
Thence, we covered all the cases which means that twins exist for each cell z in E: Lemma 5 is

true.
This proves Theorem 2.

d

b a

b

d c

d
a

(dba1)

d

b a

c

a b

d

a

(dba2)

Figure 24: Twins in the case (dba). Borders of (n+ 2)-macrotiles are marked by the gray dashed line.

5 Conclusion

5.1 Future work
We modeled the growth of Robinson tilings with cellular automata satisfying conditions (S) and (b)

with a nondecreasing growth rule. However, we conjecture that all restrictions except (S) are unnecessary
for this result. Thus, obtaining the same result with weaker conditions (or showing a counterexample)
would be a good continuation of this work.
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Besides that, the growth model could be generalized, for instance, in a probabilistic way. For this, it is
enough to consider probabilistic cellular automata; this approach is more realistic for modeling physical
and chemical processes.

Our result shows that there exists a hierarchical tiling of the plane that can not be grown. The
question is still open for many other tilings and should be investigated in order to find connections
between growing and other properties of a tileset (for instance, entropy of the dynamical system).

5.2 Other activities
During my internship, besides the research described in this report, I participated in the local scientific

life. In June, I took part in the on-place organization of the CSR conference (https://logic.pdmi.ras.
ru/csr2018/welcome). Besides that, I was a coauthor of a course on Tilings and Computations in the
summer school “Contemporary Mathematics” (https://www.mccme.ru/dubna/eng/). I gave two lectures
out of four, made exercise sheets, and took part in writing lecture notes (all these materials can be found
here: https://www.mccme.ru/dubna/2018/courses/gamard-pchelina.html).
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Appendix: additional figures

b a

c d

b
b a

d c

c d

b

Figure 25: Twins for cells z is in E \ EGn
, case (ba), where the arrow between bn−1 and an−1 is (↓b).

b a

c d

c
b a

d c

c d

c

Figure 26: Twins for cells z is in E \ EGn
, case (ba), where the arrow between bn−1 and an−1 is (↓c,d).
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