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ABSTRACT
An “element-free” probability distribution is what remains of a prob-

ability distribution after we forget the elements to which the prob-

abilities were assigned. These objects naturally arise in Bayesian

statistics, in situations where elements are used as labels and their

specific identity is not important.

This paper develops the structural theory of element-free distri-

butions, using multisets and category theory. We give operations

for moving between element-free and ordinary distributions, and

we show that these operations commute with iid sampling.

We then exploit this theory to prove two characterization results,

establishing a precise connection between element-free distribu-

tions and two key structures in Bayesian nonparametric cluster-

ing: exchangeable random partitions, and random distributions

parametrized by a base measure.
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1 INTRODUCTION
This paper is about the idea of “element-free” probability theory.

We can take any probability distribution and forget the elements to

which probabilities have been assigned, keeping only the probability

coefficients. For instance, given the distribution on the set {𝑎, 𝑏, 𝑐}
assigning

1

5
to 𝑎 and 𝑏, and 3

5
to 𝑐 , if we forget the elements 𝑎, 𝑏,

and 𝑐 , we are left with coefficients
1

5
, 1
5
, 3
5
. These coefficients are

unordered and form a multiset (or bag) written [ 1
5
, 1
5
, 3
5
]. We call

this kind of multiset an element-free distribution (§3).

Clearly, the element-free approach involves a significant loss

of information. But this is justified in situations where the precise

identity of elements is not important. Our main motivation comes

from nonparametric Bayesian statistics: element-free distributions

are deeply connected to the theory of random exchangeable parti-

tions (e.g. the Chinese Restaurant Process) and random probability
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distributions parametrized by a base measure (e.g. the Dirichlet

process).

In this paper we develop the theory of element-free distributions.

We also explain their canonical status and clarify the connection to

partitions and random distributions. We sketch the main ideas in

this introduction.

1.1 Element-free sampling and random
partitions

We first explain the connection between element-free probability

and partitions. The point is that partitions are the element-free

counterpart of lists of elements.

Given a list (𝑥1, . . . , 𝑥𝐾 ) ∈ 𝑋𝐾 , where 𝑋 is any set and 𝐾 a

positive integer, we can construct a partition of the set {1, . . . , 𝐾}
in which 𝑖 and 𝑗 are in the same block whenever 𝑥𝑖 = 𝑥 𝑗 . For in-

stance, taking𝑋 = {𝑎, 𝑏, 𝑐}, the list (𝑎, 𝑎, 𝑏, 𝑎, 𝑐) induces the partition
{{1, 2, 4}, {3}, {5}}. This partition is an element-free abstraction of

the list: the elements themselves have been forgotten but we record

the indices at which equal elements appeared.

A key operation in probability and statistics is that of drawing

lists of independent and identically distributed (iid) samples ac-

cording to a probability distribution. There is also an element-free

version of iid sampling, for generating a partition directly from

an element-free distribution. The two operations of forgetting ele-

ments and iid sampling commute:

distribution

on 𝑋

element-free

distribution

iid samples iid partition

forget

draw draw

forget

A key contribution of this paper is to take this idea further, to

incorporate continuous distributions on measurable spaces. In the

continuous setting we can prove a new representation theorem for

random partitions (§1.4, §8).

1.2 Motivation from Bayesian clustering
To motivate this work we explain the connection to statistical prac-

tice. (Our purpose is to clarify the foundations, and we do not

propose any new methods, although we briefly discuss connections

to probabilistic programming in §9.)

In data analysis, clustering is the problem of appropriately parti-

tioning a dataset 𝑦1, . . . , 𝑦𝐾 into clusters (Figure 1). In the Bayesian

approach to clustering, the goal is not to find the “best” partition,

but to find a suitable probability distribution over partitions. In

nonparametric clustering the total number of clusters is not fixed,

and grows as more data is included. A Bayesian model should first
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Figure 1: Three different clusterings for a set of points, with
clusters represented as colours.
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{1}
{1}, {2}
{1, 3}, {2}
{1, 3}, {2, 4}

{1, 3}, {2, 4}, {5}
{1, 3}, {2, 4}, {5, 6}

Figure 2: Iteratively sampling a partition from a probability
distribution represented as an urn. (Here forgetting elements
corresponds to forgetting the colours.)

be specified independently of the data, and so should only be con-

cerned with partitions of the indexing set {1, . . . , 𝐾}.
To generate a random partition, a popular method is to fix a

probability distribution over a space whose elements will be used

as cluster names, and then sample a name for each index 𝑘 ≤ 𝐾 .

This method is illustrated in Figure 2 using an urn of coloured balls.

Observe how new clusters are created as 𝑘 grows.

The specific names (or colours) used for clusters are not impor-

tant for the partition model: substituting red balls for balls of a new

colour would not affect the resulting distribution on partitions. In

other words, it is only the element-free distribution that matters.

It makes sense to study this particular clustering method in

depth, because it is universal: all well-behaved distributions on

partitions can be generated in this way from a random element-free

distribution. We discuss this further in §1.4.

1.3 Base measures and random distributions
Another key contribution of this paper is to show that, as well as

forgetting elements, we can reconstruct them in a principled way.

The idea is to sample them from a fixed distribution called a base

measure. We show that, if ` is a distribution on a space 𝑋 , we have

a reverse situation:

distribution

on 𝑋

element-free

distribution

iid samples iid partition

draw

draw draw

draw

These operations are all probabilistic. Given an element-free dis-

tribution, our construction does not give a fixed distribution on 𝑋 ,

but a random distribution: a distribution on distributions.

The use of a base measure is common in nonparametric statistics.

Indeed a number of key models for random distributions (e.g. the
Dirichlet or Pitman-Yor processes [11, 28]) admit a base measure

as a parameter, precisely because these models are only concerned

with the element-free part of the distributions they generate. (The

popular stick-breaking methods [31] can be regarded as generating

element-free distributions.)

In §8 we study random distributions parametrized by a base

measure, and give a new representation theorem (Theorem 8.4):

the parametrized random distributions corresponding to random

element-free distributions are in bijection with certain natural trans-

formations between functors of distributions. This appears to be a

new perspective on random distributions.

1.4 Multisets and exchangeability
This paper is heavily based on multisets. The first reason is that the

coefficients in an element-free distribution are unordered, just like

the elements to which they were originally assigned.

The second reason is that distributions on multisets correspond

to distributions on lists that are invariant under list permutation.

This kind of permutation-invariance, known as exchangeability, is

a fundamental notion in Bayesian modelling, because the way we

have indexed the data points 𝑦1, . . . , 𝑦𝐾 is usually arbitrary ([13,

§1.2]).

For partitions, exchangeability means that, for instance, parti-

tions {{1, 2}, {3}} and {{1, 3}, {2}} have the same probability of oc-

curring. The model of Figure 2 is exchangeable because the colours

are sampled independently and from the same urn.

By working with multisets, we implicitly enforce exchangeability

of all distributions. So, in this paper:

• We model (ordinary) iid sampling as a function from dis-

tributions on 𝑋 to distributions over multisets over 𝑋 . (See

§6.1.)

• We use integer partitions rather than the usual set partitions.

An integer partition of 𝐾 is a multiset of positive integers

which sum to 𝐾 , representing the “block sizes” in a partition

of the set {1, . . . , 𝐾}. (See §5.)
• We model element-free iid sampling as a function from

element-free distributions to distributions over integer par-

titions. (See §6.2.)

We emphasize that integer partitions are the element-free coun-

terpart ofmultisets of elements: for example themultiset [𝑎, 𝑎, 𝑎, 𝑏, 𝑐]
gives rise to the partition [3, 1, 1] of the integer 5. (There is a beau-
tiful mathematical theory relating lists, multisets, set partitions and

integer partitions [22].) In the rest of this paper, by partition we

always mean integer partition.

Kingman’s theorem. A central contribution of this paper is a new

categorical proof of Kingman’s representation theorem for random

partitions. This theorem states that, in the limit 𝐾 = ∞, every

exchangeable random partition is induced by a unique random

element-free distribution via iid sampling (as in Figure 2).

Kingman’s theorem is the element-free counterpart of de Finetti’s

theorem [10], a foundational result in probability theory, that has re-

cently been given various categorical presentations [12, 20, 21]. This

paper makes clear the connection between the two theorems. We

can derive the theorem using a purely categorical argument (Theo-

rem 7.3), exploiting the results of §4 and §6 connecting element-free

and ordinary probability theory. We emphasize that continuous
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distributions, and thus measure theory, are essential for this theo-

rem to hold: discrete element-free distributions do not represent all
exchangeable random partitions [24].

1.5 Summary of contributions and outline
We summarize the key contributions of this paper.

In §4, we construct a measurable space of element-free distri-

butions defined as infinite multisets. We define two fundamental

operations: multiplicity count for forgetting elements (following

[16]), and drawing elements from a base measure.

In §5 we consider spaces of finite multisets and partitions, and

also define multiplicity count [16] and base measures. We then

make formal, in §6, the informal diagrams of §1.1 and §1.3: firstly

by defining an element-free version of iid sampling for partitions,

and secondly by showing that iid sampling commutes with the two

fundamental operations (multiplicity count, and drawing from a

base measure).

We can then prove our two main theorems. In §7 we give a new

statement and proof of Kingman’s theorem in terms of a categori-

cal limit, using the categorical version of de Finetti’s theorem for

standard Borel spaces [20]. In §8 we prove a new representation

theorem for random distributions parametrized by a base measure,

in terms of a correspondence between natural transformations and

random element-free distributions.

At a high level our motivation is to establish the following dic-

tiorary as a tool for reasoning about models for clustering.

Elements in space 𝑋 Element-free

Lists ⟨𝑥1, . . . , 𝑥𝐾 ⟩ Partitions of the set {1, . . . , 𝐾}
Multisets [𝑥1, . . . , 𝑥𝐾 ] Partitions of the number 𝐾

Distributions on 𝑋 Element-free distributions

de Finetti’s theorem Kingman’s theorem

We begin in §2 with a recap section on measure-theoretic proba-

bility theory. Then in §3 we introduce element-free distributions

via the simple special case of distributions on N.

2 PROBABILITY THEORY AND ATOMS
This section contains preliminary background on measure theory,

the notion of probability kernel, and atoms.

A probability distribution on a set 𝑋 is a function 𝑝 : 𝑋 → [0, 1]
such that

∑
𝑥 ∈𝑋 𝑝 (𝑥) = 1. This definition works well for discrete

probability, but for continuous probability we need measure theory.

Definition 2.1. A measurable space is a set 𝑋 equipped with a

𝜎-algebra Σ𝑋 : this is a set of subsets of 𝑋 , containing ∅ and closed

under complements, and countable unions and intersections.

Elements of Σ𝑋 are called measurable subsets of 𝑋 . We often

refer to the space as𝑋 , omitting the Σ𝑋 , when there is no ambiguity.

Key examples of measurable spaces include:

• The set R of real numbers equipped with the Borel sets

ΣR. This is defined as the smallest 𝜎-algebra containing all

intervals (𝑎, 𝑏) ⊆ R.
• Any subset of 𝑆 ⊆ R, with the 𝜎-algebra {𝑆 ∩𝑈 | 𝑈 ∈ ΣR}.
• Any set 𝑋 with the discrete 𝜎-algebra containing all subsets

of 𝑋 . With discrete spaces we can view distributions on sets

as instances of a general notion of probability measure.

Definition 2.2. A probability measure on a measurable space

(𝑋, Σ𝑋 ) is a function ` : Σ𝑋 → [0, 1] such that ` (𝑋 ) = 1, and

for any countable family of disjoint subsets 𝑈𝑖 ∈ Σ𝑋 , we have

` (⋃𝑖 𝑈𝑖 ) =
∑
𝑖 ` (𝑈𝑖 ).

There is a category Meas of measurable spaces, whose mor-

phisms (𝑋, Σ𝑋 ) → (𝑌, Σ𝑌 ) are measurable functions, i.e. maps

𝑓 : 𝑋 → 𝑌 such that for every𝑈 ∈ Σ𝑌 , 𝑓
−1𝑈 ∈ Σ𝑋 .

We can pushforward a probability measure ` on 𝑋 along a mea-

surable function, and get a probability measure 𝑓∗` on 𝑌 given by

(𝑓∗`) (𝑈 ) = ` (𝑓 −1𝑈 ).
For any measurable function 𝑓 : 𝑋 → R+ and probability mea-

sure ` on 𝑋 , we can define its Lebesgue integral

∫
𝑥 ∈𝑋 𝑓 (𝑥)` (d𝑥) ∈

R+ ∪ {∞}.

2.1 Kernels and the Giry monad
There is a monad of probability distributions onMeas, traditionally
called the Giry monad [14, 26]. For a measurable space 𝑋 , we write

𝐺𝑋 for the set of probability measures on 𝑋 , equipped with the

smallest 𝜎-algebra which makes the maps ev𝑈 : 𝐺𝑋 → [0, 1] :

` ↦→ ` (𝑈 ) measurable for every𝑈 ∈ Σ𝑋 . For a measurable function

𝑓 : 𝑋 → 𝑌 , there is a measurable function 𝐺𝑓 : 𝐺𝑋 → 𝐺𝑌 given

by pushforward along 𝑓 . This defines a functor 𝐺 : Meas → Meas.

Definition 2.3. A (probability) kernel from 𝑋 to 𝑌 is a measurable

function 𝑋 → 𝐺𝑌 . We use the notation 𝑋 → 𝑌 .

A kernel 𝑘 : 𝑋 → 𝑌 lifts to a function 𝑘† : 𝐺𝑋 → 𝐺𝑌 given by

` ↦→
∫
𝑥 ∈𝑋 𝑘 (𝑥,−)` (d𝑥), and we can use this to compose kernels:

if ℎ : 𝑌 → 𝑍 , then ℎ† ◦ 𝑘 : 𝑋 → 𝐺𝑍 is a kernel 𝑋 → 𝑍 .

Finally, for every space 𝑋 there is a map [𝑋 : 𝑋 → 𝐺𝑋 which

maps 𝑥 ∈ 𝑋 to the Dirac distribution 𝛿𝑥 : 𝑈 ↦→ [𝑥 ∈ 𝑈 ], which
returns 𝑥 with probability 1.

Lemma 2.4. The triple (𝐺, (−)†, [) determines a monad on Meas.

Subprobability distributions. A subprobabilitymeasure on (𝑋, Σ𝑋 )
is defined in the same way as a probability measure, only with the

weaker requirement that ` (𝑋 ) ≤ 1. There is a space𝐺≤𝑋 of subprob-

ability measures, that contains 𝐺𝑋 as a subspace; the definitions

are very similar and we omit the details. (𝐺≤ is also a monad, but

we do not use this.)

2.2 Atoms and standard Borel spaces
For this paper we restrict ourselves to a class of well-behaved spaces

in which it is safe to reason about elements and atoms.

Definition 2.5. A measurable space is a standard Borel space if
it is either discrete and countable, or measurably isomorphic to

(R, ΣR).

Standard Borel spaces include any measurable subset of (R, ΣR),
and they are closed under taking subspaces and countable products.

The Giry monad restricts to the subcategory Sbs of standard Borel

spaces, i.e. if 𝑋 is standard Borel then so is 𝐺𝑋 . In this paper when

we write Kℓ (𝐺) we mean the Kleisli category for 𝐺 over Sbs. This
is the category whose objects are standard Borel spaces and whose

morphisms are kernels.

In a standard Borel space, all singletons are measurable. If 𝑋 ∈
Sbs, and ` ∈ 𝐺𝑋 then we say ` has an atom at 𝑥 ∈ 𝑋 if `{𝑥} > 0.
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The set of atoms of `, written A` , must be countable and thus

a measurable subset of 𝑋 . Say ` is discrete or purely atomic if

` (𝑋 ) = ` (A` ), and non-atomic if A` = ∅.

Product spaces and iid measures. The product of measurable

spaces (𝑋, Σ𝑋 ) and (𝑌, Σ𝑌 ) is the set 𝑋 × 𝑌 equipped with the

𝜎-algebra generated by the rectangles𝑈 ×𝑉 (𝑈 ∈ Σ𝑋 , 𝑉 ∈ Σ𝑌 ).
Probability measures ` ∈ 𝐺𝑋 and a ∈ 𝐺𝑌 determine a unique

product measure `×a which satisfies (`×a) (𝑈 ×𝑉 ) = ` (𝑈 ) ×a (𝑉 ).
In particular, for any ^ ∈ N ∪ {∞}, there is a measurable function

iid^ : 𝐺𝑋 → 𝐺 (𝑋^ ) which sends ` to the ^-fold product measure

`^ . (We will also use iid to denote the sampling of multisets and

partitions, to emphasize the correspondence. This should cause no

confusion.)

3 DISCRETE ELEMENT-FREE
DISTRIBUTIONS

This section is about a simple special case: probability distributions

over the natural numbers N, which are always discrete. For every

distribution on N, there is an induced element-free distribution:

this is the family of probability coefficients, without the elements

to which they were assigned.

We define discrete element-free distributions as multisets of val-

ues in (0, 1] which sum to 1. We formalize multisets as functions

(0, 1] → N, indicating the multiplicity of each value. These mul-

tisets may be (countably) infinite, because distributions on N can

have infinite support.

Definition 3.1. A discrete element-free distribution is a function

𝜑 : (0, 1] → N whose support supp(𝜑) = {𝑟 ∈ (0, 1] | 𝜑 (𝑟 ) > 0} is
(finite or) countable, and such that

∑
𝑟 ∈supp(𝜑) 𝜑 (𝑟 ) · 𝑟 = 1.

(Note that, although the multisets may be infinite, each 𝑟 ∈ (0, 1]
must have a finite multiplicity.)

A space of element-free distributions. The set of all discrete element-

free distributions is denoted ∇d. It is equipped with the 𝜎-algebra

generated by the sets 𝐸𝑈
𝑘

= {𝜑 ∈ ∇d | ∑
𝑟 ∈𝑈∩supp(𝜑) 𝜑 (𝑟 ) = 𝑘}

for 𝑘 ∈ N and 𝑈 ∈ Σ (0,1] . Informally, 𝐸𝑈
𝑘

is the set of multisets

having exactly 𝑘 elements in 𝑈 . (There is also a measurable set

𝐸𝑈∞ := ∇d \
⋃
𝑘∈N 𝐸

𝑈
𝐾
.)

We note that this is the smallest 𝜎-algebra with respect to which

themaps ev𝑈 : ∇d → N∪{∞}, where ev𝑈 (𝜑) = ∑
𝑟 ∈𝑈∩supp(𝜑) 𝜑 (𝑟 ),

are measurable. (The similarity with the 𝜎-algebra on𝐺 (0, 1] is not
an accident: multisets are often formalized as integer-valued mea-

sures in the probability literature (e.g. [25]).)

Multiplicity count. Every distribution on N has an underlying

discrete element-free distribution. This is computed by an operation

called multiplicity count (because it counts the multiplicities of

coefficients e.g. [16]). We show that this is a measurable function.

Lemma 3.2. Every distribution ` ∈ 𝐺N induces a multiplicity

count mc(`) ∈ ∇d given by

mc(`) (𝑟 ) = #{𝑛 ∈ N | `{𝑛} = 𝑟 }
for 𝑟 ∈ (0, 1]. The function mc : 𝐺N→ ∇d is measurable.

Proof. The preimage of a generating set 𝐸𝑈
𝑘

∈ Σ∇d , where𝑘 ∈ N
and 𝑈 ∈ Σ (0,1] , under the function mc, is the set of distributions

` such that `{𝑛𝑖 } ∈ 𝑈 for precisely 𝑘 values 𝑛1, . . . , 𝑛𝑘 ∈ N. Thus
mc−1 (𝐸𝑈

𝑘
) =⋃

⟨𝑛1,...,𝑛𝑘 ⟩∈N𝑘
𝑛𝑖≠𝑛 𝑗

(
𝑘⋂
𝑖=1

ev
−1
𝑛𝑖
𝑈

)
∩ ©«

⋂
𝑛𝑖≠𝑛∈N

ev
−1
𝑛 ((0, 1] \𝑈 )ª®¬ ,

a measurable set since it consists of countable unions and intersec-

tions of generating elements. □

Given a discrete element-free distribution 𝜑 , we write ∥𝜑 ∥ for
its size

∑
𝑝∈supp(𝜑) 𝜑 (𝑝), which may be infinite. For example, if

` ∈ 𝐺N, then ∥mc(`)∥ equals the cardinality of the support of `.

Element-free distributions in ordered form. It is common in the

probability literature to find element-free distributions formalized

as decreasing sequences over [0, 1], rather than multisets ([24, 27]).

We show that there is a map ord : ∇d → 𝐺N which turns an

element-free distribution into a distribution over N by considering

the coefficients in decreasing order. This is a section (right-inverse)

of multiplicity count.

Lemma 3.3. For 𝜑 ∈ ∇d, let ord(𝜑) be the distribution on N given
by ord(𝜑) (𝑛) ={

max

{
𝑝 ∈ supp(𝜑) | ∑𝑞∈supp(𝜑),𝑝≤𝑞 𝜑 (𝑞) > 𝑛} if ∥𝜑 ∥ > 𝑛

0 otherwise.

Then ord is a measurable function ∇d → 𝐺N and a section of mc.

Example 3.4. Let 𝜑 be the multiset [ 1
5
, 1
5
, 3
5
] regarded as an el-

ement of ∇d. The distribution ord(𝜑) ∈ 𝐺N is given by 0 ↦→ 3

5
;

1, 2 ↦→ 1

5
; and 𝑛 ↦→ 0 for all 𝑛 ≥ 3.

Proof of Lemma 3.3. It suffices to show that ord−1𝑉 ∈ Σ∇d for
every 𝑉 in any basis for the 𝜎-algebra Σ𝐺N. We consider the basis

consisting of the subsets 𝑉
𝑞
𝑛 = {` | `{𝑛} > 𝑞}, for 𝑛 ∈ N and

𝑞 ∈ [0, 1]. (To see why this is a basis, note that if Σ′ is the 𝜎-algebra
on 𝐺N generated by the 𝑉

𝑞
𝑛 , then each function ev𝑛 : 𝐺N→ [0, 1]

is measurable, because the (𝑞, 1] generate Σ [0,1] . Since Σ𝐺N is the

smallest 𝜎-algebra making the ev𝑛 measurable, and clearly Σ′ ⊆
Σ𝐺N, they are equal.) The set ord−1𝑉

𝑞
𝑛 consists of the 𝜑 ∈ ∇d whose

𝑛th biggest element is above 𝑞, i.e.

ord−1𝑉𝑞𝑛 =
⋃
𝑘≥𝑛

𝐸
(𝑞,1]
𝑘

which is measurable. So mc is measurable.

The composite mc ◦ ord is the identity: for 𝜑 ∈ ∇d and 𝑝 ∈ (0, 1],
we have that 𝜑 (𝑝) is equal to the number of 𝑛 ∈ N such that

𝑝 = max

{
𝑝 ′ ∈ supp(𝜑) | ∑𝑞∈supp(𝜑)

𝑞≥𝑝′
𝜑 (𝑞) > 𝑛

}
.

This number is precisely mc(ord(𝜑)) (𝑝). □

As a section, the map ord must be injective. It has measurable

image:

Lemma 3.5. The image of ord : ∇d → 𝐺N is the subset

{` ∈ 𝐺N | ∀𝑛 ∈ N. `{𝑛 + 1} ≤ `{𝑛}}
of 𝐺N, which is in the 𝜎-algebra Σ𝐺N.
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Proof. The subset above is the countable intersection

⋂
𝑖∈N{` ∈

𝐺N | ` (𝑖 + 1) ≤ ` (𝑖)}, each component of which has measurable

characteristic function 𝐺N
⟨ev𝑖 ,ev𝑖+1 ⟩−−−−−−−−−→ R × R ≥−→ {0, 1}. □

Measurable subsets of standard Borel spaces are standard Borel,

and so ∇d is standard Borel. As an aside, we note the following

universal characterization of ∇d and mc:

Proposition 3.6. The function mc is a coequalizer for the diagram
consisting of all maps 𝐺 (𝛼) for 𝛼 ∈ Aut(N), the symmetry group of
N.

𝐺N 𝐺N ∇d
𝐺 (𝛼)
·· · mc

Proof. The map mc forms a cone over the diagram, because

countingmultiplicity is invariant under any reindexing ofN. For the
universal property, let 𝑓 : 𝐺N→ 𝑋 be another invariant map into

an arbitrary measurable space 𝑋 . We must show that there exists a

unique map ℎ : ∇d → 𝑋 such that ℎ ◦mc = 𝑓 . Uniqueness follows
from the fact that mc, as a retraction, is epi. We set ℎ = 𝑓 ◦ ord, and
it remains to show that

𝐺N ∇d 𝐺N

𝑋

mc ord

𝑓 𝑓

commutes. For every ` ∈ 𝐺N, the distribution ord(mc(`)) is a rein-
dexing of ` along some permutation 𝛼 ∈ Aut(N), i.e. mc(ord(`)) =
𝐺 (𝛼) (`). As 𝑓 = 𝑓 ◦ 𝐺 (𝛼) by the assumption that 𝑓 is invariant,

we are done. □

So far we have considered discrete element-free distributions:

infinite multisets whose elements sum to 1. These are a natural way

to represent the element-free part of a probability distribution on

N, or any other discrete space.

4 GENERAL ELEMENT-FREE DISTRIBUTIONS
In this section we introduce the general notion of element-free

distribution, which also supports continuous distributions. We also

develop two fundamental operations for a standard Borel space 𝑋 :

multiplicity count for probability measures on 𝑋 (§4.1), and the

sampling of new elements from a base measure (§4.2). This gives a

retract situation (§4.3).

Recall that an element-free distribution is a multiset representing

the weights assigned to atoms of a probability distribution. Distri-

butions on continuous spaces can have a nonatomic part, and so

those weights may not sum to 1. This is the only difference between

discrete and non-discrete element-free distributions.

Definition 4.1. An element-free probability distribution is a func-

tion 𝜑 : (0, 1] → N whose support is countable, and such that∑
𝑝∈supp(𝜑) 𝜑 (𝑝) · 𝑝 ≤ 1.

We write ∇ for the space of element-free distributions, with a

basis of measurable subsets given by

𝐷𝑈
𝑘

= {𝜑 ∈ ∇ |
∑

𝑝∈𝑈∩supp(𝜑)
𝜑 (𝑝) = 𝑘}

for 𝑈 ∈ Σ (0,1] and 𝑘 ∈ N. (This extends the 𝜎-algebra of ∇d, in
particular 𝐸𝑈

𝑘
= 𝐷𝑈

𝑘
∩ ∇d.)

Keeping the nonatomic part implicit, general element-free distri-

butions can be viewed as subprobability distributions on the natural

numbers. It will sometimes be convenient to use generalized ver-

sions of the functions mc and ord from Section 3. Recall that the

space of sub-probability distributions on N is written 𝐺≤N, and
contains 𝐺N as a subspace.

Lemma 4.2. There are measurable functions mc : 𝐺≤N→ ∇ and
ord : ∇ → 𝐺≤N extending those given in Lemma 3.2 and Lemma 3.3,
and defined in the same way. Thus in particular ∇ is standard Borel.

We also note that ∇d is a measurable subset of ∇ : it is the pre-

image of {1} under themeasurable function∇ ord−−→ 𝐺≤N
evN−−−→ [0, 1] .

4.1 Multiplicity count for general spaces
By moving to general element-free distributions, we can consider

arbitrary probability measures on standard Borel spaces. We thus

have a new kind of multiplicity count, that forgets everything but

the atom weights (and their multiplicity).

For every standard Borel space 𝑋 , this is given by

mc : 𝐺𝑋 −→ ∇
` ↦−→ (𝑟 ↦→ #{𝑥 ∈ 𝑋 | `{𝑥} = 𝑟 }) .

Notational remark. Here and throughout the paper we overload

the notation for our two fundamental operationsmc and base` (next
section), to emphasize that they correspond to the same passage

between element-free and ordinary probability. The types should

be clear from context, and so this should pose no confusion.

Example 4.3. • For any Dirac 𝛿𝑥 ∈ 𝐺𝑋 , mc(𝛿𝑥 ) = [1].
• IfU[0,1] is the uniform distribution on [0, 1], thenmc(U[0,1] )
is the empty element-free distribution.

• We can have discrete-continuous mixtures. If 𝑥 ∈ [0, 1], then
mc( 1

3
𝛿𝑥 + 2

3
U[0,1] ) = [ 1

3
], since there is a single atom with

weight
1

3
.

It is not immediate that mc is measurable. We first show a pre-

liminary lemma:

Lemma 4.4. For Y > 0, define mcY : 𝐺𝑋 → ∇ by mcY (`) (𝑟 ) =

mc(`) (𝑟 ) if 𝑟 ≥ Y, and 0 otherwise. Then mcY is measurable.

The measurability of mc ought to follow because limits of mea-

surable functions are measurable, but to make this limit argument

precise one needs the topology of ∇. To avoid this, a direct argu-

ment is as follows: let 𝐷𝑈≤𝑘 =
⋃
ℓ≤𝑘 𝐷

𝑈
ℓ
and note that the 𝐷𝑈≤𝑘 still

generate Σ∇. We then have that

mc−1𝐷𝑈≤𝑘
= {` ∈ 𝐺𝑋 | ` has ≤ 𝑘 atoms with weight in𝑈 }

=
⋂
𝑚≥1

{
` ∈ 𝐺𝑋 | ` has ≤ 𝑘 atoms with weight in𝑈 ∩ ( 1

𝑚 , 1]
}

=
⋂
𝑚≥1

mc−1
1

𝑚

𝐷𝑈≤𝑘 ,

a countable union of measurable sets, and so mc is measurable.

Proof (of Lemma 4.4). We only give details for a non-discrete

𝑋 . Suppose w.l.o.g. that 𝑋 = [0, 1]. There is an increasingly-refined
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sequence of partitions of 𝑋 : for 𝑚 ∈ N and 0 ≤ 𝑛 < 2
𝑚
, let

𝐵𝑛𝑚 = [ 𝑛
2
𝑚 ,

𝑛+1
2
𝑚 ).

We now show that, for every𝛼 ≥ 0 and𝑘 ∈ N, the setmc−1Y 𝐷
[𝛼,1)
𝑘

is measurable. We claim that this set is expressible using countable

unions and intersections of basis elements, as follows:

⋃
ℓ∈N

⋂
𝑚≥ℓ

⋃
{𝑛1,...,𝑛𝑘}

⊆{0,...,2𝑚−1}

(
𝑘⋂
𝑖=1

ev
−1
𝐵
𝑛𝑖
𝑚

[𝛼, 1]
)
∩

©«
⋂

𝑛≤2𝑚−1
∀𝑖 . 𝑛≠𝑛𝑖

ev
−1
𝐵𝑛𝑚

[0, 𝛼)
ª®®®¬ .

To prove this claimwe use standard but verbose analytic arguments;

the full details are in Appendix A.1.

It remains to show that for every𝑈 ∈ Σ (0,1] (and not just for the
[𝛼, 1]), the sets mc−1Y 𝐷𝑈

𝑘
are measurable for 𝑘 ∈ N. Let S be the set

of those𝑈 ⊂ [0, 1) satisfying this property. It suffices to show that

S is closed under relative complements and countable increasing

unions: by the 𝜋-_ theorem (e.g. [2, Thm. 1.8]) this implies Σ (0,1] ⊆
S, from which we can conclude.

For relative complements, observe that, whenever 𝑈 ⊆ 𝑉 ∈ S,
mc−1Y 𝐷

𝑉 \𝑈
𝑘

=
⋃
𝑚∈Nmc−1Y 𝐷𝑉

𝑘+𝑚 ∩ mc−1Y 𝐷𝑈𝑚 . This is a measurable

set and so 𝑉 \ 𝑈 ∈ S. (Here we use that Y > 0, to avoid infi-

nite numbers of atoms.) For countable increasing unions, note that

mc−1Y 𝐷

⋃
𝑛∈N𝑈𝑛

𝑘
=

⋃
𝑚∈N

⋂
𝑛≥𝑚 mc−1Y 𝐷

𝑈𝑛
𝑘

, and so the proof is com-

plete. □

In summary, the mapmc : 𝐺𝑋 → ∇ is measurable for every stan-

dard Borel space 𝑋 . This is a deterministic way to forget elements,

and we now give a probabilistic way to recover them.

4.2 Drawing elements from a base measure
We can turn an element-free distribution 𝜑 ∈ ∇ into an ordinary

distribution on a space𝑋 by sampling elements from a base measure

` ∈ 𝐺𝑋 . More precisely, the weights of 𝜑 are assigned to atoms

sampled independently from `, and the nonatomic part in 𝜑 is

completed using ` itself. Formally, we will define a kernel base :

𝐺𝑋 × ∇ → 𝐺𝑋 .

For each 𝜑 ∈ ∇, the set supp(𝜑) ⊆ [0, 1] is countable and well-

ordered under ≥. Thus we can enumerate its elements in decreasing

order: supp(𝜑) = {𝑟1 ≥ 𝑟2 ≥ . . . }. Then, given any sequence

𝒙 = (𝑥𝑖 )∥𝜑 ∥
𝑖=1

of elements in a set 𝑋 , we can decompose the sequence

𝒙 as

𝒙 = 𝒙𝑟1 ⊕ 𝒙𝑟2 ⊕ . . .
where ⊕ denotes concatenation, and each 𝒙𝑟𝑖 is a subsequence

of size 𝜑 (𝑟𝑖 ). For each 𝑟 ∈ supp(𝜑) we write the elements of 𝒙𝑟

as (𝑥𝑟
1
, . . . , 𝑥𝑟

𝜑 (𝑟 ) ). (Note that each operation 𝒙 ↦→ 𝒙𝑟𝑖 is simply a

particular product projection, and thus a measurable function.)

Definition 4.5 (Allocation). For 𝜑 ∈ ∇ and 𝒙 ∈ 𝑋 ∥𝜑 ∥
, let

alloc(𝜑, 𝒙) =
∑

𝑟 ∈supp(𝜑)
𝑟 ·

𝜑 (𝑟 )∑
𝑖=1

𝛿𝑥𝑟
𝑖

be the subprobability measure that results from allocating elements

in 𝒙 to weights in 𝜑 .

Definition 4.6 (Drawing elements from a base measure). The ker-
nel base` : ∇ → 𝐺𝑋 is defined for any 𝜑 ∈ ∇ and 𝑉 ∈ Σ𝐺𝑋 as

follows:

base` (𝜑) (𝑉 ) =∫
𝒙∈𝑋 ∥𝜑 ∥

[(1 − tt(𝜑))` + alloc(𝜑, 𝒙) ∈ 𝑉 ] iid∥𝜑 ∥ (`) (d𝒙) .

(We denote by [𝑃] the indicator function of a property 𝑃 .)

Example 4.7. Let 𝜑 be the multiset [ 1
3
, 2
3
] viewed as an element

of ∇. We give examples of sampling elements from discrete and

continuous base measures.

(1) If 𝑋 = {0, 1} and ` = 1

4
𝛿0 + 3

4
𝛿1, then the distribution

base` (𝜑) on 𝐺𝑋 is purely atomic: it has four atoms with

weights given below.(
1

3

𝛿0 +
2

3

𝛿1

)
↦−→ 3

16

𝛿0 ↦−→ 1

16(
2

3

𝛿0 +
1

3

𝛿1

)
↦−→ 3

16

𝛿1 ↦−→ 9

16

.

(2) If 𝑋 = [0, 1] and ` = U[0,1] is the uniform distribution, then

base` (𝜑) is given by

base` (𝜑) (𝑀) =
∫
(𝑥,𝑦) ∈[0,1]2

[(
1

3

𝛿𝑥 + 2

3

𝛿𝑦

)
∈ 𝑀

]
d𝑥 d𝑦

for𝑀 ∈ Σ𝐺𝑋 .

Example 4.8. We now look at a different element-free distribu-

tion: 𝜓 = [ 3
5
] ∈ ∇. Note that 𝜓 has a continuous part of weight

2

5
.

(1) If 𝑋 = {0, 1} and ` = 1

4
𝛿0 + 3

4
𝛿1, then the distribution

base` (𝜓 ) on 𝐺𝑋 is purely atomic with atoms:

( 2
5

` + 3

5

𝛿0) ↦→
1

4

( 2
5

` + 3

5

𝛿1) ↦→
3

4

(These atoms reduce to
7

10
𝛿0 + 3

10
𝛿1 and

1

10
𝛿0 + 9

10
𝛿1.)

(2) If 𝑋 = [0, 1] and ` = U[0,1] is the uniform distribution, then

base` (𝜓 ) (𝑀) =
∫
𝑥 ∈[0,1]

[(
2

5

U[0,1] +
3

5

𝛿𝑥

)
∈ 𝑀

]
d𝑥

for𝑀 ∈ Σ𝐺𝑋 .

4.3 The space ∇ as a retract
We can now move between the space of element-free distributions

and spaces of distributions on 𝑋 using the two constructions:

𝐺𝑋 ∇ ∇ 𝐺𝑋 (` ∈ 𝐺𝑋 )mc base`

An important observation is that the composite

∇ 𝐺𝑋 ∇
base` mc

is equal to the identity on ∇ whenever the measure ` is nonatomic.

The intuition is that the elements produced by iid` are all distinct
with probability 1, and thus weights are never combined. (For a

counterexample when ` is atomic: let ` = 𝛿𝑎 on the set {𝑎, 𝑏}. Then
for any 𝜑 , base` (𝜑) assigns the element 𝑎 to every weight of 𝜑 ,

i.e. base` (𝜑) = 𝛿𝛿𝑎 . Applyingmc to 𝛿𝑎 returns [1] ∈ ∇. We see that

the weights of 𝜑 have all been combined.)
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Proposition 4.9. For a standard Borel space 𝑋 and a nonatomic
measure ` ∈ 𝐺𝑋 , the kernel base` : ∇ → 𝐺𝑋 is a section of mc :

𝐺𝑋 → ∇ in the category of kernels; that is, mc ◦ base` = id∇.

Proof sketch. The key idea is that, because ` is nonatomic,

the measure iid(`) ∈ 𝐺 (𝑋N) is concentrated on the subspace of

sequences whose elements are pairwise distinct: let 𝑆 = {(𝑥𝑛)𝑛∈N |
𝑥𝑖 ≠ 𝑥 𝑗 if 𝑖 ≠ 𝑗}. For any 𝒙 ∈ 𝑆 (and, say, if 𝜑 has infinite support)

the distribution alloc(𝒙, 𝜎) has the exact same atom weights as

found in 𝜑 .

□

5 FINITE MULTISETS AND PARTITIONS
In this section we consider spaces of finite multisets and their

element-free counterpart: partitions of positive integers. Just like

for distributions and element-free distributions, we have two fun-

damental operations: multiplicity count, a deterministic operation

which turns a multiset of size 𝐾 into a partition of the number 𝐾

by forgetting elements; and a probabilistic operation, which turns a

partition into a multiset by sampling elements from a base measure.

These operations will be defined in §5.2. In §5.1 we recall the basics

of finite multisets and partitions.

5.1 Finite multisets and partitions
Multisets. We have previously used infinite multisets of positive

reals to define element-free distributions. Here we consider finite

multisets over an arbitrary space 𝑋 .

Definition 5.1. For a measurable space 𝑋 , let M(𝑋 ) be the set
of finite multisets of elements of 𝑋 . These are formally defined

as functions 𝑋 → N with finite support. The 𝜎-algebra ΣM(𝑋 ) is
generated by the sets 𝐸𝑈

𝑘
= {𝜑 ∈ M(𝑋 ) | ∑𝑈∩supp(𝜑) 𝜑 (𝑥) = 𝑘}

for 𝑘 ∈ N and𝑈 ∈ Σ𝑋 .

Notation 1. For a multiset 𝜑 ∈ M(𝑋 ), write ∥𝜑 ∥ for its size,

i.e. ∥𝜑 ∥ = ∑
𝑥 ∈supp(𝜑) 𝜑 (𝑥). For 𝐾 ∈ N, the subspace of multisets of

size 𝐾 is denoted M[𝐾] (𝑋 ). (Note that M[𝐾] (𝑋 ) is equal to the

generating set 𝐸𝑋
𝐾
, and thus a measurable subset ofM(𝑋 ).)

It it well-known (e.g. [9]) that if the space 𝑋 is standard Borel,

then so is M(𝑋 ), and therefore so are allM[𝐾] (𝑋 ).

Partitions. Partitions are defined as multisets of integers. Each

integer represents the size of a block of (unnamed) elements. Par-

titions are a classical object of study in combinatorics [1]. The

modern presentation we give now, in terms of multisets, is due to

Jacobs [16].

Definition 5.2. For a multiset 𝜎 ∈ M(N>0), the total of 𝜎 is an

integer tt(𝜎) defined as tt(𝜎) = ∑
𝑛>0 𝜎 (𝑛) · 𝑛.

Definition 5.3. For 𝐾 ∈ N, the set of partitions P(𝐾) is given by

{𝜎 ∈ M(N>0) | tt(𝜎) = 𝐾}.

Example 5.4. The set of partitions P(3) contains the three mul-

tisets [1, 1, 1], [1, 2], and [3], representing the possible combina-

tions of block sizes in partitions of a three-element set {𝑎, 𝑏, 𝑐}:
{{𝑎}, {𝑏}, {𝑐}}, {{𝑎, 𝑏}, {𝑐}}, {{𝑎}, {𝑏, 𝑐}}, {{𝑎, 𝑐}, {𝑏}}, {{𝑎, 𝑏, 𝑐}}.

The sets P(𝐾) are all finite, and we regard them as discrete

measurable spaces.

Before proceeding, we recall some combinatorial coefficients for

multisets and partitions, taken from [16].

Definition 5.5. For a multiset 𝜑 ∈ M(𝑋 ) over any set 𝑋 ,

• The multinomial coefficient ((𝜑)) is defined as
∥𝜑 ∥!∏

𝑥∈supp(𝜑 ) 𝜑 (𝑥)!
.

• For 𝑛 ≥ ∥𝜑 ∥, the coefficient

(𝑛
𝜑

)
is defined as(

𝑛

𝜑

)
= ((𝜑)) ·

(
𝑛

∥𝜑 ∥

)
=

𝑛!

(𝑛 − ∥𝜑 ∥)! · ∏𝑥 𝜑 (𝑥)!
Finally, for a partition 𝜎 ∈ P(𝐾), the coefficient ((𝜎))p is defined as

𝐾 !∏
𝑛≤𝐾 (𝑛!)𝜎 (𝑛) .

5.2 Multiplicity count for multisets
Every finite multiset over a space𝑋 induces a partition, obtained by

forgetting the elements. For example, for 𝑋 = {𝑎, 𝑏, 𝑐}, the multiset

[𝑎, 𝑎, 𝑏] gives the partition [2, 1].
In other words, partitions are element-free multisets. This oper-

ation is another form of multiplicity count [16]:

mc : M[𝐾] (𝑋 ) −→ P(𝐾)
𝜑 ↦−→ (𝑛 ↦→ #{𝑥 ∈ supp(𝜑) | 𝜑 (𝑥) = 𝑛})

For our applications we note that multiplicity count over stan-

dard Borel spaces is measurable.

Lemma 5.6. For every standard Borel space 𝑋 and integer 𝐾 ≥ 0,
the function mc : M[𝐾] (𝑋 ) → P(𝐾) is measurable.

Proof. We can leverage the fact that mc : 𝐺𝑋 → ∇ is mea-

surable. The idea is to regard M[𝐾] (𝑋 ) as a subspace of 𝐺𝑋 ,

via the injective map 𝑓𝑘 : M[𝐾] (𝑋 ) → 𝐺𝑋 given by 𝑓𝐾 (𝜑) =∑
𝑥 ∈supp(𝜑)

𝜑 (𝑥)
𝐾

𝛿𝑥 . For𝑈 ∈ Σ𝑋 , the following diagram commutes

M[𝐾] (𝑋 ) 𝐺𝑋

N [0, 1]

ev𝑈

𝑓𝐾

ev𝑈

·
𝐾

and so each ev𝑈 ◦ 𝑓𝐾 is measurable. Since the ev𝑈 generate Σ𝐺𝑋 ,
𝑓𝐾 is measurable. Similarly, via the map P(𝐾) → ∇ which divides

every element of a partition by 𝐾 , we identify the set P(𝐾) with
the subset of ∇ consisting of multisets whose support is contained

in { 𝑖
𝐾

| 1 ≤ 𝑖 ≤ 𝐾}. This is a finite and thus measurable subset.

The diagram below commutes

M[𝐾] (𝑋 ) P(𝐾)

𝐺𝑋 ∇
𝑓𝐾

mc

𝑓

mc

and so the lemma holds. □

5.3 Partitions and base measures
In the reverse direction, given a partition, we can randomly sample

an element for each block to reconstruct a multiset.We give a formal

definition, and then a more combinatorial characterization. For this

section we fix a standard Borel space 𝑋 , a probability measure

` ∈ 𝐺𝑋 , and an integer 𝐾 ≥ 0.
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Wefirstmake an observation similar to that in §4.2: for a partition

𝜎 ∈ P(𝐾), any 𝒙 ∈ 𝑋 ∥𝜎 ∥
is necessarily of the form

𝒙 = 𝒙1 ⊕ · · · ⊕ 𝒙𝐾

for (possibly empty) subsequences 𝒙𝑛 = (𝑥𝑛
1
, . . . , 𝑥𝑛

𝜎 (𝑛) ). (In other

words, we consider the blocks of 𝜎 in increasing order of size.)

Definition 5.7 (Allocation). For 𝜎 ∈ P(𝐾) and 𝒙 ∈ 𝑋 ∥𝜎 ∥
, define

alloc(𝜎, 𝒙) =
𝐾∑
𝑛=1

𝜎 (𝑛)∑
𝑖=1

𝑛[𝑥𝑛𝑖 ] ∈ M[𝐾] (𝑋 )

where the sum operation and N-action on multisets are defined

pointwise on the corresponding functions𝑋 → N. (So, in particular,
𝑛[𝑥] = [𝑥, . . . , 𝑥] with 𝑥 occurring 𝑛 times.)

Definition 5.8 (Base measure draws for partitions). For 𝜎 ∈ P(𝐾),
the measure base` (𝜎) onM[𝐾] (𝑋 ) is defined by

base` (𝜎) (𝑉 ) =
∫
𝒙∈𝑋 ∥𝜎 ∥

[alloc(𝜎, 𝒙) ∈ 𝑉 ] diid∥𝜎 ∥ (`) (𝒙) .

for𝑉 ∈ ΣM[𝐾 ] (𝑋 ) . This defines a kernel base` : P(𝐾) → M[𝐾] (𝑋 ).

We have another retract situation between multisets over a con-

tinuous space and partitions.

Lemma 5.9. For a non-atomic ` ∈ 𝐺𝑋 , and 𝐾 ≥ 0, the kernels
base` : P(𝐾) → M[𝐾] (𝑋 ) and mc : M[𝐾] (𝑋 ) → P(𝐾) form a
section-retraction pair, i.e. mc ◦ base` = idP(𝐾) .

It will be helpful to have a more combinatorial expression of the

kernel base` . We recall the following result.

Lemma 5.10 (Dash and Staton [8]). The family of subsets of
M(𝑋 ) of the form ⋃

𝑖∈𝐼

⋂
𝑗 ∈𝐽

𝐸
𝑈 𝑗

𝑘𝑖,𝑗

where 𝐼 and 𝐽 are countable, the𝑈 𝑗 are all disjoint measurable subsets
of 𝑋 , and each 𝑘𝑖, 𝑗 ∈ N, forms a ring which generates ΣM(𝑋 ) .

A measure on any measurable space is determined by its values

on a generating ring [2], and so the following lemma suffices to

characterize base` (𝜎) for any 𝜎 ∈ P(𝐾).

Lemma 5.11. For 𝜎 ∈ P(𝐾), if𝑈 ∈ Σ𝑋 and 𝑘 ≤ 𝐾 , then

base` (𝜎) (
⋃
𝑖∈𝐼

⋂
𝑗 ∈𝐽

𝐸
𝑈 𝑗

𝑘𝑖,𝑗
) =

∑
𝑖∈𝐼∑

(𝜏 𝑗 ) 𝑗∈𝐽 ,𝜏 𝑗 ≤𝜎
tt(𝜏 𝑗 )=𝑘𝑖,𝑗

` (𝑉 ) ∥𝜎 ∥−∥
∑
𝑗 𝜏 𝑗 ∥ ©«

∏
𝑗 ∈𝐽

` (𝑈 𝑗 ) ∥𝜏 𝑗 ∥
ª®¬

∏
𝑛≤𝐾

(
𝜎 (𝑛)

𝜏 𝑗 (𝑛), 𝑗 ∈ 𝐽

)
where𝑉 is the complement of the union

⋂
𝑗 ∈𝐽 𝑈 𝑗 , and where the order

≤ on partitions is defined pointwise on the corresponding functions
N>0 → N.

In this section we have defined the two fundamental operations

mc : M[𝐾] (𝑋 ) → P(𝐾) and base` : P(𝐾) → M[𝐾] (𝑋 ) for
moving between the element-based and element-free settings.

6 SAMPLING MULTISETS AND PARTITIONS
The process of generating finite collections of independent and

identically distributed samples is modelled by a family of kernels

iid𝐾 : 𝐺𝑋 → M[𝐾] (𝑋 ), for 𝐾 ∈ N. This is the usual kind of

sampling, with elements. In this section we contrast it with an

element-free version, defined as a kernel iid𝐾 : ∇ → P(𝐾). As we
will see, the diagrams

𝐺𝑋 ∇

M[𝐾] (𝑋 ) P(𝐾)
iid𝐾

mc

mc

iid𝐾

𝐺𝑋 ∇

M[𝐾] (𝑋 ) P(𝐾)
iid𝐾

base`

base`

iid𝐾 (1)

both commute in Kℓ (𝐺).

6.1 Sampling with elements
We first discuss the generation of multisets of iid samples. The

function 𝐺𝑋 → 𝐺 (𝑋𝐾 ) sending ` to the 𝐾-ary product measure

`𝐾 is regarded as a kernel 𝐺𝑋 → 𝑋𝐾 that generates ordered lists

of iid samples. We are interested in the composite

iid𝐾 : 𝐺𝑋 → 𝑋𝐾 → 𝑀 [𝐾] (𝑋 ),

where the second (deterministic) map forgets the list order.

Lemma 6.1. Let ` ∈ 𝐺𝑋 , for a standard Borel space 𝑋 . For the
generating sets of Lemma 5.10, if

∑
𝑗 𝑘𝑖, 𝑗 ≤ 𝐾 for all 𝑖 ∈ 𝐼 , then

iid𝐾 (`)
©«
⋃
𝑖∈𝐼

⋂
𝑗 ∈𝐽

𝐸
𝑈 𝑗

𝑘𝑖,𝑗

ª®¬
=

∑
𝑖∈𝐼

𝐾 !

(𝐾 − ∑
𝑗 𝑘𝑖, 𝑗 )!

∏
𝑗 𝑘𝑖, 𝑗 !

` (𝑉 )𝐾−
∑
𝑗 𝑘𝑖,𝑗

∏
𝑗

` (𝑈 𝑗 )𝑘𝑖,𝑗 .

6.2 Sampling without elements
We now turn to the generation of iid random partitions directly

from an element-free distribution. This process was studied in

depth by Jacobs [16] in the restricted setting of finitely-supported,

discrete element-free distributions. Our results rely and expand on

his sampling formula, which we first recall:

Definition 6.2 ([16, Def. 15]). Let 𝜑 be a discrete element-free

distribution with finite support {𝑟1, . . . , 𝑟ℓ }, and with 𝜑 (𝑟𝑖 ) = 𝑛𝑖 .

The distribution iid𝐾 (𝜑) on P(𝐾) is given by

𝜎 ↦→ ((𝜎))p

∑
𝜎1,...,𝜎ℓ

∥𝜎𝑖 ∥≤𝑛𝑖 ,
∑
𝑖 𝜎𝑖=𝜎

∏
𝑖

(
𝑛𝑖

𝜎𝑖

)
· 𝑟tt(𝜎𝑖 )
𝑖

.

The intuitive justification for this formula is that we must con-

sider all the possible ways to allocate blocks of 𝜎 to coefficients in 𝜑 .

We first look at all possible ways of splitting 𝜎 into sub-partitions

𝜎𝑖 . The blocks of each 𝜎𝑖 are then allocated to distinct copies of the

coefficient 𝑟𝑖 in 𝜑 ; there are
(𝑛𝑖
𝜎𝑖

)
possible such allocations.

We now proceed to generalize this formula to the full space of

element-free distributions. The first step is to account for infinitely

supported (but still discrete) element-free distributions, which we
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can do by rewriting the above as follows:

𝜎 ↦→ ((𝜎))p

∑
(𝜎𝑟 )𝑟∈supp(𝜑 )

∥𝜎𝑟 ∥≤𝜑 (𝑟 ),
∑
𝑟 𝜎𝑟=𝜎

∏
𝑟 ∈supp(𝜑)

(
𝜑 (𝑟 )
𝜎𝑟

)
· 𝑟tt(𝜎𝑟 ) (2)

where the index of the sum is countable, even if supp(𝜑) is infinite,
because all but finitely many 𝜎𝑟 must be empty by the condition

that

∑
𝑟 𝜎𝑟 = 𝜎 . (Similarly, in the infinite product all but finitely

many factors are equal to 1.)

We now generalize this formula to general element-free dis-

tributions, whose coefficients may not sum to 1. Recall that the

continuous part of 𝜑 represents an atomless distribution, and there-

fore only produces singleton blocks. In the definition below, the

idea is to sum over the possible numbers 𝑘 of singleton blocks in 𝜎

arising from this continuous part.

Definition 6.3. Let 𝜑 ∈ ∇, and let𝑤 ∈ [0, 1] be the weight of its
continuous part, i.e.𝑤 =

∑
𝑟 ∈supp(𝜑) 𝑟 · 𝜑 (𝑟 ).

For 𝐾 ≥ 0, the distribution iid𝐾 (𝜑) over P(𝐾) is given by

𝜎 ↦→ ((𝜎))p

𝐾∑
𝑘=0

𝑤𝑘

𝑘!

∑
(𝜎𝑟 )𝑟∈supp(𝜑 )
∥𝜎𝑟 ∥≤𝜑 (𝑟 )∑
𝑟 𝜎𝑟+𝑘 [1]=𝜎

∏
𝑟 ∈supp(𝜑)

(
𝜑 (𝑟 )
𝜎𝑟

)
· 𝑟tt(𝜎𝑟 )

for 𝜎 ∈ P(𝐾), where 𝑘 [1] ∈ P(𝑘) is the all-singleton partition.

It is easy to see that if𝑤 = 0 the formula reduces to the expression

in (2). We must now show that iid𝐾 (𝜑) is a well-defined probability
distribution.

We apply a similar proof method as Jacobs, based on a ‘partitions

multinomial theorem’ ([16, Theorem 16]). We first extend the theo-

rem to an infinite setting using a straightforward limit argument.

Lemma 6.4 (Infinite partitions multinomial). Let 𝐼 be a count-
able set, (𝑟𝑖 )𝑖∈𝐼 a collection of non-negative reals, and (𝑛𝑖 )𝑖∈𝐼 a col-
lection of non-negative integers. For 𝐾 ≥ 0,(∑

𝑖∈𝐼
𝑟𝑖 · 𝑛𝑖

)𝐾
=

∑
𝜎 ∈P(𝐾)

((𝜎))p

∑
(𝜎𝑖 )𝑖∈𝐼
∥𝜎𝑖 ∥≤𝑛𝑖∑
𝑖∈𝐼 𝜎𝑖=𝜎

∏
𝑖∈𝐼

(
𝑛𝑖

𝜎𝑖

)
· 𝑟tt(𝜎𝑖 )
𝑖

.

Proof. Countable sums of positive reals are obtained as supre-

mums of finite sums, and we can apply the finite partitions multi-

nomial theorem from [16].

(∑𝑖∈𝐼 𝑟𝑖 · 𝑛𝑖 )𝐾 (1)
= sup

𝐽 ⊆𝑓 𝐼

©«
∑
𝑗 ∈𝐽

𝑟 𝑗 · 𝑛 𝑗
ª®¬
𝐾

(2)
= sup

𝐽 ⊆𝑓 𝐼

©«
∑

𝜎 ∈P(𝐾)
((𝜎))p

∑
(𝜎 𝑗 ) 𝑗∈𝐽

∥𝜎 𝑗 ∥≤𝑛 𝑗 ,
∑
𝑗 𝜎 𝑗=𝜎

∏
𝑗 ∈𝐽

(
𝑛 𝑗

𝜎 𝑗

)
· 𝑟tt(𝜎 𝑗 )
𝑗

ª®®®®¬
(3)
=

∑
𝜎 ∈P(𝐾)

((𝜎))p sup

𝐽 ⊆𝑓 𝐼

©«
∑

(𝜎 𝑗 ) 𝑗∈𝐽
∥𝜎 𝑗 ∥≤𝑛 𝑗 ,

∑
𝑗 𝜎 𝑗=𝜎

∏
𝑗 ∈𝐽

(
𝑛 𝑗

𝜎 𝑗

)
· 𝑟tt(𝜎 𝑗 )
𝑗

ª®®®®¬

(4)
=

∑
𝜎 ∈P(𝐾)

((𝜎))p

∑
(𝜎𝑖 )𝑖∈𝐼

∥𝜎𝑖 ∥≤𝑛𝑖 ,
∑
𝑖 𝜎𝑖=𝜎

∏
𝑖∈𝐼

(
𝑛𝑖

𝜎𝑖

)
· 𝑟tt(𝜎𝑖 )
𝑖

,

where (1) is because taking the 𝐾th power is continuous and in-

creasing, (2) is by the finite partitions multinomial theorem, (3)
is because sums and sups can be interchanged over the positive

reals, and (4) uses the fact that any (𝜎𝑖 )𝑖∈𝐼 as in the sum index is

necessarily 0 outside of a finite 𝐽 ⊆ 𝐼 . □

Proposition 6.5. For 𝜑 ∈ ∇ and 𝐾 ≥ 0, iid𝐾 (𝜑) is a well-defined
probability distribution.

Proof. We first observe that for 𝑘 ≤ 𝐾 and 𝜏 ∈ P(𝐾 − 𝑘),(
𝐾

𝑘

)
((𝜏))p =

1

𝑘!
((𝜏 + 𝑘 [1])) .

(This is easy to verify directly.)We thenwrite𝑤 for the weight of the

continuous part of 𝜑 . We apply the binomial theorem, Lemma 6.4,

and the identity above:

1 =
©«𝑤 +

∑
𝑟 ∈supp(𝜑)

𝑟 · 𝜑 (𝑟 )ª®¬
𝐾

=

𝐾∑
𝑘=0

(
𝐾

𝑘

)
𝑤𝑘

©«
∑

𝑟 ∈supp(𝜑)
𝑟 · 𝜑 (𝑟 )ª®¬

𝐾−𝑘

=

𝐾∑
𝑘=0

(
𝐾

𝑘

)
𝑤𝑘

∑
𝜏 ∈P(𝐾−𝑘)

((𝜏))p

∑
(𝜏𝑟 )𝑟∈supp(𝜑 )

∏
𝑟

(
𝜑 (𝑟 )
𝜏𝑟

)
𝑟tt(𝜏𝑟 )

=

𝐾∑
𝑘=0

𝑤𝑘

𝑘!

∑
𝜏 ∈P(𝐾−𝑘)

((𝜏 + 𝑘 [1]))p
∑

(𝜏𝑟 )𝑟∈supp(𝜑 )
∥𝜏𝑟 ∥≤𝜑 (𝑟 ),

∑
𝑟 𝜏𝑟=𝜏

∏
𝑟

(
𝜑 (𝑟 )
𝜏𝑟

)
𝑟tt(𝜏𝑟 )

=
∑

𝜎 ∈P(𝜎)
((𝜎))p

𝐾∑
𝑘=0

𝑤𝑘

𝑘!

∑
(𝜎𝑟 )𝑟∈𝜑 (𝑟 )
𝜎𝑟 ≤𝜑 (𝑟 )∑
𝑟 𝜎𝑟+𝑘 [1]=𝜎

∏
𝑟

(
𝜑 (𝑟 )
𝜎𝑟

)
𝑟tt(𝜎𝑟 )

and we have recovered the sum of coefficients in iid𝐾 (𝜑). □

6.3 Relating the two forms of sampling
We can now make formal the relationship between ordinary iid

sampling and element-free iid sampling. The first key result is that

multiplicity count commutes with iid.

Proposition 6.6. Multiplicity count commutes with iid sampling,
i.e. the diagram on the left of equation (1) commutes.

Proof. The crux of the argument is the same as in the the re-

stricted setting of Jacobs [16, Prop. 17 (2)]. We give the full general-

ization in Appendix A.2. □

The second key result is that base` also commutes with iid.

Proposition 6.7. Sampling elements from a base measure ` com-
mutes with iid sampling, i.e. the diagram on the right of equation (1)

commutes.

Proof. This requires another combinatorial argument which

we outline in Appendix A.3. □
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These two propositions make precise the informal commutative

diagrams in §1.1 and § 1.3, and together clarify the relationship

between ordinary element-based sampling, and element-free sam-

pling.

7 THE REPRESENTATION OF INFINITE
RANDOM PARTITIONS

In this section we turn to Kingman’s representation theorem for

random partitions. This theorem is concerned with infinite ran-

dom partitions, i.e. random partitions of N, formalized as infinite

sequences of random finite partitions subject to a consistency con-

dition, which states that deleting a random point from the random

partition at level 𝐾 + 1 should yield the random partition at level 𝐾 .

7.1 Draw-delete maps for multisets and
partitions

In order to state the theorem with the appropriate consistency

condition, we recall the definitions of draw-delete kernels, both with
and without elements (respectively, for multisets and for partitions).

These represent the process of deleting an element from a multiset

in𝑀 [𝐾 + 1] (𝑋 ), or a point from a partition in P(𝐾 + 1), uniformly

chosen among all 𝐾 + 1.

We first fix some notation. For 𝜑 ∈ M[𝐾 + 1] (𝑋 ), and 𝑥 ∈
supp(𝜑), the multiset 𝜑−𝑥 ∈ M[𝐾] (𝑋 ) is given by 𝜑−𝑥 (𝑥 ′) =

𝜑 (𝑥 ′) − [𝑥 = 𝑥 ′], for 𝑥 ′ ∈ 𝑋 . Similarly, for 𝜎 ∈ P(𝐾 + 1), and
𝑛 ∈ supp(𝜎), the partition 𝜎𝑛− ∈ P(𝐾) is given for 𝑛′ > 0 by

𝜎𝑛− (𝑛′) =


𝜎 (𝑛′) − 1 if 𝑛′ = 𝑛

𝜎 (𝑛′) + 1 if 𝑛′ = 𝑛 − 1

𝜎 (𝑛′) otherwise.

Lemma 7.1. Let 𝑋 be a standard Borel space, and 𝐾 ≥ 0. There
are kernels dd : M[𝐾 + 1] (𝑋 ) → M[𝐾] (𝑋 ) and pdd : P(𝐾 + 1) →
P(𝐾) given by

dd(𝜑) = ∑
𝑥 ∈supp(𝜑)

𝜑 (𝑥)
∥𝜑 ∥ ·𝛿𝜑−𝑥 pdd(𝜎) = ∑

𝑛∈supp(𝜎)
𝑛 ·𝜎 (𝑛)
tt(𝜎) ·𝛿𝜎𝑛−

for 𝜑 ∈ M[𝐾 + 1] (𝑋 ) and 𝜎 ∈ P(𝐾 + 1).
Moreover the following diagram commutes in Kℓ (𝐺).

M[𝐾 + 1] (𝑋 ) M[𝐾] (𝑋 )

P(𝐾 + 1) P(𝐾)

dd

mc mc

pdd

Proof. This is [16, Lemma 7]. We must additionally check the

measurability of dd : M[𝐾 + 1] (𝑋 ) → M[𝐾] (𝑋 ). For this we note
that dd is equal to a composite M[𝐾 + 1] (𝑋 ) → 𝑋𝐾+1 → 𝑋𝐾 →
M[𝐾] (𝑋 ) where the first kernel picks a random enumeration, the

second one performs draw-and-delete on sequences, and the third

map turns the resulting sequence back into a multiset. □

We now show the corresponding property for base` .

Lemma 7.2. For every 𝐾 , the following diagram commutes in
Kℓ (𝐺).

P(𝐾 + 1) P(𝐾)

M[𝐾 + 1] (𝑋 ) M[𝐾] (𝑋 )

base`

pdd

base`

dd

Proof. Let 𝜎 ∈ P(𝐾 + 1) and let 𝒙 ∈ 𝑋 ∥𝜎 ∥
. Let 𝑛1 ≤ · · · ≤

𝑛 ∥𝜎 ∥ be the (unique) increasing enumeration of the blocks of 𝜎 . A

straightforward calculation gives

dd(alloc(𝒙, 𝜎)) =
∥𝜎 ∥∑
𝑖=1

𝑛𝑖

𝐾 + 1

𝛿alloc(𝒙,𝜎)−𝑥𝑖 ,

and thus for 𝑉 ∈ ΣM[𝐾 ] (𝑋 ) , (dd ◦ base` ) (𝑉 ) =

∥𝜎 ∥∑
𝑖=1

𝑛𝑖

𝐾 + 1

∫
𝒙∈𝑋 ∥𝜎 ∥

[
alloc(𝒙, 𝜎)−𝑥𝑖 ∈ 𝑉

]
iid∥𝜎 ∥ (d𝒙)

=

∥𝜎 ∥∑
𝑖=1

𝑛𝑖

𝐾 + 1

∫
𝒙∈𝑋 ∥𝜎𝑛𝑖−∥

[
alloc(𝒙, 𝜎𝑛𝑖−) ∈ 𝑉

]
iid∥𝜎 ∥ (d𝒙)

=
∑

𝑛∈supp𝜎

𝑛 · 𝜎 (𝑛)
𝐾 + 1

∫
𝒙∈𝑋 ∥𝜎𝑛−∥

[
alloc(𝒙, 𝜎𝑛−) ∈ 𝑉

]
iid∥𝜎 ∥ (d𝒙)

which equals (base` ◦ pdd) (𝜎) (𝑉 ). □

7.2 Main theorem
We consider the diagram of spaces of partitions in Kℓ (𝐺)

P(1) P(2) · · · P(𝑛) · · ·pdd pdd pdd

consisting of the draw-delete kernels from Section 7.1. Our main

theorem is as follows:

Theorem 7.3 (Kingman, categorical form). The diagram

∇

P(1) P(2) · · · P(𝑛) P(𝑛 + 1) · · ·

iid2

iid1

iid𝑛
iid𝑛+1

pdd pdd pdd pdd

(3)

is commutative, and the kernels {iid𝑛 : ∇ → P(𝑛)} form a limiting
cone for the diagram of draw-delete maps.

As a consequence of this result, a consistent family of random

partitions corresponds to a unique random distributions. Note that

this theorem is stronger than Kingman’s original result, since we

could be considering a measurable family of consistent families (a

cone over the diagram at an arbitrary object).

We will obtain this theorem as a corollary of its counterpart in

traditional probability theory, with elements. This is a classical rep-

resentation theorem for infinite exchangeable sequences due to de

Finetti [10], and often regarded as a foundational result for Bayesian

statistics. The categorical presentation of de Finetti’s theorem is

due to Jacobs and Staton [20, 21].

Theorem 7.4 (de Finetti, categorical form). Let 𝑋 be a stan-
dard Borel space. The kernels iid𝑛 : 𝐺𝑋 → M[𝑛] (𝑋 ) form a limiting
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cone for the diagram of draw-delete maps:

𝐺𝑋

M[1] (𝑋 ) M[2] (𝑋 ) · · · M[𝑛] (𝑋 ) · · ·

iid1

iid2 iid𝑛

dd dd dd

Our proof of Theorem 7.3 uses the following categorical fact
1
:

Lemma 7.5. Let I be a small category, and let I⊳ be the result of
adding a free initial object to I.

• A functor 𝐹 : I⊳ → C is the same thing as cone over the

I-shaped diagram I ↩→ I⊳
𝐹−→ C in C.

• For functors 𝐹,𝐺 : I⊳ → C such that𝐺 is a retract of 𝐹 in the
functor category [I⊳,C], i.e. we have natural transformations
𝑠 : 𝐹 → 𝐺 and 𝑡 : 𝐺 → 𝐹 such that 𝑡 ◦ 𝑠 = id𝐺 , then if 𝐹 is a
limit cone, so is 𝐺 .

Our version of Kingman’s theorem follows from this fact, because

the cone over partitions is a retract of the de Finetti cone over

multisets.

Proof of Theorem 7.3. We instantiate Theorem 7.4 at𝑋 = [0, 1]
which gives a limit cone consisting of kernels iid𝑛 : 𝐺 [0, 1] →
M[𝑛] ( [0, 1]). The rest of the proof follows from the series of re-

sults in this paper, showing that the families of maps baseU[0,1] and

mc, either between partitions and multisets or between distribu-

tions and element-free distributions, form section-retraction pairs

which appropriately commute with dd, pdd, and iid𝐾 . We deduce

that the diagram in (3) commutes since for each 𝐾 ,

∇

𝐺 [0, 1]

M[𝐾] ( [0, 1]) M[𝐾 + 1] ( [0, 1])

P(𝐾) P(𝐾 + 1)

iid𝐾+1

pdd

iid𝐾 baseU[0,1]

iid𝐾

dd
mcmc

iid𝐾+1

commutes. This shows that the maps iid𝐾 form a cone over the dia-

gram of sets of partitions. A similar argument shows that we have

a section-retraction pair in the functor category [(Nop)⊳,Kℓ (𝐺)],
whereN is the category {1 → 2 → · · · }.We conclude by Lemma 7.5.

□

8 RANDOM ELEMENT-FREE DISTRIBUTIONS
AS NATURAL TRANSFORMATIONS

In this section we show how to arrive at element-free distributions

from another angle. Recall that, for every standard Borel space 𝑋 ,

we have a kernel base` : ∇ → 𝐺𝑋 (Definition 4.6). We observe that

the same definition actually gives a kernel

base𝑋 : 𝐺𝑋 × ∇ → 𝐺𝑋

where the base measure ` is regarded as an additional argument.

Given a distribution 𝜔 ∈ 𝐺∇ on element-free distributions (that

is, 𝜔 : 1 → ∇), we construct a kernel denoted (𝜔 ≫= base𝑋 ) as

1
A proof is available at https://ncatlab.org/nlab/show/retract#RetractsOfDiagrams .

follows:

𝐺𝑋 � 1 ×𝐺𝑋 ∇ ×𝐺𝑋 𝐺𝑋
𝜔×𝐺𝑋 base𝑋

This kernel defines a natural transformation:

Proposition 8.1. For𝜔 ∈ 𝐺∇, the family of measurable functions
𝜔 ≫= base𝑋 : 𝐺𝑋 → 𝐺𝐺𝑋 , for 𝑋 ∈ Sbs, defines a natural trans-
formation between functors Sbs → Sbs. More concretely, for every
measurable function 𝑓 : 𝑋 → 𝑌 , the following diagram commutes:

𝐺𝑋 𝐺𝐺𝑋

𝐺𝑌 𝐺𝐺𝑌

𝜔≫=base𝑋

𝐺𝑓 𝐺𝐺𝑓

𝜔≫=base𝑌

Proof. Although we stated the lemma in this way for the pur-

poses of the section below, this follows easily from the more primi-

tive fact that each base𝑋 (−, 𝜑) is natural, which in turn is an easy

consequence of the naturality of iid∥𝜑 ∥ . □

Proposition 8.1 defines a function 𝐺∇ → Nat(𝐺,𝐺𝐺), where
Nat(𝐺,𝐺𝐺) is the set of all natural transformations. The main the-

orem of this section states that this function is bijective, i.e. that
every natural transformation 𝐺 → 𝐺𝐺 is of the form 𝜔 ≫= base
for a unique 𝜔 ∈ 𝐺∇.

Our proof relies on the following well-known property of stan-

dard Borel spaces. (This is sometimes known as the randomization

lemma, e.g. [23, Lemma 3.22].)

Lemma 8.2. For every standard Borel space𝑋 and probability mea-
sure ` ∈ 𝐺𝑋 , there exists 𝑓 : [0, 1] → 𝑋 such that ` = 𝐺 (𝑓 ) (U[0,1] ).

We deduce that a natural transformation𝐺 → 𝐺𝐺 is determined

by its action on the uniform distribution U[0,1] .

Lemma 8.3. For natural transformations 𝐻,𝐻 ′
: 𝐺 → 𝐺𝐺 , if

𝐻 [0,1] (U[0,1] ) = 𝐻 ′
[0,1] (U[0,1] ), then 𝐻 = 𝐻 ′.

Proof. Let 𝑋 ∈ Sbs and ` ∈ 𝐺𝑋 . We show that 𝐻𝑋 (`) =

𝐻 ′
𝑋
(`). By Lemma 8.2, there is some 𝑓 : [0, 1] → 𝑋 such that

` = 𝐺 (𝑓 ) (U[0,1] ). By naturality, we have that

𝐻𝑋 (`) = 𝐻𝑋 (𝐺 (𝑓 ) (U[0,1] )) = 𝐺𝐺 (𝑓 ) (𝐻 [0,1] (U[0,1] )),
and similarly for 𝐻 ′

𝑋
. Thus

𝐻𝑋 (`) = 𝐺𝐺 (𝑓 ) (𝐻 [0,1] (U[0,1] )) = 𝐺𝐺 (𝑓 ) (𝐻 ′
[0,1] (U[0,1] )) = 𝐻 ′

𝑋 (`)

and we are done. □

Theorem 8.4. There is an isomorphism 𝐺∇ � Nat(𝐺,𝐺𝐺), given
by the pair of inverse maps 𝛼 and 𝛽 given below.

𝛼 : 𝐺∇ −→ Nat(𝐺,𝐺𝐺) : 𝜔 ↦−→ {𝜔 ≫= base𝑋 }𝑋 ∈Sbs
𝛽 : Nat(𝐺,𝐺𝐺) −→ 𝐺∇ : 𝐻 ↦−→ 𝐺 (mc) (𝐻 [0,1] (U[0,1] ))

Proof. The fact that 𝛽 ◦ 𝛼 = id𝐺∇ follows essentially from the

retract property of Lemma 4.9, towhichwe apply𝐺 .We show𝛼◦𝛽 =

id
Nat(𝐺,𝐺𝐺) , for which it suffices to show that 𝛽 is injective. So

we suppose 𝐻,𝐻 ′ ∈ Nat(𝐺,𝐺𝐺) satisfy 𝐺 (mc) (𝐻 [0,1] (U[0,1] )) =
𝐺 (mc) (𝐻 [0,1] (U[0,1] )).

To show 𝐻 = 𝐻 ′
, it suffices to show that 𝐻 [0,1] (U[0,1] ) =

𝐻 [0,1] (U[0,1] ) ∈ 𝐺𝐺 [0, 1], by Lemma 8.3. By the uniqueness part

https://ncatlab.org/nlab/show/retract#RetractsOfDiagrams
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of de Finetti’s theorem (Theorem 7.4), it suffices to show that the

family of iid measures

`𝐾 1 𝐺 [0, 1] M[𝐾] ( [0, 1]),=
𝐻 [0,1] (U[0,1] ) iid𝐾

for 𝐾 ≥ 0, coincides with the family of measures ` ′
𝐾
induced by 𝐻 ′

in the same way. So we now fix 𝐾 ≥ 0 and show ` ′
𝐾
= `𝐾 .

Recall that 𝐺 (mc) (𝐻 [0,1] (U[0,1] )) = 𝐺 (mc) (𝐻 [0,1] (U[0,1] )) by
assumption, and that by Lemma 6.6 mc commutes with iid𝐾 . From
this we deduce that 𝐺 (mc) (`𝐾 ) = 𝐺 (mc) (` ′

𝐾
) ∈ 𝐺 (P(𝐾)).

At this point we observe that, by naturality of 𝐻 , if 𝜙 : [0, 1] →
[0, 1] is a uniform-measure-preserving function, then the natural-

ity square for 𝜙 says that 𝐺𝐺 (𝜙) (𝐻 [0,1] (U[0,1] )) = 𝐻 [0,1] (U[0,1] ).
Then the naturality of iid𝐾 shows that 𝐺 (M[𝐾] (𝜙)) (`𝐾 ) = `𝐾 .

In summary, we have shown that the distribution `𝐾 onM[𝐾] ( [0, 1])
is invariant under any uniform-measure-preserving transformation

of [0, 1]. This turns out to imply that `𝐾 is completely determined

by its pushforward undermc, a distribution on partitions. We show

this in Appendix A.4.

Hence, since 𝐺 (mc) (`𝐾 ) = 𝐺 (mc) (` ′
𝐾
), we have `𝐾 = ` ′

𝐾
, and

we are done. □

9 CONCLUSIONS
Summary. We have given new definitions and tools for the

element-free distributions of Kingman [24] in the study of par-

tition structures. Our formalization makes heavy use of multisets,

showing that the coefficients of an element-free distribution do not

need to be ordered.

We have studied the two key operations relating ordinary and

element-free probability: multiplicity count, which forgets elements,

and the operation of drawing new elements from a base measure.

The latter seems new to this paper.

Our development uses technical measure-theoretic tools, but

we emphasize that including continuous distributions is crucial

for our main representation theorems to hold. (For an edge-case

example, the infinite random partition which has all singletons with

probability 1 can only be represented by a nonatomic distribution.)

Related work. A major inspiration for this paper is the line of

research by Jacobs on structural probability theory (e.g. [17–19]).
The idea of multiset-based element-free probability is due to him,

and we have referred to many of his results on partitions [16]. Our

version of Kingman’s theorem is the answer to an open problem in

[16, §12], and our proof relies on key insights about probabilistic

representation theorems due to Jacobs and Staton [21]. For multisets

over standard Borel spaces, another key inspiration is the monad

for point processes of Dash and Staton [8].

In another line of research, Danos and Garnier have observed

[6] that the Dirichlet Process determines a natural transformation.

This inspired the work of Section 8, and our Theorem 8.4 should

recover the stick-breaking weights for the DP, in the form of an

element-free distribution.

Perspectives. There are several avenues for further work.
Nonparametric Bayesian processes influenced the early devel-

opment of probabilistic programming [15]. More recently typed

languages with polymorphism were designed for probabilistic mod-

elling [7, 30], and it seems clear that a polymorphic implementation

of theDirichlet processmust treat the elements and the element-free

part independently. Thus an interface for element-free distributions

would be convenient. Additionally a theoretical investigation relat-

ing naturality and polymorphism in a probabilistic setting (in the

style of [34]) seems important for proper foundations of nonpara-

metric probabilistic languages.

Beyond element-free distributions, we can ask whether similar

constructions and theorems exist for arbitrary element-free unnor-
malized measures. These measures are fundamental in probabilistic

programming [32], and random measures also play a key role in

nonparametric statistics (e.g. as point processes [25] or as latent
feature models [29, 33]), also involving base measures.

We finally note that multisets and probabilities have been com-

bined in the context of probabilistic models of linear logic (e.g. [5]).
A deeper connection to investigate is the construction of the free

linear exponential (e.g. [3, 4]) using a universal categorical con-

struction over diagrams of measures, similar to Theorem 7.3 and

Theorem 7.4.
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A OMITTED PROOFS
A.1 Omitted details in the proof thatmc : 𝐺𝑋 → ∇ is measurable
Recall the notation in the proof of Lemma 4.4: Y > 0, 𝛼 ≥ Y, and for any𝑚 ∈ N and 𝑛 ≤ 2

𝑚 − 1 we write 𝐵𝑛𝑚 = [ 𝑛
2
𝑚 ,

𝑛+1
2
𝑚 ).

We claimed that

mc−1Y 𝐷
[𝛼,1]
𝑘

=
⋃
ℓ∈N

⋂
𝑚≥ℓ

⋃
𝑛1,...,𝑛𝑘

∈{0,...,2𝑚−1}
distinct

(
𝑘⋂
𝑖=1

ev
−1
𝐵
𝑛𝑖
𝑚

[𝛼, 1]
)
∩

©«
⋂

𝑛≤2𝑚−1
∀𝑖 . 𝑛≠𝑛𝑖

ev
−1
𝐵𝑛𝑚

[0, 𝛼)
ª®®®¬ .

Note that the left-hand side consists of measures ` on [0, 1] having exactly 𝑘 atoms whose weight is in [𝛼, 1]. We prove inclusions in both

directions.

(⊆). Let ` ∈ mc−1𝜖 𝐷
[𝛼,1)
𝑘

and call 𝑥1, ..., 𝑥𝑘 the 𝑘 distinct atoms of ` with weight in [𝛼, 1].
For 𝑖 ∈ {1, ..., 𝑘} and𝑚 ∈ N, let 𝑛𝑚,𝑖 be the index, in the partition at level𝑚, of the block containing 𝑥𝑖 , i.e. 𝑥𝑖 ∈ 𝐵𝑛𝑚,𝑖 ,𝑚 . For every𝑚 ∈ N

we clearly have ` (𝐵𝑛𝑚,𝑖 ,𝑚) ∈ [𝛼, 1]. Since the atoms 𝑥𝑖 are distinct there must be some ℓ0 ∈ N such that for every𝑚 ≥ ℓ0 the 𝑛𝑚,𝑖 are all

distinct.

Next, we show that there must be some ℓ ≥ ℓ0 such that, for all𝑚 ≥ ℓ and 𝑛 ∈ {0, . . . , 2𝑚 − 1} such that 𝑛 ≠ 𝑛𝑚,𝑖 for all 𝑖 , ` (𝐵𝑛𝑚) < 𝛼 .

For a contradiction, suppose that for all𝑚 ∈ N, there exists 𝑛𝑚 distinct from the 𝑛𝑚,𝑖 such that ` (𝐵𝑛𝑚) ≥ 𝛼 . Observe that there must be a

subsequence (𝑛𝜙 (𝑚) )𝑚 of (𝑛𝑚)𝑚 such that 𝐵
𝑛𝜙 (𝑚)
𝜙 (𝑚) ⊇ 𝐵

𝑛𝜙 (𝑚+1)
𝜙 (𝑚+1) , or else there would be infinitely many disjoint intervals of measure 𝛼 > 0;

impossible since ` is finite. But the intersection
⋂
𝑚 𝐵

𝑛𝜙 (𝑚)
𝜙 (𝑚) is a singleton {𝑦}, and `{𝑦} = lim𝑚→∞ ` (𝐵𝑛𝜙 (𝑚)

𝜙 (𝑚) ) ≥ 𝛼 . Thus 𝑦 is an atom of `,

distinct from the 𝑥𝑖 and with weight ≥ 𝛼 , a contradiction.
(⊇). We now suppose that there is ℓ ∈ N such that, for all𝑚 ≥ ℓ , there exists 𝑛𝑚,1 < ... < 𝑛𝑚,𝑘 with

` (𝐵𝑛𝑚) ≥ 𝛼 ⇐⇒ ∃𝑖 . 𝑛 = 𝑛𝑚,𝑖 .

Again we must have, for each 𝑖 , a subsequence (𝜙 (𝑚, 𝑖))𝑚 of (𝑛𝑚,𝑖 )𝑚 , such that 𝐵
𝑛𝜙 (𝑚,𝑖 ),𝑖
𝜙 (𝑚,𝑖) ⊇ 𝐵

𝑛𝜙𝑚+1,𝑖 ,𝑖
𝜙𝑚+1,𝑖

. Then the intersection

⋂
𝑚 𝐵

𝜙 (𝑚,𝑖)
𝜙 (𝑚,𝑖)

must be a singleton {𝑥𝑖 }, and we have ` (𝑥𝑖 ) ≥ 𝛼 .
The 𝑛𝑚,𝑖 were assumed distinct and so the 𝑥𝑖 are distinct. On the other hand, any other atom with weight ≥ 𝛼 would violate the ⇐⇒

property above. Hence ` has exactly 𝑘 atoms whose weight is in [𝛼, 1], and so the claim is true.

A.2 Proof that mc commutes with iid
Proposition 6.6. Multiplicity count commutes with iid sampling, i.e. the diagram on the left of equation (1) commutes.

Proof. Fix a probability measure ` ∈ 𝐺𝑋 . We call A the set of atoms of `, and for 𝑟 ∈ (0, 1] we write A𝑟 for the subset of atoms with

weight 𝑟 , i.e. A𝑟 = {𝑥 ∈ 𝑋 | `{𝑥} = 𝑟 }. We set 𝜔 = ` (𝑋 \ A), the weight of the nonatomic part of `.

Note that iid𝐾 (`) is supported on the subset of multisets 𝜑 ∈ M[𝐾] (𝑋 ) such that 𝜑 (𝑥) ≤ 1 for every 𝑥 ∈ 𝑋 \ A. Thus it suffices to show

that, for all 𝜎 ∈ P(𝐾),
iid𝐾 (`) (𝑆) = iid𝐾 (mc(`)) (𝜎) (4)

where 𝑆 = {𝜑 ∈ mc−1 (𝜎) | ∀𝑥 ∈ 𝑋 \ A . 𝜑 (𝑥) ≤ 1}.
We proceed to reduce the LHS to the formula for iid𝐾 on partitions (6.2). The key observation is that every 𝜑 ∈ 𝑆 decomposes uniquely

as 𝜒 + ∑
𝑟 ∈𝑅 𝜑𝑟 , where 𝑅 is the set of weights of atoms of `, i.e. 𝑅 = supp(mc(`)); for each 𝑟 ∈ 𝑅, 𝜑𝑟 ∈ M(A𝑟 ); and 𝜒 ∈ M(𝑋 \ A) is a

multiset with no duplicates (for all 𝑥 ∈ 𝑋 \ A, 𝜒 (𝑥) ≤ 1). Thus

iid𝐾 (`) (𝑆) = iid𝐾 (`)
©«
𝐾⋃
𝑘=0

⋃
(𝜑𝑟 ∈M(A𝑟 ))𝑟∈𝑅∑
𝑟 mc(𝜑𝑟 )+𝑘 [1]=𝜎

{∑
𝑟

𝜑𝑟 + 𝜒 | 𝜒 ∈ M[𝑘] (𝑋 \𝐴),∀𝑥 . 𝜒 (𝑥) ≤ 1

}ª®®®®¬
=

𝐾∑
𝑘=0

∑
(𝜑𝑟 ∈M(A𝑟 ))𝑟∈𝑅∑
𝑟 mc(𝜑𝑟 )+𝑘 [1]=𝜎

iid𝐾 (`)
({∑

𝑟

𝜑𝑟 + 𝜒 | 𝜒 ∈ M[𝑘] (𝑋 \𝐴),∀𝑥 . 𝜒 (𝑥) ≤ 1

})

because the unions are disjoint and countable. Now, for each family (𝜑𝑟 )𝑟 ∈𝑅 ,

iid𝐾 (`)
({∑

𝑟

𝜑𝑟 + 𝜒 | 𝜒 ∈ M[𝑘] (𝑋 \𝐴),∀𝑥 . 𝜒 (𝑥) ≤ 1

})
= iid𝐾 (`)

({∑
𝑟 ∈𝑅

𝜑𝑟 + 𝜒 | 𝜒 ∈ M[𝑘] (𝑋 \𝐴)
})
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because the difference between the two sets is a null set for iid𝐾 (`). Therefore,

iid𝐾 (`) (𝑆) =
𝐾∑
𝑘=0

∑
(𝜑𝑟 ∈M(A𝑟 ))𝑟∈𝑅∑
𝑟 mc(𝜑𝑟 )+𝑘 [1]=𝜎

iid𝐾 (`)
({∑
𝑟 ∈𝑅

𝜑𝑟 + 𝜒 | 𝜒 ∈ M[𝑘] (𝑋 \𝐴)
})

=

𝐾∑
𝑘=0

∑
(𝜑𝑟 ∈M(A𝑟 ))𝑟∈𝑅∑
𝑟 mc(𝜑𝑟 )+𝑘 [1]=𝜎

iid𝐾 (`)
©«𝐷𝑋\A

𝑘
∩

⋂
𝑟 ∈𝑅

⋂
𝑥 ∈A𝑟

𝐷
{𝑥 }
𝜑𝑟 (𝑥)

ª®¬
=

𝐾∑
𝑘=0

∑
(𝜑𝑟 ∈M(A𝑟 ))𝑟∈𝑅∑
𝑟 mc(𝜑𝑟 )+𝑘 [1]=𝜎

𝐾 !

𝑘!
∏
𝑟

∏
𝑥 ∈A𝑟

𝜑𝑟 (𝑥)!
` (𝑋 \ A)𝑘

∏
𝑟 ∈𝑅

∏
𝑥 ∈A𝑟

`{𝑥}𝜑𝑟 (𝑥)

= ((𝜎))p

𝐾∑
𝑘=0

𝜔𝑘

𝑘!

∑
(𝜑𝑟 ∈M(A𝑟 ))𝑟∈𝑅∑
𝑟 mc(𝜑𝑟 )+𝑘 [1]=𝜎

∏
𝑟 ∈𝑅

𝑟 ∥𝜑𝑟 ∥

= ((𝜎))p

𝐾∑
𝑘=0

𝜔𝑘

𝑘!

∑
(𝜎𝑟 )𝑟∈𝑅

∥𝜎𝑟 ∥≤ |A𝑟 |∑
𝑟 𝜎𝑟+𝑘 [1]=𝜎

∏
𝑟 ∈𝑅

(
|A𝑟 |
𝜎𝑟

)
𝑟tt𝜎𝑟

= iid𝐾 (mc(`)) (𝜎).

□

A.3 Proof that base` commutes with iid
Proposition 6.7. Sampling elements from a base measure ` commutes with iid sampling, i.e. the diagram on the right of equation (1)

commutes.

To prove the lemma we make use of the well-known multinomial formula for computing finite powers of sums:(∑
𝑖∈𝐼

𝑎𝑖

)𝑁
=

∑
𝜒 ∈M[𝑁 ] (𝐼 )

((𝜒))
∏
𝑖

𝑎
𝜒

𝑖
(𝑖) .

Proof. For ease of presentation we detail the case of a discrete 𝜑 ∈ ∇d, which contains the main combinatorial idea. The continuous

extension adds no difficulty since it is treated deterministically by base` .
Fix 𝜑 ∈ ∇d. For𝑈 ∈ 𝐺𝑋 and 𝑘 ≤ 𝐾 , we show that (base` ◦ iid𝐾 ) (𝜑) (𝐸𝑈𝑘 ) = (iid𝐾 ◦ base` ) (𝜑) (𝐸𝑈𝑘 ).

(iid𝐾 ◦ base` ) (𝜑) (𝐸𝑈𝑘 )

=

∫
𝒙∈𝑋 ∥𝜑 ∥

iid𝐾
©«

∑
𝑟,1≤𝑖≤𝜑 (𝑟 )

𝑟 · 𝛿𝑥𝑟
𝑖

ª®¬
(
𝐸𝑈
𝑘

)
diid∥𝜑 ∥ (`) (by definition of composition)

=

∫
𝒙∈𝑋 ∥𝜑 ∥

(
𝐾

𝑘

) ©«(
∑

𝑟,1≤𝑖≤𝜑 (𝑟 )
𝑟 · 𝛿𝑥𝑟

𝑖
) (𝑈 )ª®¬

𝑘 ©«(
∑

𝑟,1≤𝑖≤𝜑 (𝑟 )
𝑟 · 𝛿𝑥𝑟

𝑖
) (𝑈 ∁)ª®¬

𝐾−𝑘

diid∥𝜑 ∥ (`) (by definition of iid)

=

(
𝐾

𝑘

) ∫
𝒙∈𝑋 ∥𝜑 ∥

(∑
𝑟

𝑟 · #{1 ≤ 𝑖 ≤ 𝜑 (𝑟 ) | 𝑥𝑟𝑖 ∈ 𝑈 }
)𝑘 (∑

𝑟

𝑟 · #{1 ≤ 𝑖 ≤ 𝜑 (𝑟 ) | 𝑥𝑟𝑖 ∉ 𝑈 }
)𝐾−𝑘

diid∥𝜑 ∥ (`) (rearranging)

=

(
𝐾

𝑘

) ∑
𝜒 ∈M[𝑘 ]

( {(𝑟,𝑖) |𝑖≤𝜑 (𝑟 ) })

∑
𝜌∈M[𝐾−𝑘 ]

( {(𝑟,𝑖) |𝑖≤𝜑 (𝑟 ) })

((𝜒))((𝜌))

∫
𝒙∈𝑋 ∥𝜑 ∥

∏
𝑟,1≤𝑖≤𝜑 (𝑟 )

( [𝑥𝑟𝑖 ∈ 𝑈 ] · 𝑟 )𝜒 (𝑟,𝑖) ( [𝑥𝑟𝑖 ∉ 𝑈 ] · 𝑟 )𝜌 (𝑟,𝑖)diid∥𝜑 ∥ (`) (multinomial formula)

=

(
𝐾

𝑘

) ∑
𝜒 ∈M[𝑘 ]

( {(𝑟,𝑖) |𝑖≤𝜑 (𝑟 ) })

∑
𝜌∈M[𝐾−𝑘 ]

( {(𝑟,𝑖) |𝑖≤𝜑 (𝑟 ) })
supp(𝜌)∩supp(𝜒)=∅

((𝜒))((𝜌))` (𝑈 ) |supp(𝜒) |` (𝑈 ∁) |supp(𝜌) |
∏

𝑟,1≤𝑖≤𝜑 (𝑟 )
𝑟 𝜒 (𝑟,𝑖)+𝜌 (𝑟,𝑖)
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where the last step is by an easy inspection and rearranging of the iid integral; in particular the integral is 0 when 𝜒 and 𝜌 have overlapping

support.

Now observe that we can turn any pair (𝜒, 𝜌) (as in the sum indices above) into a pair ((𝜎𝑟 )𝑟 ∈supp(𝜑) , 𝜏). Formally each 𝜎𝑟 is mc applied
to the multiset 𝜒 + 𝜌 restricted to pairs of the form (𝑟, 𝑖), and 𝜏 is simply defined as mc(𝜒). So in particular

∑
𝑟 𝜎𝑟 ∈ P(𝐾), 𝜏 ∈ P(𝑘),

∥𝜎𝑟 ∥ ≤ 𝜑 (𝑟 ), and 𝜏 ≤ ∑
𝑟 𝜎𝑟 .

In this change-of-variable operation, we note that

(𝐾
𝑘

)
((𝜒))((𝜌)) = ((

∑
𝑟 𝜎𝑟 ))p, and that each pair ((𝜎𝑟 )𝑟 , 𝜏) satisfying the conditions of the

previous sentence has precisely

(∑
𝑟 𝜎𝑟
𝜏

) ∏
𝑟

(𝜑 (𝑟 )
𝜎𝑟

)
antecedents. We note also that #supp(𝜒) = ∥𝜏 ∥ and #supp(𝜌) = ∑

𝑟 ∥𝜎𝑟 ∥ − ∥𝜏 ∥.
Therefore we can rewrite the above expression as:

∑
(𝜎𝑟 )𝑟∈supp𝜑∑
𝑟 𝜎𝑟 ∈P(𝐾)
∥𝜎𝑟 ∥≤𝜑 (𝑟 )

∑
𝜏≤∑

𝑟 𝜎𝑟
tt𝜏=𝑘

((
∑
𝑟𝜎𝑟 ))p

(∑
𝑟 𝜎𝑟

𝜏

) (∏
𝑟

(
𝜑 (𝑟 )
𝜎𝑟

)
𝑟tt(𝜎𝑟 )

)
` (𝑈 ) ∥𝜏 ∥` (𝑈 ∁)

∑
𝑟 ∥𝜎𝑟 ∥−∥𝜏 ∥

=
∑

𝜎 ∈P(𝐾)

∑
(𝜎𝑟 )𝑟∈supp𝜑∑

𝑟 𝜎𝑟=𝜎

∥𝜎𝑟 ∥≤𝜑 (𝑟 )

∑
𝜏≤𝜎

tt(𝜏)=𝑘

((𝜎))p

(
𝜎

𝜏

)
(
∏
𝑟

(
𝜑 (𝑟 )
𝜎𝑟

)
𝑟tt(𝜎𝑟 ) )` (𝑈 ) ∥𝜏 ∥` (𝑈 ∁) ∥𝜎 ∥−∥𝜏 ∥ (rearranging with 𝜎 =

∑
𝑟 𝜎𝑟 )

=
∑

𝜎 ∈P(𝐾)
((𝜎))p

©«
∑

(𝜎𝑟 )𝑟∈supp𝜑∑
𝑟 𝜎𝑟=𝜎

∥𝜎𝑟 ∥≤𝜑 (𝑟 )

∏
𝑟

(
𝜑 (𝑟 )
𝜎𝑟

)
𝑟tt𝜎𝑟

ª®®®®®®®¬
©«

∑
𝜏≤𝜎

tt(𝜏)=𝑘

(
𝜎

𝜏

)
` (𝑈 ) ∥𝜏 ∥` (𝑈 ∁) ∥𝜎 ∥−∥𝜏 ∥

ª®®®¬ (rearranging)

=
∑

𝜎 ∈P(𝐾)
iid𝐾 (𝜑) (𝜎)base` (𝜎) (𝐸𝑈𝑘 ) (by definition)

= (base` ◦ iid𝐾 ) (𝜑) (𝐸𝑈𝑘 ) (by definition)

and so the argument is complete. □

A.4 Omitted details in the proof of Theorem 8.4
Let 𝜎 ∈ P(𝐾) be a partition of 𝐾 and𝑚 ∈ N. We want to show that for every 𝑘 = 𝑘1 ⊕ ... ⊕𝑘𝐾 tuple of ∥𝜎 ∥ distinct elements of {0, ..., 2𝑚 − 1},
the measure of

𝐶 (𝜎,𝑚, 𝑘) := mc−1 (𝜎) ∩
𝐾⋂
𝑝=1

(
𝜎 (𝑝)⋂
𝑖=1

𝐸
[
𝑘
𝑝
𝑖

2
𝑚 ,

𝑘
𝑝
𝑖
+1

2
𝑚 )

𝑝 )

by `𝐾 is independent from 𝑘 . To do so, let

𝐴 := {𝑘 ∈ {0, ...,𝑚 − 1} ∥𝜎 ∥ , distinct | `𝐾 (𝐶 (𝜎,𝑚, 𝑘)) = `𝐾 (𝐶 (𝜎,𝑚, (0, ..., ∥𝜎 ∥ − 1)))}

We will show that 𝐴 contains every tuples of ∥𝜎 ∥ distinct elements in {0, ..., 2𝑚 − 1}. First, consider a transposition 𝜏 = (𝑎𝑏) of {0, ..., 2𝑚 − 1}.
Let us prove that 𝐴 is stable under 𝜏 . Let 𝑘 ∈ 𝐴 and consider the isomorphism 𝑓𝜏 : [0, 1] → [0, 1] defined as 𝑓𝜏 (𝑥) = 𝑏−𝑎

2
𝑚 + 𝑥 if 𝑥 ∈ [ 𝑎

2
𝑚 ,

𝑎+1
2
𝑚 ),

𝑓𝜏 (𝑥) = 𝑎−𝑏
2
𝑚 + 𝑥 if 𝑥 ∈ [ 𝑏

2
𝑚 ,

𝑏+1
2
𝑚 ) and 𝑓𝜏 (𝑥) = 𝑥 otherwise.

We have

𝐺 (M(𝑓𝜏 ))`𝐾 (𝐶 (𝜎,𝑚, 𝑘)) = `𝐾 (M(𝑓𝜏 ) (𝐶 (𝜎,𝑚, 𝑘))) = `𝐾 (𝐶 (𝜎,𝑚, 𝜏 (𝑘)))

Then, 𝐴 is stable by any permutation as the transpositions generate the permutations. Its follows that 𝐴 contains every tuples of ∥𝜎 ∥ distinct
elements in {0, ..., 2𝑚 − 1}. The last step of the proof is to deduce that we can express `𝐾 (𝐶 (𝜎,𝑚, 𝑘)) just with mc ◦ `𝐾 .

First, remark that for all 𝑘 and 𝑘 ′ tuples of ∥𝜎 ∥ distinct elements of {0, ..., 2𝑚 − 1}, either the sets 𝐶 (𝜎,𝑚, 𝑘) and 𝐶 (𝜎,𝑚, 𝑘 ′) are disjoint or
equal. Moreover, they are equal if and only if for all 𝑝 ∈ {1, ..., 𝐾}, 𝑘𝜎 (𝑝) is a permutation of 𝑘 ′𝜎 (𝑝) . Then, let us define B𝑚 to be the set of all

lists of ∥𝜎 ∥ distinct elements in {0, ..., 2𝑚 − 1} such that for every 𝑝 ∈ {1, ..., 𝐾} the list 𝑘𝜎 (𝑝) is ordered.
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From this, we have that

mc ◦ `𝐾 (𝜎) = `𝐾 (mc−1 (𝜎))

= `𝐾 (
⋃
𝑛∈N

⋃
𝑘∈B𝑚

𝐶 (𝜎,𝑚, 𝑘))

= lim

𝑚→∞
`𝐾 (

⋃
𝑘∈B𝑚

𝐶 (𝜎,𝑚, 𝑘))

= lim

𝑚→∞
#B𝑚`𝐾 (𝐶 (𝜎, 2𝑚, (0, ..., ∥𝜎 ∥ − 1)))

= lim

𝑚→∞

(
2
𝑚

𝜎

)
`𝑘 (𝐶 (𝜎, 2𝑚, (0, ..., ∥𝜎 ∥ − 1)))

Then, for all𝑚 and for every 𝑘 a ∥𝜎 ∥ tuple of distinct elements of {0, ..., 2𝑚 − 1}, we have

`𝐾 (𝐶 (𝜎,𝑚, 𝑘)) = `𝐾 (𝐶 (𝜎,𝑚, (0, ..., ∥𝜎 ∥ − 1))) ∼𝑚→∞
Π𝐾
𝑝=1

!𝜎 (𝑝)`𝐾 (mc−1 (𝜎))

2
∥𝜎 ∥𝑚

Remark that

𝐶 (𝜎,𝑚, 𝑘) =
⋃
𝑟 ∈N

⋃
𝑙 ∈B𝑚+𝑟𝐶 (𝜎,𝑚+𝑟,𝑙) ⊂𝐶 (𝜎,𝑚,𝑘)

𝐶 (𝜎,𝑚 + 𝑛, 𝑙)

Then

`𝐾 (𝐶 (𝜎,𝑚, 𝑘) = lim

𝑟→∞
`𝐾 (

⋃
𝑙 ∈B𝑚+𝑟𝐶 (𝜎,𝑚+𝑟,𝑙) ⊂𝐶 (𝜎,𝑚,𝑘)

𝐶 (𝜎,𝑚 + 𝑟, 𝑙))

As the union is disjoint we have

`𝐾 (𝐶 (𝜎,𝑚, 𝑘)) = lim

𝑟→∞

∑
𝑙 ∈B𝑚+𝑟𝐶 (𝜎,𝑚+𝑟,𝑙) ⊂𝐶 (𝜎,𝑚,𝑘)

`𝐾 (𝐶 (𝜎,𝑚 + 𝑟, 𝑙))

= lim

𝑛→∞
#{𝑙 ∈ B𝑚+𝑟𝐶 (𝜎,𝑚 + 𝑟, 𝑙) ⊂ 𝐶 (𝜎,𝑚, 𝑘)}`𝐾 (𝐶 (𝜎,𝑚 + 𝑟, (0, ..., ∥𝜎 ∥ − 1)))

= lim

𝑟→∞
2
∥𝜎 ∥𝑛`𝐾 (𝐶 (𝜎,𝑚 + 𝑟, (0, ..., ∥𝜎 ∥ − 1)))

= lim

𝑟→∞

2
∥𝜎 ∥𝑛Π𝐾

𝑝=1
!𝜎 (𝑛)`𝐾 (mc−1 (𝜎))

2
∥𝜎 ∥ (𝑚+𝑛)

=
Π𝐾
𝑝=1

!𝜎 (𝑛)mc ◦ `𝐾 (𝑃)

2
∥𝜎 ∥𝑚

As mc ◦ `𝐾 = mc ◦ ` ′
𝐾
, we get that `𝐾 and ` ′

𝐾
coincide on every 𝐶 (𝜎,𝑚, 𝑘) for every 𝜎 ∈ P(𝐾) and 𝑘 ∈ {0, ..., 2𝑚 − 1} ∥𝜎 ∥ . But, this is a

Π-system and a base of ΣM[𝐾 ] ( [0,1]) , so `𝐾 = ` ′
𝐾
and we are done.
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