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Abstract. In multi-class classification tasks, like human activity recog-
nition, it is often assumed that classes are separable. In real applications,
this assumption becomes strong and generates inconsistencies. Besides,
the most commonly used approach is to learn classes one-by-one against
the others. This computational simplification principle introduces strong
inductive biases on the learned theories. In fact, the natural connections
among some classes, and not others, deserve to be taken into account.
In this paper, we show that the organization of overlapping classes (mul-
tiple inheritances) into hierarchies considerably improves classification
performances. This is particularly true in the case of activity recognition
tasks featured in the SHL dataset. After theoretically showing the expo-
nential complexity of possible class hierarchies, we propose an approach
based on transfer affinity among the classes to determine an optimal hi-
erarchy for the learning process. Extensive experiments show improved
performances and a reduction in the number of examples needed to learn.

Keywords: Activity recognition ·Dependent concepts ·Meta-modeling.

1 Introduction

Many real-world applications considered in machine learning exhibit dependen-
cies among the various to-be-learned concepts (or classes) [6,17]. This is partic-
ularly the case in human activity recognition from wearable sensor deployments
which constitutes the main focus of our paper. This problem is two-folds: the
high volume of accumulated data and the criteria selection optimization. For
instance, are the criteria used to distinguish between the activities (concepts)
running and walking the same as those used to distinguish between driving a car
and being in a bus? what about distinguishing each individual activity against
the remaining ones taken as a whole? Similarly, during the annotation process,
when should someone consider that walking at a higher pace corresponds actually
to running? These questions naturally arise in the case of the SHL dataset [7]
which exhibits such dependencies. The considered activities in this dataset are
difficult to separate due to the existence of many overlaps among certain activi-
ties. Some of the important causes for these overlaps are: (1) the on-body sensors
deployments featured by this dataset, due to sensors coverage overlaps, tend to
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capture movements that are not necessarily related to a unique activity. Authors
in [8], for example, have exhibited such overlaps; (2) The difficulty of data anno-
tation during data collection conducted in real-world conditions. For instance,
the annotation issues can include the time-shift of a label with respect to the
activity [19], as well as wrong or missing labels [13]. Similarly, long lines of re-
search in computer vision [20] and time-series analysis [19,13] raised these issues
which hinder the development and large-scale adoption of these applications.

To solve these problems, we propose an original approach for structuring
the considered concepts into hierarchies in a way that very similar concepts are
grouped together and tackled by specialized classifiers. The idea is that classifi-
cations at different levels of the hierarchy may rely on different features, or differ-
ent combinations of the same features [27]. Indeed, many real-world classification
problems are naturally cast as hierarchical classification problems [1,24,25,27]. A
work on the semantic relationships among the categories in a hierarchical struc-
ture shows that they are usually of the type generalization-specialization [27].
In other words, the lower-level categories are supposed to have the same general
properties as the higher-level categories plus additional more specific properties.
The problem at hand is twice difficult as we have to, first, find the most appro-
priate hierarchical structure and, second, find optimal learners assigned to the
nodes of the hierarchical structure.

We propose a data-driven approach to structure the considered concepts in a
bottom-up approach. We start by computing the affinities and dependencies that
exist among the concepts and fuse hierarchically the closest concepts with each
other. We leverage for this a powerful technique based on transfer which showed
interesting empirical properties in various domains [26,14]. Taking a bottom-
up approach allows us to leverage learning the complete hierarchy (including
the classifiers assigned to each non-leaf node) incrementally by reusing what was
learned on the way. Our contributions are as follows: (1) we propose a theoretical
calculation for computing the total number of tree hierarchical combinations (the
search space for the optimal solution) based on the given number of concepts;
(2) we propose an approach based on transfer affinity to determine an optimal
organization of the concepts that improves both learning performances and ac-
celerates the learning process; (3) extensive experiments show the effectiveness
of organizing the learning process. We noticeably get a substantial improvement
of recognition performances over a baseline which uses a flat classification set-
ting; (4) we perform a comprehensive comparative analysis of the various stages
of our approach which raises interesting questions about concept dependencies
and the required amount of supervision.

2 Problem Statement

In this section, we briefly review the problem of hierarchical structuring of the
concepts in terms of formulation and background. We then provide a complexity
analysis of the problem size and its search space.
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2.1 Problem Formulation and Background

Let X ⊂ Rn be the inputs vector 1 and let C be the set of atomic concepts
(or labels) to learn. The main idea of this paper comes from the fact that the
concepts to be learned are not totally independent, thus grouping some concepts
to learn them against the others using implicit biases considerably improves
the quality of learning for each concept. The main problem is to find the best
structure of concepts groups to be learned in order to optimize the learning of
each atomic concept. For this we follow the three dimensions setting defined
in [10], and we consider: (1) single-label classification as opposed to multi-label
classification; (2) the type of hierarchy (or structure) to be trees as opposed to
directed acyclic graphs; (3) instances that have to be classified into leafs, i.e.
mandatory leaf node prediction [17], as opposed to the setting where instances
can be classified into any node of the hierarchy (early stopping).

A tree hierarchy organizes the class labels into a tree-like structure to rep-
resent a kind of ”IS-A” relationship between labels. Specifically, [10] points out
that the properties of the ”IS-A” relationship can be described as asymmetry,
anti-reflexivity and transitivity [17]. We define a tree as a pair (C,≺), where C
is the set of class labels and ”≺” denotes the ”IS-A” relationship.

Let {(x1, c1), . . . , (xN , cN )} i.i.d.∼ X,C be a set of training examples, where
X and C are two random variables taking values in X × C, respectively. Each
xk ∈ X and each ck ∈ C. Our goal is to learn a classification function f : X −→ C
that attains a small classification error. In this paper, we associate each node
i with a classifier Mi, and focus on classifiers f(x) that are parameterized by
M1, . . . ,Mm through the following recursive procedure [27] (check Fig. 2):

f(x) =


initialize i := 0

while (Child(i) is not empty) i := argmaxj∈Child(i)Mj(x)

return i %Child(i) is the set of children for the node i

(1)

In the case of the SHL dataset, for instance, learning train and subway or car and
bus before learning each concept alone gives better results. As an advantage, con-
sidering these classes paired together as opposed to the flat classification setting
leads to significant degradation of recognition performances as demonstrated in
some works around the SHL dataset [23]. In contrast, organizing the various
concepts into a tree-like structure, inspired by domain expertise, demonstrated
significant gains in terms of recognition performances in the context of the SHL
challenge [12] and activity recognition in general [15,16].

Designing such structures is of utmost importance but hard because it in-
volves optimizing the structure as well as learning the weights of the classifiers
attached to the nodes of that structure (see Sec. 2.2). Our goal is then to deter-
mine an optimal structure of classes that can facilitate (improve and accelerate)
learning of the whole concepts.

1 In our case, we select several body-motion modalities to be included in our exper-
iments, among the 16 input modalities of the original dataset: accelerometer, gyro-
scope, etc. Segmentation and processing details are detailed in experimental part.
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2.2 Search Space Size: Complexity Analysis

A naive approach is to generate the lattice structure of concepts groups and
to choose the tree hierarchies which give the best accuracy of atomic concepts.
In practice, this is not doable because of the exponential (in the number of
leaf nodes) number of possible trees. We propose a recurrence relation involving
binomial coefficients for calculating the total number of tree hierarchies for K
different concepts (class labels).

Example 1. Assume we have 3 various concepts, and we are interested in count-
ing the total number of hierarchies for classifying these concepts. We consider
that we have three classes namely c1, c2 and c3, there exist 4 different tree hier-
archies for learning the classification problem as following: (1) (c1c2c3) the tree
has one level and the learning process takes one step. Three concepts are learned
while each concept is learned separately from the others (flat classification), (2)
((c1c2)c3) the tree has two levels and the learning process takes two steps: at the
first level, it learns two concepts (atomic c3 and two atomics c1 and c2 together).
At the second level it learns separately the two joined concepts c1 and c2 of the
first level, etc and (3) (c1(c2 c3)) and (4) ((c1c3)c2).

Theorem 1. Let L(K) be the total number of trees for the given K number of
concepts. The total number of trees for K + 1 concepts satisfies the following
recurrence relation: L(K+1) =

(
K
K−1

)
L(K)L(1)+2

∑K−2
i=0

(
K
i

)
L(i+1)L(K− i).

(See Appendix A in the supplementary material for complete proof).

3 Proposed Approach

Our goals are to: (i) organize the considered concepts into hierarchies such that
the learning process accounts for the dependencies existed among these concepts;
(ii) characterize optimal classifiers that are associated to each non-leaf node of
the hierarchies. Structuring the concepts can be performed using two different
approaches: a top-down approach where we seek to decompose the learning
process; and a bottom-up approach where the specialized models are grouped
together based on their affinities. Our approach takes the latter direction and
constructs hierarchies based on the similarities between concepts. This is be-
cause, an hierarchical approach as a bottom-up method is efficient in the case of
high volume SHL data-sets. In this section, we detail the different parts of our
approach which are illustrated in Fig. 1. In the rest of this section, we introduce
the three stages of our approach in detail: Concept similarity analysis, Hierarchy
derivation, and Hierarchy refinement.

3.1 Concept Similarity (Affinity) Analysis

In our bottom-up approach we leverage transferability and dependency among
concepts as a measure of similarity. Besides the nice empirical properties of this
measure (explained in the Properties paragraph below), the argument behind it
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Fig. 1: Our solution involves several repetitions of 3 main steps: (1) Concept similarity
analysis: encoders are trained to output, for each source concept, an appropriate repre-
sentation which is then fine-tuned to serve target concepts. Affinity scores are depicted
by the arrows between concepts (the thicker the arrow, the higher the affinity score). (2)
Hierarchy derivation: based on the obtained affinity scores, a hierarchy is derived using
an agglomerate approach. (3) Hierarchy refinement: each non-leaf node of the derived
hierarchy is assigned with a model that encompasses the appropriate representation as
well as an ERM which is optimized to separate the considered concepts.

is to reuse what has been learned so far at the lower levels of the hierarchies.
Indeed, we leverage the models that we learned during this step and use them
with few additional adjustments in the final hierarchical learning setting.

Transfer-based affinity. Given the set of concepts C, we compute during this
step an affinity matrix that captures the notion of transferability and similarity,
among the concepts. For this, we first compute for each concept ci ∈ C an encoder
f ciθ (parameterized by θ) that learns to map the ci labeled inputs, to Zci . Learn-
ing the encoder’s parameters consists in minimizing the reconstruction error, sat-
isfying the following optimization [22]: argminθ,θ′ Ex,c∼X,C|c=ciL(gciθ′ (f

ci
θ (x)), x),

where gciθ′ is a decoder (parameterized by θ′) which maps back the learned rep-
resentation into the original inputs space. We propose to leverage the learned
encoder, for a given concept ci, to compute affinities with other concepts via fine-
tuning of the learned representation. Precisely, we fine-tune the encoder fθci to
account for a target concept cj ∈ C. This process consists, similarly, in minimiz-
ing the reconstruction error, however rather than using the decoder gciθ′ learned
above, we design a genuine decoder g

cj
θ′ that we learn from the scratch. The corre-

sponding objective function is argminθ,θ′ Ex,c∼X,C|c=cjL(g
cj
θ′ (f ciθ (x)), x). We use

the performance of this step as a similarity score from ci to cj which we denote
by pci−→cj ∈ [0, 1]. We refer to the number of examples belonging to the concept
cj used during fine-tuning as the supervision budget, denoted as b, which is used
to index a given measure of similarity. It allows us to have an additional indi-
cator as to the similarity between the considered concepts. The final similarity

score is computed as
α·pci−→cj

+β·b
α+β . We set α and β to be equal to 1

2 .

Properties. In many applications, e.g. computer-vision [26] and natural language
processing [14], several variants of the transfer-based similarity measure have
been shown empirically to improve (i) the quality of transferred models (wins
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against fully supervised models), (ii) the gains, i.e. win rate against a network
trained from scratch using the same training data as transfer networks’, and
more importantly (iii) the universality of the resulting structure. Indeed, the
affinities based on transferability are stable despite the variations of a big corpus
of hyperparameters. We provide empirical evidence (Sec. 4.2) of the appropri-
ateness of the transfer-based affinity measure for the separability of the similar
concepts and the difficulty to separate concepts that exhibit low similarity scores.

3.2 Hierarchy Derivation

Given the set of affinity scores obtained previously, we derive the most appro-
priate hierarchy, following an agglomerative clustering method combined with
some additional constraints. The agglomerative clustering method proceeds by a
series of successive fusions of the concepts into groups and results in a structure
represented by a two-dimensional diagram known as a dendrogram. It works
by (1) forming groups of concepts that are close enough and (2) updating
the affinity scores based on the newly formed groups. This process is defined
by the recurrence formula proposed by [11]. If defines a distance between a
group of concepts (k) and a group formed by fusing i and j groups (ij) as
dk(ij) = αidki + αjdkj + βdij + γ|dki − dkj |, where dij is the distance between
two groups i and j. By varying the parameter values αi, αj , β, and γ, we expect
to get clustering schemes with various characteristics.

In addition to the above updating process, we propose additional constraints
to refine further the hierarchy derivation stage. Given the dendrogram produced
by the agglomerative method above, we define an affinity threshold τ such that
if the distance at a given node is dij ≥ τ , then we merge the nodes to form a
unique subtree. In addition, as we keep track of the quantities of data used to
train and fine-tune the encoders during the transfer-based affinity analysis stage,
this indicator is exploited to inform us as to which nodes to merge. Let T be
the derived hierarchy (tree) and let t indexes the non-leaf or internal nodes. The
leafs of the hierarchy correspond to the considered concepts. For any non-leaf
node t, we associate a model Mt that encompasses (1) an encoder (denoted in
the following simply by Zt in order to focus on the representation) that maps
inputs X to representations Zt and (2) an ERM (Empirical Risk Minimizer) [21]
ft (such as support vector machines SVMs) that outputs decision boundaries
based on the representations produced by the encoder.

3.3 Hierarchy Refinement

After explaining the hierarchy derivation process, we will discuss: (1) which
representations are used in each individual model; and (2) how each individual
model (including the representation and the ERM weights) is adjusted to account
for both the local errors and also those of the hierarchy as a whole.

Which representations to use? The question discussed here is related to the
encoders to be used in each non-leaf node. For any non-leaf node t we distinguish
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two cases: (i) all its children are leafs; (ii) it has at least one non-leaf node. In the
first case, the final considered ERM representation, associated with the non-leaf
node, is the representation learned in the concept affinity analysis step (first-
order transfer-based affinity). In the second case, we can either fuse the nodes
(for example, in a case of classification between 3 concepts, we get all 3 together
rather than, first {1} vs. {2,3}, then {2} vs. {3}), or keep them as they are
and leverage the affinities based on higher-order transfer where, rather than
accounting for a unique target concept, the representation is then fine-tuned.
Fig. 2 illustrates how transfers are performed between non-leaf nodes models.
We index the models with the encoderM[Zi]. In the case of higher-order transfer,
the models are indexed using all concepts involved in the transfer, i.e.M[Zi,j,...].

M[zj ]

cj ck

M[zi,j ]

ci

(a)

cj ck

M[zi,j,k]

ci

(b)

M[zj ]

cj ck

M[zi,j ]

M[zj ]

...

(c)

Fig. 2: Transfers are performed between non-leaf nodes models. The hierarchy in (a)
can be kept as they are merged to form the hierarchy in (b). (b): a high-order transfer
between the concepts ci, cj , and ck is performed. (c): no transfers can be made.

Adjusting models weights. Classifiers are trained to output a hypothesis based on
the most appropriate representations learned earlier. Given the encoder (repre-

sentation) assigned to any non-leaf node t, we select a classifier f̂ := argminf∈H
R̂(f,Zt) where R̂(f,Zt) := 1

M

∑
x,c∼X,C|c∈Child(t) Ez∼Zt|x[L(c, f(z))] and H is

the hypothesis space. Models are adjusted to account for local errors as well as
for global errors related to the hierarchy as a whole. In the first case, the loss is
defined as the traditional hinge loss used in SVMs which is intended to adjust
the weights of the classifiers that have only children leaves. In the second case,
we use a loss that encourages the models to leverage orthogonal representations
(between children and parent nodes) [27].

4 Experiments and Results

Empirical evaluation of our approach are performed on three steps: we evaluate
classification performances in the hierarchical setting (Sec. 4.1); then, we eval-
uate the transfer-based affinity analysis step and the properties related to the
separability of the considered concepts (Sec. 4.2); finally, we evaluate the derived
hierarchies in terms of stability, performance, and agreement with their coun-
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terparts defined by domain experts (Sec. 4.3) 2. Training details can be found
in Appendix B and evaluation metrics are detailed in Appendix C.

SHL dataset [7]. It is a highly versatile and precisely annotated dataset dedicated
to mobility-related human activity recognition. In contrast to related representa-
tive datasets like [2], the SHL dataset (26.43 GB) provides , simultaneously, mul-
timodal and multilocation locomotion data recorded in real-life settings. Among
the 16 modalities of the original dataset, we select the body-motion modalities in-
cluding: accelerometer, gyroscope, magnetometer, linear acceleration, orientation,
gravity, and ambient pressure. This makes the data set suitable for a wide range
of applications and in particular transportation recognition concerned with this
paper. From the 8 primary categories of transportation, we are selected: 1:Still,
2:Walk, 3:Run, 4:Bike, 5:Car, 6:Bus, 7:Train, and 8:Subway (Tube).

4.1 Evaluation of the Hierarchical Classification Performances

In these experiments, we evaluate the flat classification setting using neural net-
works which constitute our baseline for the rest of the empirical evaluations.
To compare our baseline with the hierarchical models, we make sure to get the
same complexity, i.e. comparable number of parameters as the largest hierar-
chies including the weights of the encoders and those of the ERMs. We also use
Bayesian optimization based on Gaussian processes as surrogate models to select
the optimal hyperparameters of the baseline model [18,9]. More details about
the baseline and its hyperparameters are available in the code repository [9].

Per-node performances. Fig. 3 shows the resulting per-node performances, i.e.
how accurately the models associated with the non-leaf nodes can predict the
correct subcategory averaged over the entire derived hierarchies. The nodes are
ranked according to the obtained per-node performance (top 10 nodes are shown)
and accompanied by their appearance frequency. It is worth noticing that the
concept 1:still learned alone against the rest of the concepts (first bar) achieves
the highest gains in terms of recognition performances while the appearance
frequency of this learning configuration is high (more than 60 times). We see
also that the concepts 4:bike, 5:car, and 6:bus grouped together (5th bar) occur
very often in the derived hierarchies (80 times) which is accompanied by fairly
significant performance gains (5.09± 0.3%). At the same time, as expected, we
see that the appearance frequency gets into a plateau starting from the 6th bar
(which lasts after the 10th bar). This suggests that the most influential nodes
are often exhibited by our approach.

Per-concept performances. We further ensure that the performance improve-
ments we get at the node levels are reflected at the concept level. Experimental
results show the recognition performances of each concept, averaged over the

2 Software package and code to reproduce empirical results are publicly available at
https://github.com/sensor-rich/hierarchicalSHL

https://github.com/sensor-rich/hierarchicalSHL
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Fig. 3: (a) Per-node performance gains, averaged over the entire derived architectures
(similar nodes are grouped and their performances are averaged). The appearance
frequency of the nodes is also illustrated. Each bar represents the gained accuracy
of each node in our hierarchical approach. For example, the 8th bar corresponds to
the concepts 2:walk-3:run-4:bike grouped together. (b) Recognition performances of
each individual concept, averaged over the entire derived hierarchies. For reference, the
recognition performances of the baseline model are also shown.

whole hierarchies derived using our proposed approach. We indeed observe that
there are significant improvements for each individual concept over the baseline
(flat classification setting). We observe that again 1:still has the highest classi-
fication rate (72.32± 3.45%) and an improvement of 5 points over the baseline.
Concept 6:bus also exhibits a roughly similar trend. On the other hand, concept
7:train has the least gains (64.43± 4.45%) with no significant improvement over
the baseline. Concept 8:subway exhibits the same behavior suggesting that there
are undesirable effects that stem from the definition of these two concepts.

4.2 Evaluation of the Affinity Analysis Stage

These experiments evaluate the proposed transfer-based affinity measure. We as-
sess, the separability of the concepts depending on their similarity score (for both
the transfer-affinity and supervision budget) and the learned representation.

Appropriateness of the Transfer-based Affinity Measure. We reviewed above the
nice properties of the transfer-based measure especially the universality and
stability of the resulting affinity structure. The question that arises is related
to the separability of the concepts that are grouped together. Are the obtained
representations, are optimal for the final ERMs used for the classification? This
is what we investigate here. Fig. 4b shows the decision boundaries generated by
the considered ERMs which are provided with the learned representations of two
concepts. The first case (top right), exhibits a low-affinity score, and the second
case (bottom right) shows a high-affinity score. In the first case, the boundaries
are unable to separate the two concepts while it gets a fairly distinct frontier.

Impact on the ERMs’ Decision Boundaries. We train different models with vari-
ous learned representations in order to investigate the effect of the initial affinities
(obtained solely with a set of 100 learning examples) and the supervision budget
(additional learning examples used to fine-tune the obtained representation) on



10 A. Osmani et al.

M[zi]

ci cj

(a) (b)

In
it

ia
l

tr
an

sf
er

-b
as

ed
affi

n
it

y
sc

or
es

Supervision budget (# learning examples)
200 300 400 500

0.2

0.4

0.6

0.8

(c)

Fig. 4: (a) Non-leaf node grouping concepts ci and cj . (b) Decision boundaries gener-
ated by the ERM of the non-leaf node using an encoder (representation) fine-tuned to
account for (top) the case where ci and cj are dissimilar (low-affinity score) and (bot-
tom) the case where ci and cj are similar (high-affinity score). (c) Decision boundaries
obtained by SVM-based classifiers trained on the representations Zt as a function of
the distance between the concepts (y-axis) and the supervision budget (x-axis).

the classification performances of the ERMs associated with the non-leaf nodes
of our hierarchies. Fig. 4c shows the decision boundaries generated by various
models as a function of the distance between the concepts (y-axis) and the super-
vision budget (x-axis). Increasing the supervision budget to some larger extents
(more than ∼ 300 examples) results in a substantial decrease in classification per-
formances of the ERMs. This suggests that, although our initial affinity scores
are decisive (e.g. 0.8), the supervision budget is tightly linked to generalization.
This shows that a trade-off (controlled by the supervision budget) between sep-
arability and initial affinities arises when we seek to group concepts together.
In other words, the important question is whether to increase the supervision
budget indefinitely (in the limits of available learning examples) in order to find
the most appropriate concepts to fuse with, while expecting good separability.

4.3 Universality and Stability

We demonstrated in the previous section the appropriateness of the transfer-
based affinity measure to provide distance between concepts as well as the exis-
tence of a trade-off between concepts separability and their initial affinities. Here
we evaluate the universality of the derived hierarchies as well as their stabil-
ity during adaptation with respect to our hyperparameters (affinity threshold
and supervision budget). We compare the derived hierarchies with their domain
experts-defined counterparts, as well as those obtained via a random sampling
process. Fig. 5 shows some of the hierarchies defined by the domain experts (first
row) and sampled using the random sampling process. For example, the hierar-
chy depicted in Fig. 5d corresponds to a split between static (1:still, 5:car, 6:bus,
7:train, 8:subway) and dynamic (2:walk, 3:run, 4:bike) activities. The difference
between the hierarchies depicted in Fig. 5a and 5b is related to 4:bike activity
which is linked first to 2:walk and 3:run then to 5:car and 6:bus. A possible in-
terpretation is that in the first case, biking is considered as “on feet” activity
while in the second case as “on wheels” activity. What we observed is that the
derived hierarchies tend to converge towards the expert-defined ones.
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Fig. 5: Examples of hierarchies: (a) de-
fined via domain expertise, (b-c) derived
using our approach, and (d) randomly
sampled. Concepts 1—8 from left to right.

Method Agree. perf. avg.± std.

Expertise - 72.32±0.17
Random 0.32 48.17±5.76
Proposed 0.77 75.92±1.13

Table 1: Summary of the recognition per-
formances obtained with our proposed ap-
proach compared to randomly sampled
and expert-defined hierarchies.

We compare the derived hierarchies in terms of their level of agreement.
We use for this assessment, the Cohen’s kappa coefficient [4] which measures
the agreement between two raters. The first column of Table 1 provides the
obtained coefficients. We also compare the average recognition performance of
the derived hierarchies (second column of Table 1). In terms of stability, as we
vary the design choices (hyperparameters), defined in our approach, we found
that the affinity threshold has a substantial impact on our results with many
adjustments involved (12 hierarchy adjustments on avg.) whereas the supervision
budget has a slight effect, which confirms the observations in Sec. 4.2.

5 Conclusion and Future Work

This paper proposes an approach for organizing the learning process of depen-
dent concepts in the case of human activity recognition. We first determine a
suitable structure for the concepts according to a transfer affinity-based measure.
We then characterize optimal representations and classifiers which are then re-
fined to account for both local and global errors. We provide theoretical bounds
for the problem and empirically show that using our approach we are able to
improve the performances and robustness of activity recognition models over a
flat classification baseline. In addition to supporting the necessity of organizing
concepts learning, our experiments raise interesting questions for future work.
Noticeably, Sec. 4.2 asks what is the optimal amount of supervision for deriving
the hierarchies. Another future work is to study different approaches for search-
ing and exploring the search space of different hierarchical types (lattices, etc.).
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13. Nguyen-Dinh, L.V., Calatroni, A., Tröster, G.: Robust online gesture recognition
with crowdsourced annotations. JMLR 15(1), 3187–3220 (2014)

14. Peters, M.E., Ruder, S., Smith, N.A.: To tune or not to tune? adapting pretrained
representations to diverse tasks. arXiv preprint arXiv:1903.05987 (2019)

15. Samie, F., Bauer, L., Henkel, J.: Hierarchical classification for constrained iot de-
vices: A case study on human activity recognition. IEEE IoT Journal (2020)

16. Scheurer, S., et al.: Using domain knowledge for interpretable and competitive
multi-class human activity recognition. Sensors 20(4), 1208 (2020)

17. Silla, C.N., Freitas, A.A.: A survey of hierarchical classification across different
application domains. Data Mining and Knowledge Discovery 22(1-2), 31–72 (2011)

18. Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine
learning algorithms. In: NIPS. pp. 2951–2959 (2012)

19. Stikic, M., Schiele, B.: Activity recognition from sparsely labeled data using multi-
instance learning. In: Int. Symposium on LoCA. pp. 156–173. Springer (2009)

20. Taran, V., Gordienko, Y., Rokovyi, A., Alienin, O., Stirenko, S.: Impact of ground
truth annotation quality on performance of semantic image segmentation of traffic
conditions. In: ICCSEA. pp. 183–193. Springer (2019)

21. Vapnik, V.: Principles of risk minimization for learning theory. In: NIPS (1992)
22. Vincent, P., et al.: Stacked denoising autoencoders: Learning useful representations

in a deep network with a local denoising criterion. JMLR 11(12) (2010)
23. Wang, L., et al.: Summary of the sussex-huawei locomotion-transportation recog-

nition challenge. In: UbiComp/ISWC. pp. 1521–1530 (2018)
24. Wehrmann, J., Cerri, R., Barros, R.: Hierarchical multi-label classification net-

works. In: ICML. pp. 5075–5084 (2018)
25. Yao, H., Wei, Y., Huang, J., Li, Z.: Hierarchically structured meta-learning. In:

ICML. pp. 7045–7054 (2019)
26. Zamir, A.R., Sax, A., Shen, W., Guibas, L.J., Malik, J., Savarese, S.: Taskonomy:

Disentangling task transfer learning. In: CVPR. pp. 3712–3722 (2018)
27. Zhou, D., Xiao, L., Wu, M.: Hierarchical classification via orthogonal transfer. In:

ICML. pp. 801–808 (2011)



Hierarchical Learning of Dependent Concepts for HAR 13

Appendix A

Proof. Theorem 1. It can be explained by observing that, for K + 1 concepts
containing K existed concepts c1, · · · cK and a new added concept γ, we can
produce the first level trees combinations as below. Notice that each atomic
element o can be one of the c1, · · · cK concepts. In order to compute the total
number of trees combinations, we show what is the number of tree combinations
by assigning the K concepts to each item:

– (γ(

Kconcepts︷ ︸︸ ︷
o · · · o )): the number of trees combinations by taking the concept labels

into the account are:
(
K
0

)
L(1) × 2 × L(K); the reason for multiplying the

number of trees combinations for K concepts to 2 is because while the left
side contains an atomic γ concept, there are two choices for the right side
of the tree in the first level: either we compute the total number of trees

for K concepts from the first level or we keep the first level as a

Kconcepts︷ ︸︸ ︷
o · · · o

atomics and keep all K concepts together, then continue the number of K
trees combinations from the second level of the tree.

– ((γo)(

K−1concepts︷ ︸︸ ︷
o · · · o )): similar to the previous part we have

(
K
1

)
L(2)×2×L(K−

1) trees combinations by taking the concepts labels into the account.
(
K
1

)
indicates the number of combinations for choosing a concept from the K
concept and put it with the new concept separately. While L(2) is the number
of trees combinations for the left side of tree separated with the new concept
γ.

– ((γoo)(

K−2concepts︷ ︸︸ ︷
o · · · o )), · · ·

– ((γ

K−1concepts︷ ︸︸ ︷
o · · · o )o):

(
K
K−1

)
L(K)L(1) in this special part, we follow the same

formula except the single concept in the right side has only one possible
combination in the first level equal to L(1).

All in all, the sum of these items calculates the total number of tree hierarchies
for K + 1 concepts.

The first few number of total number of trees combinations for 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, · · · concepts are: 1 , 1, 4, 26, 236, 2752, 39208, 660032, 12818912,
282137824, · · · . In the case of the SHL dataset that we use in the empirical
evaluation, we have 8 different concepts and thus, the number of different types
of hierarchies for this case is L(8) = 660, 032.

Appendix B Training Details

We use Tensorflow for building the encoders/decoders. We construct encoders by
stacking Conv1d/ReLU/MaxPool blocks. These blocks are followed by a Fully
Connected/ReLU layers. Encoders performance estimation is based on the vali-
dation loss and is framed as a sequence classification problem. As a preprocessing
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step, annotated input streams from the huge SHL dataset are segmented into
sequences of 6000 samples which correspond to a duration of 1 min. given a
sampling rate of 100 Hz. For weight optimization, we use stochastic gradient de-
scent with Nesterov momentum of 0.9 and a learning-rate of 0.1 for a minimum
of 12 epochs (we stop training if there is no improvement). Weight decay is set
to 0.0001. Furthermore, to make the neural networks more stable, we use batch
normalization on top of each convolutional layer. We use SVMs as our ERMs in
the derived hierarchies.

Appendix C Evaluation Metrics

In hierarchical classification settings, the hierarchical structure is important and
should be taken into account during model evaluation [17]. Various measures
that account for the hierarchical structure of the learning process have been
studied in the literature. They can be categorized into: distance-based; depth-
dependent; semantics-based; and hierarchy-based measures. Each one is display-
ing advantages and disadvantages depending on the characteristics of the con-
sidered structure [5]. In our experiments, we use the H-loss, a hierarchy-based
measure defined in [3]. This measure captures the intuition that ”whenever a
classification mistake is made on a node of the taxonomy, then no loss should
be charged for any additional mistake occurring in the sub-tree of that node.”
`H(ŷ, y) =

∑N
i=1{ŷi 6= yi ∧ ŷj = yj , j ∈ Anc(i)}, where ŷ = (ŷ1, · · · ŷN ) is the

predicted labels, y = (y1, · · · yN ) is the true labels, and Anc(i) is the set of
ancestors for the node i.
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