

Equational Model Guided by Real-time Sensor Data to **Monitor Industrial Robots**

Aomar Osmani¹, Pegah Alizadeh², Christophe Rodrigues² ¹LIPN, Sorbonne Paris Nord, ²Devinci Research Center

Outline

- Motivation and Problem Description
- Proposed Approach
- Experimental Results
- 4 Conclusions and Perspectives

Motivation

- Industrial robots are used by the experts for manufacturing industrial pieces in the real environment.
- The existed simulators for the milling processes are designed based on some equational models.
- Our objective is to improve the equational model by adding both the environment and the human constraints, guided by the sensors data.

Simulator: NCSimul

- The NCSimul reads G-code language that tells robots where to move, how fast to move, and what path to follow.
- This G-code identifies the tool path, and replicates the material removals by cutting automatically volume.
- NCSimul identifies all syntax errors in the code, crashes in the machining environment, and deviations from the given geometrical form for a to-be-manufactured workpiece.
- The NCSimul assists the machinists to tune a set of parameters related to the robots, materials, speed and etc during the manufacturing.

Why NCSimul is not enough?

NCSimul is not completely faithful to the real manufacturing workshops and the used industrial robots, because it is **not possible to model all the parameters of the machining environment mathematically**.

Simulator : NCSimul

NCSimul uses a set of milling and mechanical formulations for the manufacturing process:

- feed per tooth : $v_f = n \times f_z \times z_c$.
- finishing capability of a cutter : $f_n = \frac{v_f}{n}$.
- volume of removed metal : $Q = \frac{a_e \times a_p \times v_f}{1000}$.
- net power : $P_c = \frac{a_e \times a_p \times v_f}{60 \times 10^6} \times k_c$.
- torque : $M_c = \frac{P_c \times 3 \times 10^3}{2.00}$.

Main Questions to Answer

Main Question

How adapt the formula-based simulators with real-time experiments and complete their missing information into the simulated model.

Some of the missing information is :

- The milling performance regarding various materials and tool types are not dependent on tool-material changing with the milling formulas.
- Tools and material conditions are not observable when the cutting tool is outside the material.
- We are interested in designing a simulator that adapts itself to correct and acceptable real-time observations.

To improve the imperfection and difference between the real and simulation conditions during the milling process, we propose **Temporal Probably Approximately Correction (TPAC)** method.

Main Challenge

 \overline{F}_{IGURE} – In order to complete the missing information by observing the real milling, we concentrate on power generated signals from simulated and real cases.

Temporal Probably Approximately Correction (TPAC)

- Our approach aligns the power signals generated by the simulator and the real system.
- We adjust the simulator by observing the real data and the dynamics of the machines in the context of industrial manufacturing.
- Each triplet (material, tool, workpiece) generates a power signal, we propose an approach that generalizes this combination for each piecework with different tools, materials and machines.

$$orall t \in MT, \; P_{PT}(|R_S^{eta}(t) - S_{AE}^{eta}(t)| > \epsilon) < \delta$$

 R_S : real dynamic system,

 S_{AE} : augmented equational simulator (to-be-learned),

 S_E : simulated system,

 β : is "Power" in our case.

TPAC

$$\forall t \in MT, \; P_{PT}(|R_S^{\beta}(t) - S_{AE}^{\beta}(t)| > \epsilon) < \delta$$

R_S: real dynamic system,

 S_{AE} : augmented equational simulator

(to-be-learned),

 β : is "Power" in our case.

Parameters to fix in the algorithm : $W, W_0, step = \alpha W, \epsilon, \delta$

Building Augmented Simulator for Power Signals

In this algorithm the existing electric power by simulator $S_{\varepsilon}^{\text{power}}$ is guided by real data D to follow the real signal R_s^{power} .

For a given current step started at time t_c and a given window W, find

$$f:\{t_c-W,\cdots,t_c+W\}\longrightarrow\{t_c-W,\cdots t_c+W\}$$

such that $\forall t_c - W \le t \le t_c + W$, $S_F(f(t))$ aligns $R_S(t)$.

$$\min_{f,W_0} \sum_{[t_i,t_i+W_0]\subset[t_c-W,t_c+W]} |a(t_i,W_0)-1.0| + |b(t_i,W_0)|$$

$$a(t_i, W_0) = \frac{cov(A, B)}{var([S_E(f(t_i)), S_E(f(t_i + W_0))])}$$

$$b(t_i, W_0) = mean([R_S(t_i), R_S(t_i + W_0)]) - a(t_i, W_0)mean([S_E(f(t_i)), S_E(f(t_i + W_0))])$$

Where $B = [S_E(f(t_i)), S_E(f(t_i + W_0))]$ and $A = [R_S(t_i), R_S(t_i + W_0)]$.

Data Description

- The simulated and real data are available for various material-cutting tool-workpiece combinations.
- The simulated data is generated by the NCSimul software, and the real one is generated by the real observed data in a real factory (UF1 company).
- We extract around 1.7 GB data in total.
- We use data for manufacturing :
 - two workpieces: GP2R and 5axes,
 - two types of cutting tools: long (2 different cutting tools) and short (2 different cutting tools),
 - and two materials: steel and aluminium.
- Because of some limitations for applying the sensors in the real workshop, the only registered data for the real observations is the consumed electrical power (P_c) .

Selected Parameters for the Algorithm

Values of parameters for the TPAC algorithm :

- Steel material : W = 15000, $W_0 = 500$, step = 50 and $\epsilon = 0.0$
- Aluminium material : W = 45000, $W_0 = 500$, step = 50 and $\epsilon = 0.6$

Experimental Results

Our results show how the missing information can be completed by our augmented simulation $^{1\,2}.$

FIGURE – Part of the power signals for the pocket end milling of the GPR2 with steel material and a short tool.

Vertical axe : power, horizontal axe : time steps.

 R_S : green, S_E : blue, S_{AE} : golden.

Experimental Results

Our method does not only correct the simulator w.r.t. the real observed data, it also detects the anomalies during the real manufacturing performance. ^{3 4}.

FIGURE – Part of the power signals for the pocket end milling of the GPR2 with aluminium material and a short tool.

Vertical axe : power, horizontal axe : time steps.

 R_S : green, S_E : blue, S_{AE} : golden.

Eperimental Reults

our approach is noise resistant specially for the soft materials as aluminium. Our augmented simulator corrects the machinist's generated $^{5\,6}.$

FIGURE – Part of the power signals for the pocket milling of the **GPR2** with aluminium material and a short tool.

Vertical axe : power, horizontal axe : time steps.

 R_S : green, S_E : blue, S_{AE} : golden.

Conclusion and Future Works

- We propose and formalize an approach that integrates real and environmental constraints through sensor data analysis into equational models of simulators.
- This approach performs a continuous adjustment of the simulator w.r.t. the real system to ensure a continuous monitoring of industrial robots.
- The experiments show that our proposed augmented simulator :
 - It takes into account material stiffness by adding real data and more generally.
 - It is adaptable to the used materials (e.g. steel or aluminium), cutting tool workpiece and tools.
 - It can also correct the simulation results when the cutting-robot is outside the material or when the industrial process is stopped temporally for any external reason.
 - It is robust toward the noisy real conditions and can solve difficult cases where the real and simulated values have a complex and non-linear differences

