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Abstract— The monitoring of industrial robots is often en-
sured by generic simulators which model the equational aspect
of the target machines. We propose an original approach to
complete the equational simulator of a milling machine using
the accumulated data from the employed sensors in the real
workshops. This approach creates a specific simulator for each
machining situation by taking the triplet (material, cutting tool,
workpiece) into account. This improvement brings great added
value to the industrial experts and improves the efficiency of
industrial robots. It allows them to better follow and interpret
the behavior of machines during the milling process. Our
proposed method does not only correct the simulator w.r.t. the
real observed data, it also detects the anomalies during the
real manufacturing performance. It also fixes the minor bugs
along the observed real data during its continuous simulation
mimicry. The additional interest of our model remains the
precise definition of the complementary model between the real
system and the equational simulator. This makes it possible, by
using an inductive approach to search for regularities in the
model in order to better interpret the structural differences
between the model and the system and to better understand
the situations linked to their functionalities or undesirable
situations. The intensive experiments on real data validate our
model and open up many perspectives for future works.

I. INTRODUCTION

Industrial robotics presents significant challenges, espe-
cially when it associates with the automation of the robot
environment [7]. Milling process optimization is one of these
important challenges that aims to increase the quality of
products and process flexibility or to reduce the machines
operating time and material wastes or tool damages. The
milling process is mainly controlled by Computer Numerical
Control (CNC) [11] while the cutting robot movements w.r.t.
the used metal for the manufacturing (e.g. tool’s position and
its angle w.r.t. the material, tool speed and orientation, ...)
are controlled by specific and complex command programs
(see Fig. 1). Designing a new CNC program to produce
a specific manufactured workpiece involves selecting a lot
of milling parameters, which is difficult even for the ma-
chining experts with several years of practice. To reduce
several risks, such as tool breakage and tool vibration in the
aerospace industry [17] or material damage [16] in industry
4.0, the machinist uses some simulator softwares beforehand.
Nowadays, there exist several numerical control machining
simulation [18] for simulating, verifying, and optimizing
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CNC machining, including the simulator used in the context
of our industrial application: NCSimul1 [2].

The NCSimul reads a given post-processed G-code lan-
guage that tells computerized robots where to move, how
fast to move, and what path to follow. This G-code identifies
the tool path, and replicates the material removals by cutting
automatically volumes (see Fig. 2). By this, the NCSimul
then identifies all syntax errors in the code, crashes in
the machining environment, and deviations from the given
geometrical form for a to-be-manufactured workpiece. The
NCSimul simulator mainly assists the machinists to tune a set
of parameters related to the robots, materials, speed and etc
during the manufacturing; these parameters are explained by
details in Sec. II. The behavior of NCSimul is not completely
faithful to the real manufacturing workshops and the used
industrial robots, because it is not possible to model all the
parameters of the machining environment mathematically.
However, some works show most of these imperfections
can be detected by studying and analyzing the generated
signal powers [5], [9]. For example, during manufacturing,
if the used metal is a soft metal as aluminium, the machinist
requires less power inside the material for following the
G-code. On the other hand, keeping the power stable and
low generates many oscillations during the manufacturing
process. The simulators such as NCSimul, are normally de-
signed based on mechanical and physical laws, which do not
take totally into account the material type, tool and machine
dynamics, the environmental situations, initial material and
tools conditions or any post noises/errors diagnostic [10] (the
formulas are explained in Sec. II-B).

One of the main limitations of equational simulator-based
approaches to monitor dynamic systems behavior is the
time management. Indeed, while it is easy to model the
perfect temporal behavior using equations, it is not possible
to predict all the recurring damage, unforeseen events or
abnormal situations due to operators and interactions with
other tools and machines. Our solution aims to solve these
problems by an inductive model in addition to the equational
deductive model and using the data from the real system to
continuously correct the simulator. The obtained results are
very satisfactory as will be explained later. Some available
works in the literature propose hybrid models for mixing
simulator and online sensors in order to predict tool wear
and cutting forces [6], [3]. A simulator can be used to
describe non-measurable features by the sensors. They show

1https://www.ncsimul.com/
2https://www.roboris.it/



Fig. 1: The left part shows the real milling industrial robot
2 in real environment. The right one shows the G-code
generated by the equational model. Our work is to improve
the equational model by adding both the environment and
the human constraints, only guided by the sensors data.

Fig. 2: Example of removed volumes of the material by the
five axis milling robot. Dm, fn vc, n and ap are respectively
a machined diameter, a feed per revolution, a cutting speed,
a spindle speed and a radial cutting depth.

that mixing simulator and real data improves the accuracy
of a machine learning model in comparison to the machine
learning model which relies only on simulated data or only
on real data. In opposite to some works [6] that surcharge
some measured parameters manually to the system, we
focus on a general approach adaptable to any CNC machine
without manual intervention. Among them, some works use
the dedicated sensors for monitoring the energy consumption,
because it allows them to reuse process parameters on similar
machining via a case-based reasoning [14].

The issues of adjusting equational-based simulators are not
only limited to the simple data observation, but they concern
also the capitalization and analysis of the useful industrial
knowledge. Knowledge models and meta-models are useful
to support semantic interoperability between the observed
data bases within the whole augmented simulation chain. To
achieve this goal, Meskini et al. [13] introduce a knowledge-
based framework that aims to support intelligent reasoning
and decision making as an assistant for the industrial experts.

To improve the imperfection and difference between the
real and simulation conditions during the milling process, we
propose a method based on a Temporal Probably Approxi-
mately Correction (TPAC) in Sec. III and by studying phase
and amplitude variations of temporal sequences between
equational simulated and observed real power signals. The
method is, for example, able to readjust the power signal
and the pre-defined manufacturing parameters on fly. In
summary the main contributions of this paper are: (1) We
propose an original approach for simulating the milling and
manufacturing process based on the mechanical formula and

by observing real data in the industrial workshops. Our
simulation concerns milling any material, tool and workpiece
combination, (2) Our proposed method does not only correct
the simulator w.r.t. real observed data, it can also be used for
detecting anomalies during real manufacturing performances,
(3) An experimental study on around 1.7 GB data provides
strong empirical evidence that the simulator accuracy can be
improved using sensor and real data, (4) Our experiments
show that our approach is noise resistant, and it fixes minor
bugs happening in real observed data during its continuous
adjustment simulation.

The paper is organized as follows: we describe the problem
concerning the equational simulators and observed data in
Sec. II. In Sec. III, we present our probably approximately
correction-based model. The paper is followed by discussing
the experimental results and conclusions in Sec. IV and V.

II. PROBLEM DESCRIPTION

A geometrical trajectory (G-code) of an industrial work-
piece such as the axis positions of the cutting tool w.r.t.
the material or the spindle torque is first designed using
a software such as CAD. To conduct a successful milling
process [8], [15] and avoiding any risk (e.g. material or
machine damage and tool breaking), several complex process
characteristics and parameters related to tool, cutting forces
and accelerations should be properly tuned beforehand (see
Sec. II-A). Usually, tuning these complex parameters is
done by highly experienced machinists and using tools and
machines designed based on mechanical and milling laws.
However, any slight changes in the environment or expert
situation can affect their tuning phases.

Nowadays, there exist several softwares that allow the
machinists to simulate a milling example and tune its milling
parameters by observing the result performances using sev-
eral trials. The main problem with the current simulators is
that they are designed based on the milling mechanical and
physics formulas. Thus, they are not close enough to the real
milling performances and therefore, they are not completely
reliable for the machinists. In our proposed augmented
simulator, we are interested in adapting the formula-based
simulators with real-time experiments and complete their
missing information into the simulated model. Some of the
missing information that can not be taken into account using
the milling formulas are as follows. For a given workpiece,
the milling performance regarding various materials and tool
types are not dependent on tool-material changing with the
milling formulas. Or the tools and material conditions are
not observable when the cutting tool is outside the material.

We are also interested in designing a simulator that adapts
itself to correct and acceptable real-time observations. As
observations are done in real workshops, the used real perfor-
mances may contain some flawed, noisy data or some special
conditions. For this reason, we are interested in an adapted
simulator that detects flaws and anomalies in real observed
data. In order to design an augmented simulation model
closer to the real milling conditions, we focus on power
signals in the real-time manufacturing and the power signals



generated by the formula-based simulators. The power plays
a key role in evaluating the productivity and manufacturing
quality [9], [5]. It reflects the complex behavior of the
material-cutting tool-workpiece assembly for each time step
and contains the manufacturing performance history.

Fig. 3: Left: example of radial (ae) and axial (ap) depth for
the generated cut using the cutting tool. Right: example of a
cutter tool with zc = 6 teeth, spindle speed n, feed per tooth
fz and feed tool per minute vf in relation to the material.

A. Data Sources

Two data sources are available in the case of our appli-
cations, including the data that come from the observed real
power during the milling experiments and simulation data
generated using the NCSimul simulator. The observed real-
time power is collected each second during real milling fabri-
cations by only one sensor (a digital watt-meter). The sensor
measures the consumed power of machines and cutting tools
in KW with three aspects: voltage, strength and dephasing.

Consequently, the total consumed power is available in
each real-time step. On the other hand, the simulated data
collected from NCSimul includes not only the consumed
power but also the features and shape deviations of the
workpiece in each tool-material-machine combination. These
parameters indicate various measuring during manufacturing,
such as the tool and machine positions w.r.t. the material,
feed directions, tool orientation and removed volume from
the material. The material removal process changes the
workpiece stiffness during machining, while feed directions
change the direction of the cutting force vector. Tool orien-
tation changes the norm and direction of the cutting force.
These parameters are introduced with more details in Sec. II-
B. Because of the limitation of implementing sensors during
the real manufacturing process, power is the only registered
parameter in our real data-set. The rest of parameters are only
registered using the NCSimul and are used for computing the
power value. The studied database of this paper for observed
and simulated environments is available on limited industrial
workpieces and material types, tools and machines.

B. Simulator Description

The industrial system we are studying uses NCSimul [2]
simulator. It uses a set of milling and mechanical formula-
tions for the manufacturing process, namely Sandvic [1]. This
section introduces the main formulas used in our work. The
first one is: vf = n×fz×zc. It shows the relation between the
feed per tooth (fz) and table feed per minute (feed rate) (vf )

w.r.t. the number of teeth (zc) and the spindle speed (n) (see
Fig. 3). According to this figure, spindle speed (n (rpm) ) is
the number of revolutions the milling tool makes per minute
on the spindle. This is a machine oriented value, calculated
from the recommended cutting speed value for an operation.
Feed per minute (vf (mm/min)) is the feed of the tool in
relation to the workpiece in distance per time-unit related to
feed per tooth and number of teeth in the cutter. The number
of available cutter teeth in the tool varies considerably and is
used to determine the table feed while the effective number
of teeth (zc) is the number of effective teeth in cut.

The relation between the feed per revolution (fn) and the
feed per minute (vf ) is given by: fn =

vf
n , where fn in

mm/rev is a value used specifically for feed calculations and
often to determine the finishing capability of a cutter. Fig. 3
shows what are feed per minute and feed per revolution. The
volume of metal removed (Q in cm3/min) is established
using the values for cutting depth, cutting width (ae and ap in
mm), and feed per minute (vf ) within Q =

ae×ap×vf
1000 . Fig. 3

(left) shows the two cutting parameters ae and ap denoted
radial depth and axial depth of the cut, respectively. Fig. 2
shows the removed particles of metal by the appropriate
tool. The cutting depth (ap) is the difference between the
uncut and the cut surface in axial direction. Maximum ap is
primarily limited by the insert size and machine power. ae
is the radial width of the cutter engaged in cut.

Formula 1 calculates the net power to ensure that the
machine can handle the cutter and operation. It has a direct
relation with cutting depth and width parameters, feeding
and a constant kc. kc is a material constant which is a factor
used for power calculations, expressed in N/mm2.

net power, Pc (kW) : Pc =
ae × ap × vf

60× 106
× kc (1)

Another critical factor in roughing operations is torque (Mc).
It is important in finishing operations and vibrations. Torque
is the measure of how much immediate rotational force a
spindle drive motor can generate. Formula 2 shows that the
torque is dependent on the net power and the spindle speed.

torque, Mc (Nm) : Mc =
Pc × 3× 103

π × n
(2)

In order to maximize the speeds and feeds, the machining
experts should have a good understanding of how the CNC
machine develops and holds torque.

C. Connection between Real system and Simulation

In order to machine a workpiece, there are mainly two
distinct stages: design, which is done using Computer-Aided
Design (CAD), and the workshop process ensuring the same
workpiece realization. These two separate environments can
be considered as one with a computer (white collar), the other
with a manufacturing machine (blue collar). This dichotomy
also persists between data simulated with the computer
and real data measured with real machines. The machining
simulation allows the industrial experts to reduce the round
trips between design and production by detecting geometrical
path errors, possible collisions between the tool and the



workpiece or the machine. On the other hand, analyzing
and observing the consumed power by the machines allow
the machinists to check if there has been too much effort
that could destroy the produced workpiece quality or the
machine and tool duration. This information exists but is not
coordinated and is partially used. We propose a method that
feed back this information the equational simulators in order
to detect bad choices of upstream parameters.

III. PROPOSED APPROACH

Designing a new program to produce a specific man-
ufactured piecework involves choosing a large number of
mechanical parameters and taking into account the actual
operating context to reduce risks such as tool breakage and
tool vibrations. Equational models are essential to simulate
operation and to prevent these problems. But it remains
largely imperfect and insufficient as we will show in this
study on real industrial tools. To better assist industrial
experts to adjust a set of parameters related to tools, material,
speed and better adapt to wear, malfunction and adjust these
parameters during manufacturing, we start from the postulate
that a continuous adjustment of the equational simulator
is possible by analyzing the real data coming from the
various sensors and by analyzing especially the power of the
signal generated by the industrial machine. Our numerous
experiments show that the adjustment of this power signal
guided by the real data allows the equational simulator to
considerably improve the quality of its predictions compared
to the real system. It is therefore a concrete success of the
use of the data-driven approach.

Our approach is therefore concerned with both aligning
the power signals generated by the simulator and the real
system. We adjust the simulator by observing the real data
and the dynamics of the machines in the context of industrial
manufacturing. Since each triplet (material, tool, workpiece)
generates a power signal, we also propose an approach
that generalizes this combination for each piecework with
different tools, materials and machines. The readjustment
of the simulator power signal allows better prediction of
anomalies by following a given geometric trajectory (G-
code). Using a corrected simulator, industrial experts can also
define and adjust manufacturing parameters beforehand.

Therefore, the problem to be solved can be summarized
as follows. According to the parameters defined in Table I,
how an augmented equational simulator SAE (to-be-learned)
can be computed such that following a time line defined by
RS , for each criterion β, the probability to have a difference
between RS and SAE greater than ε in machining time is
close to zero. Assuming each criterion’s contribution to the
whole model is defined by a simple linear combination, then:

Notation Explanation Notation Explanation
RS real dynamic system SE equational simulator
β each criterion MT machining time

SAE augmented equational simulator n number of criteria
D set of data driven by RS under nominal operating conditions

TABLE I: List of parameters used in this section.

∀t ∈MT, (
1

n
Σβ=n−1
β=0 αβPMT (|RβS(t)− SβAE(t)| > ε) < σ (3)

The correction of the simulator is empirically done in
several steps. First, it’s necessary to fix and tune the hyper-
parameters allowing us to verify empirically that the model
is close to the real system. Second, we propose a linear
fit-by-part approach using the Legendre principle [12]: the
least square regression to calculate the coefficients of the
linear function by part. Finally, we compute a set of control
parameters to analyse and interpret a reverse engineering
process for monitoring, diagnosis or other industrial needs.

A. Tuning hyper-parameters

The main parameters to consider are: n, ε, σ and MT .
As the only parameter concerned by the studied industrial
application is power, the previous formula will be simplified:

∀t ∈MT,PPT (|RβS(t)− SβAE(t)| > ε) < σ (4)

where ε, β and MT are fixed by the user and PPT is
the probability function. From an empirical point of view,
sequences of events are known step by step, thereby it’s not
possible to compute the probability in the whole MT time
period. In order to respect the previous Formula, we define
several hyper-parameters as below:
• W0: even if there is a difference between RS and
SAE in a short period (e.g. a Dirac delta distribution
with uncertainty [4]), it’s not necessary to correct the
simulator. We denote this period with W0. It represents
the minimum period of time where the difference is
important to apply the modification in SAE .

• W : as SAE must follow RS in the real time, we define
a maximal window where it’s possible to modify the
current behavior of the simulator w.r.t. the previous
mechanical equations. We denote this window with W .

The optimal value of W0 and W can be learned using the
real data D and a machine learning algorithm. This step
is not developed in this work, because using an one step
parameters calculation, the obtained results are close to the
desired ones. By fixing the hyper-parameters, we propose a
power alignment approach to build an augmented simulator.

B. Building Augmented Simulator for Power Signals

The complex application presented in Sec. II is only
governed by one order criterion: the electric power. The
real and simulated power signals are generated for a given
workpiece and by following a unique geometrical trajectory.
To see some examples, all figures in Sec. IV demonstrate how
the two real and equation-based simulated signals perform.

A set of physic and mechanical formulas, partially pre-
sented in Sec. II, are used in simulating the milling process.
Tuning these parameters reduces the risk and anomalies
and contributes to optimize the associated industrial process.
However, the theoretical equations are not sufficient to fol-
low the behavior of the real system precisely without any
drifts. This is because actual operations introduce biases and
parameters that are impossible to model and predict, such as



human operator pauses, programming error, premature wear
and any exogenous events to the normal process. Hence, we
need to provide an approach guided by real data to ensure
continuous adjustment of the simulator to the real system in
order to ensure a continuous monitoring. In this section, we
propose a new algorithm where the existing electric power
by simulator SpowerE (represented by Equations 1 and 2)
is guided by real data D to follow the real signal Rpower

S

(simplified as SE and RS notations, respectively). Notice
that we have only one criterion i.e. β = power, regarding
Equation 3. With intensive experiments on the related data,
our algorithm shows that the augmented simulator built with
the equational model and adapted with the real data avoids
the drifts effects and takes the parameters that are difficult
to describe in a theoretical model into the account.

As data in D are labeled with the real time associated to
the power measurement (t ∈ {1, . . . ,MT}) and according to
Equation 4, the main idea of our approximation algorithm is
to find a mapping function f , defined step by step in window
W (contiguous subset of {0, 1, . . . ,MT}). It means for a
given current step started at time tc and a given window W ,
find f : {tc −W, · · · , tc + W} −→ {tc −W, · · · tc + W},
such that ∀ tc −W ≤ t ≤ tc + W , SE(f(t)) aligns RS(t).
In the other hand, it minimizes the gap as follows:

minf,W0

∑
[ti,ti+W0]⊂[tc−W,tc+W ]

|a(ti,W0)− 1.0|+ |b(ti,W0)| (5)

where a and b as functions of ti and W0 are defined as:

a(ti,W0) =
cov(A,B)

var([SE(f(ti)), SE(f(ti +W0))])
(6)

b(ti,W0) = mean([RS(ti), RS(ti +W0)])− (7)
a(ti,W0) ·mean([SE(f(ti)), SE(f(ti +W0))])

Where B = [SE(f(ti)), SE(f(ti + W0))] and A =

[RS(ti), RS(ti +W0)]3.
The following algorithms give additional details about

this approach. In addition to the implementation and tuning
details, Algorithm 1 presents the Continuous Readjustment
Process (CAP) of the simulator to follow the real system
behavior regarding the implementation of formulas 4 to 7.
For the sake of convenience, Algorithm 3 (CAPpartial)
treats part of Algorithm 1 by calculating a modification of a
single step of the simulator given all the inputs, respecting
all Equations 4 to 7 in approach. Algorithm 2 calculates the
linear deviation per part (PLD), to be applied to the simulator,
to bring it closer to the real model over a short period of
time. It computes Equations 6 and 7. Finally, Algorithm 3
implements the minimization problem, presented in 5. An
important variable to recover after applying the whole ap-
proach and getting the augmented simulated signal, is the
difference between this achieved signal and the real signal
which is calculable as the following. This can be useful in
diagnosis and risk prediction tasks: Vdiff = {(t, RS(tR) −
SAE(tS)) | ∀(tR, tS) ∈ RSmatches}

3[RS(ti), RS(ti +W0)] = {RS(ti), RS(ti +1), · · · , RS(ti +W0 −
1), RS(ti +W0)}

Algorithm 1 CAP (In: RS , SE , W , W0, α, ε, δ, σ Out:
RSmatches, SAE , Vchange)

1: SAE ← |SE | × [−inf ] adjusted simulator signal
2: tS ← 0 pointer on the simulator signal
3: tR ← 0 pointer on the real signal
4: RSmatches ← []
5: Vchange ← [] simulated signal form changes
6: repeat
7: RW ← R[tR, tR +W ]
8: SW ← S[tS , tS +W ]
9: t1, t2, V,RS, SA ←

CAPPartial(RW , SW , SA,W0, α, ε, δ, real)
10: Vchange ← Vchange.concatenate(V )
11: RSmatches ← RSmatches.concatenate(RS)
12: t′1, t

′
2, V,RS, SA ←

CAPPartial(RW , SW , SA,W0, α, ε, δ, simulated)
13: RSmatches ← RSmatches.concatenate(RS)
14: tS ← max(t1, t

′
1); tR ← max(t2, t

′
2)

15: tS ← tS +W ; tR ← tR +W
16: until tS ≤ |SE | and tR ≤ |RS |
17: return RSmatches, SAE , Vchange

Algorithm 2 PLD (In: RS , SE Out: a, b)

1: a← cov(SE , RS)/var(SE)
2: b← mean(RS)− a×mean(SE)
3: return a, b

IV. EXPERIMENTATION

We have carried out intensive experiments on a data-
set of our industrial application. All these experiments
show the efficiency of our proposed approach regardless
of material types (steel or aluminium), or different used
tools or machines for the manufacturing process. Given the
variety of data and parameters of the application, this section
will present the structure of extracted data-set used by our
algorithms and show some promising curves obtained to
build a robust and effective augmented simulator in real time.

A. Data Description

The simulated and real data are required for various
material-cutting tool-workpiece combinations. The first one
is generated by the NCSimul software, and the second one
is generated by the real observed data in a real factory4. In
these experiments, we extract around 1.7 GB data in total. We
use data for manufacturing two workpieces: GP2R and 5axes,
two types of cutting tools: long (2 different cutting tools) and
short (2 different cutting tools)5, and two materials: steel and
aluminium.

For each (material, cutting tool, workpiece) triplet, a large
data-set indexed by process time steps is created. It contains

4In order to respect the anonymous submission rules, we cannot give
more details on this system, it will be done if the paper is accepted

5The tools are: Walter F4042R.T22.025.Z03.10, Drill GUHRING ø12 ref
3470, Drill GUHRING ø12 R2 ref 3599 and Drill GUHRING ø12ref 3891.



Algorithm 3 CAPpartial (In: RS , SE , SAE , W0, α, ε, δ,
move Out: tS , tR, Vchange, RSmatches, SAE)

1: RSmatches ← [] time matches between real and simu-
lated signals

2: Vchange ← [] simulated form changes
3: step← αW0 hyper-parameter
4: tS , tR ← 0
5: repeat
6: Sseg ← SE [tS , tS +W0]
7: Rseg ← RS [tR, tR +W0]
8: a, b← PLD(Rseg, Sseg)
9: if a = 1± ε and Sseg[−1]−Rseg[−1] = b± δ then

10: for t′ = 0 to |Sseg| do
11: RSmatches ←

RSmatches.concatenate(tR + t′, tS + t′)
12: end for
13: tS ← tS +W0

14: tR ← tR +W0

15: else if b 6= Sseg[−1]−Rseg[−1]± δ then
16: Vchange ← Vchange.concatenate((tS +

W0, Rseg[−1]))

17: SAE [tS −W0, tS ]← |W0| × [b]
18: else if a 6= 1± ε then
19: if move = real then
20: tR ← tR +W × step
21: else if move = simulated then
22: tS ← tS +W × step
23: end if
24: end if
25: until tS ≤ |SE | or tR ≤ |RS |
26: return tS , tR, Vchange, RSmatches, SAE

several characteristics including tool name, machining cycle,
tool (x,y,z) axis, type of intersection, type of movement,
interaction mode, bloc number, relative times for several
local milling processes, global time, tool family reference
and several other technical characteristics. An example of the
simulated data is given in Table II. Even if the data structures
are modeled by the engineers for an operational system, we
noticed the lack of rigor in the choice of characteristics and
especially the redundancy, the duplication of certain data and
lack of useful information during the manufacturing process.
The generated data is far from being canonical or respecting
database basic normal forms.

On the other hand, because of some limitations for apply-
ing the sensors in the real workshop, the only registered data
for the real observations is the consumed electrical power
(Pc). An example of the simulated and real data for the same
steel-GPR2-REF3891D12 is given in Table III. It contains
the real power in millisecond time-steps and three power
parameters: voltage (Pv), strength (Ps) and dephasing (Pd).

B. Experimental results

From the intensive experiments carried out on the in-
dustrial manufacturing data-set presented in Sec. IV-A, we

summarize, in this section, the experiments for which our
approach brings real added value from an industrial point
of view. The augmented simulator is used for assisting the
machining experts during the workpiece manufacturing for
several tasks among which:

The main additional value of our proposed augmented
simulator SAE is that it includes material and tools specificity
of the current experiments by taking the real data into
account. While SE uses only generic equations. As shown
by Figures 4 and 5, with the following values of parameters
W = 15000,W0 = 500, step = 50 and ε = 0.0 for steel
material and W = 45000,W0 = 500, step = 50 and ε = 0.6
for the aluminium, we can observe that by using real data,
SAE readjusts the temporal and amplitude desynchronization
of SE . By this way, it assists the machinists to better
drive the manufacturing process. We can observe the same
result when we change the material as shown by Figures 6
and 7. Notice that in all presented figures, the vertical axes
represent the power, and the horizontal axes represent time
steps. According to Algorithm 1 notations, the green curves
correspond to RS , the blue ones to SE , the golden ones to
SAE and the red ones to SE . The step by step deviation
between RS and SAE is given by the grey signals.

In the previous system SE , initial conditions of material
and tools are added manually to the system, because the used
equations in SE don’t use concrete information concerning
these parameters. SAE includes these parameters and com-
putes nominal power value. In particular, SE is not able to
detect the fact that the cutting tool turns in the void. Fig. 7
shows that when the cutting tool is outside of material (not
cutting), the simulation returns a zero energy consumption
because the mechanical formulas are independent from the
command machine center and can not predict the consumed
energy by the machine (see Equation 1). Our results show
how the missing information can be completed by our
augmented simulation.

Our proposed method does not only correct the simulator
w.r.t. the real observed data, it also detects the anomalies
during the real manufacturing performance. For instance, if
the machine is off during the real manufacturing for a few
seconds, the augmented simulator SAE keeps its flow without
taking the anomalies into account ( see Fig. 6). In this case,
the machine has been off for a while before the 20,000th time
step, however our method is able to detect this behavior as
an anomaly and it does not take it into account for the final
results.

Furthermore, we can observe in all our experiments and
particularly in Fig. 6 that our approach is noise resistant.
It is for example the case if the machinist manufactures a
soft material such as aluminium, it requires more time to
follow the G-code. Our augmented simulator corrects the
machinist’s generated noise in its results.

V. CONCLUSIONS AND PERSPECTIVES

In this paper, we propose and formalize an approach that
integrates real and environmental constraints through sensor
data analysis into equational models of simulators. This



num bloc real-time relative-
time

tool-time tool-
seq

x y z move-
type

Pc

G1 X18. Z-4.017 404.6771638 0.1241704 16.0783144 2 0 0 0 CPwFO 33.1137074536456
G1 X18.093 Y8.503 Z-4.018 404.6869077 0.0097438 16.0880582 2 0 0 0 CPwFO 27.406235294754
G1 X18.189 Y8.512 Z-4.02 404.6970063 0.0100986 16.0981569 2 0 0 0 CPwFO 9.4408062581948
G1 X18.285 Y8.527 Z-4.021 404.7071812 0.0101749 16.1083317 2 0 0 0 CPwFO 27.0868594783492

TABLE II: An example of simulated signal for the GP2R workpiece, steel material and using RF100U REF 3891 D12
tool-ref. CPwFO means change of position with fixed orientation.

time Pc Pv Ps Pd
0 407 3 9 -8

1.0 403 4 6 2
2.0 400 5 5 15
3.0 393 4 5 0

TABLE III: An example of observed real power signal for
the GP2R workpiece, steel material and using RF100U REF
3891 D12 tool-ref.

approach performs a continuous adjustment of the simulator
w.r.t. the real system to ensure a continuous monitoring
of industrial robots. We empirically evaluate our proposed
approach on real industrial workpieces and show significant
improvements with respect to the equational simulator model
alone. The experiments show that our proposed augmented
simulator has several advantages: it takes into account ma-
terial stiffness by adding real data and more generally, it
is adaptable to the used materials (e.g. steel or aluminium),
cutting tool workpiece and tools. It can also correct the sim-
ulation results when the cutting-robot is outside the material
or when the industrial process is stopped temporally for any
external reason. Our proposed approach is robust toward the
noisy real conditions and can solve difficult cases where the
real and simulated values have a complex and non-linear
differences. Moreover, it has a direct effect for the machinists
to improve the continuous monitoring of industrial robots in
real time and consequently speeding up the manufacturing
process.

In the evaluated industrial problem, experimental results
show that we obtain an appropriate industrial robot precision
only by manually tuning some hyper-parameters. However,
our approach is more general. It gives us a possibility to
learn the hyper-parameters automatically by using machine
learning approaches on the same available data. Another in-
teresting perspective for this work is the using of cumulative
changes for diagnostic and any anomaly detection. Even if
this model is applied in the case of milling robots, controlled
mainly by one parameter/sensor, it can be equally applied to
the industrial cases requiring several control parameters.
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APPENDIX

A. Reverse Engineering to Control Parameters

The analysis of the difference between the real system
(RS) and the existing simulation model (SE), used to man-
ufacture the workpieces exhibits two main drifts6 between
the two systems: temporal alignment and amplitude. We
defined two hyper-parameters vectors Vdiff and Vchange,
respectively, for dealing with this issue. Both of them are
indexed by the time of the real industrial system and not the
simulator’s time. Vdiff concerns the case where the system
and the simulator have rigorously the same behavior, but are
not temporally synchronized. The time correction is done
step by step and for SAE . Moreover, each value added to the
simulator to be close to the real system is stored in Vdiff.
Most of the time, the difference is also in the amplitude of
the signal. In this case, the correction coefficients, used for
aligning the simulator according to the Legendre principle,
are saved in the vector Vchange indexed by the time of the
real system.

These two vectors are important for the correction of the
simulator. But their main importance is in the a posteriori
analysis of the gap between the equational model and the
real system. Initially, these vectors permit us to calculate
the inverse function of the simulator’s correction step by
step (see Equation 8 below). This can be used for several
analyses, for example, to diagnose the faults or, to interpret
the possible anomalies which led to the differences between
the two systems. But the most important role of these two
vectors is to study the regularities of the changing behavior,
in order to understand if the difference is not because of
some problems caused by the real system performances. For
example, due to an incomplete equational modeling process
of the real system. As a prospective work, this will be studied
using some machine learning approaches in the future.

Let us consider c(t) at time t, indexes all the time changes
included in Vdiff. If we denote SE as a cumulative change
between SE and SAE :

∀t ∈ {0, . . . ,MT} SE(t) = SE(t) + Σ
i=c(t)
i=0 Vchange(t)

(8)

6Notice that, if the output signal slowly changes independent of the
measured property, is defined as drift.


