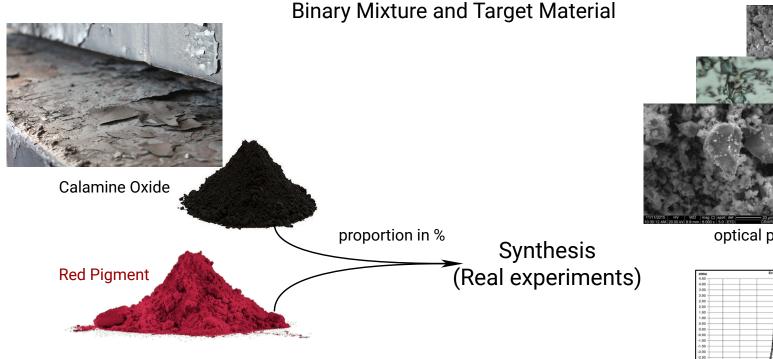
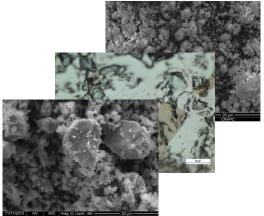
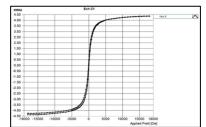
Augmented Experiments in Material Engineering Using Machine Learning

Aomar Osmani ¹, **Massinissa Hamidi** ¹, and Salah Bouhouche ²

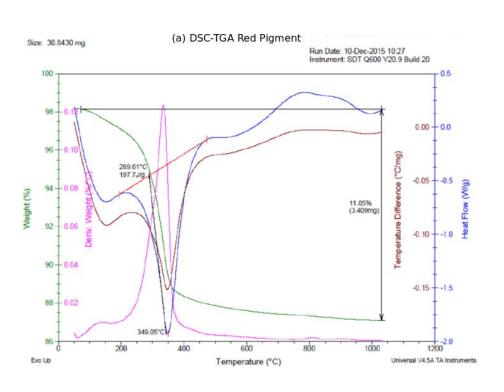
¹ LIPN-UMR CNRS 7030, Univ. Sorbonne Paris Nord

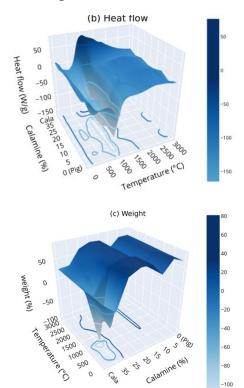

² Research Center in Industrial Technologies, CRTI





Synthesis of New Materials in Industry




optical properties

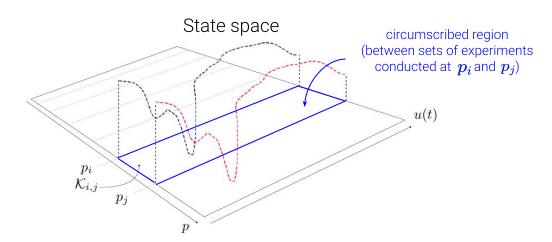
ferromagnetic properties

Thermal & Mass Loss Analysis



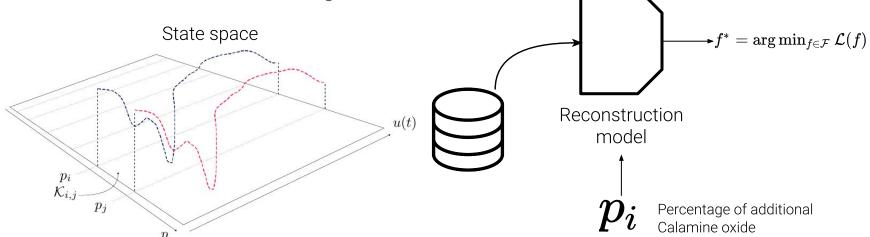
State Space Partitioning & Evaluation Protocol

Reconstruction models:


- Inside circumscribed regions;
- Outside circumscribed regions

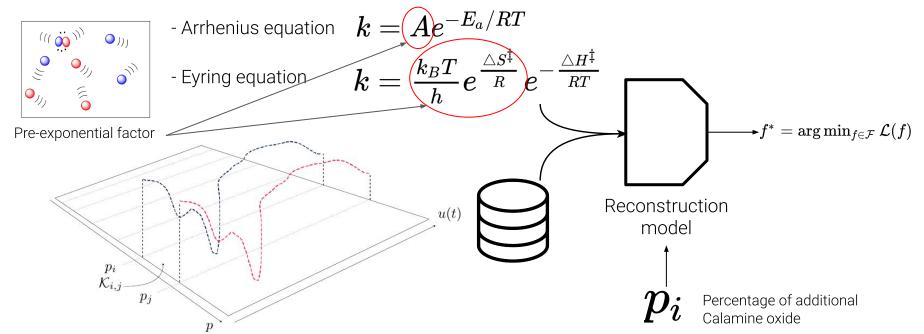
State Space Partitioning & Evaluation Protocol

Reconstruction models:


- Inside circumscribed regions;
- Outside circumscribed regions

State Space Partitioning & Evaluation Protocol

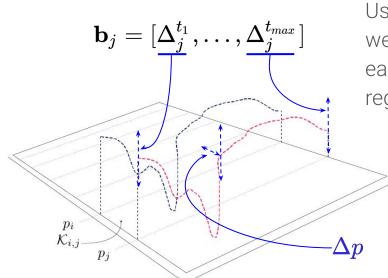
Reconstruction models:


- Inside circumscribed regions;
- Outside circumscribed regions

Combining Domain Models & Empirical Data

Combining Analytical Models and Real Experiments

Rate of the reaction $rac{\partial lpha}{\partial t} = k(1-lpha)^n$

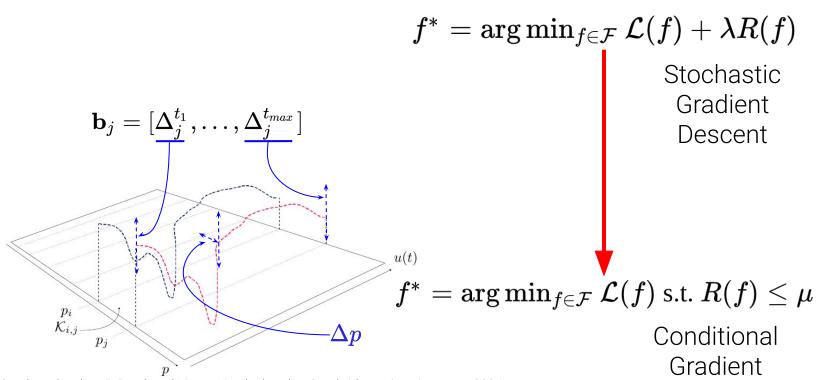


Laidler, Keith J. Journal of chemical Education 61.6 (1984): 494. Lasaga, Antonio C. Rev. Mineral. 8 (1981).

Kinetic-Based Regularization

u(t)

$$f^* = rg \min_{f \in \mathcal{F}} \mathcal{L}(f) + \lambda R(f)$$



Using the neighboring points $p_i + \Delta p, p_i + 2\Delta p, p_i + 3\Delta p$ we derive a series of penalty bounds $\mathbf{b}_j = [\Delta_j^{t_1}, \ldots, \Delta_j^{t_{max}}]$ at each applied temperature t_1, \ldots, t_{max} . The regularization-like term becomes

$$R(f) = rac{1}{P} \sum_{j=1}^P 1\{|f(p_i + j\Delta p) - \mathbf{b}_j| > \epsilon\}$$

Boyd, Stephen, Stephen P. Boyd, and Lieven Vandenberghe. Cambridge university press, 2004. Ravi, Sathya N., et al. *Proceedings of the AAAI Conference on Artificial Intelligence*. Vol. 33. 2019.

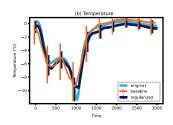
Finding Pareto-Optimal Solutions

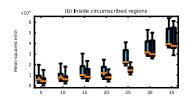
Boyd, Stephen, Stephen P. Boyd, and Lieven Vandenberghe. Cambridge university press, 2004. Ravi, Sathya N., et al. *Proceedings of the AAAI Conference on Artificial Intelligence*. Vol. 33. 2019.

Experiments

Experimental Setup

- Dataset


- SDT-Q600 from TA-instruments version 20.9 build 20;
- Monitored signals: temperature (°C), weight (mg), heat flow (mW), temperature difference(µV), sample purge flow (mL/min), etc.;
- 3000 measurement points at a sampling rate of 2 Hz;
- Real experiments conducted at 5, 10, 15, 20, 25, and 35 % of additional calamine oxide

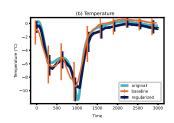

- Training details

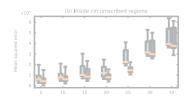
- Stacking of Conv1d/ReLU/MaxPool blocks (Tensorflow);
- Hyperparameter optimization (scikit-optimize/Microsoft NNI);
- Kinetics regularization-like terms derived analytically (chempy)

Experimental Evaluation

(i) Reconstruction Process

(ii) Distance between Training and Validation Experiments

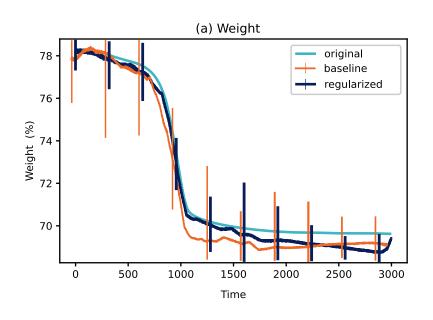

(iii) Reconstruction at specific percentages

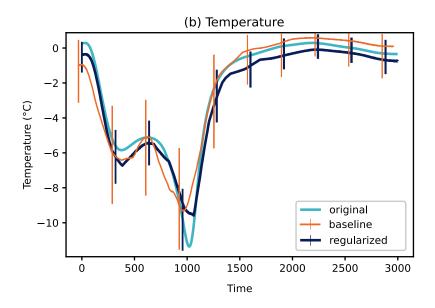

Analytical	Reconstruction error avg. \pm std. $\times 10^{-2}$ (best extent %)			
model(s)	$\lambda = 0.001$	$\lambda = 0.01$	$\lambda = 0.1$	$\lambda = 1$
Arrhenius (A)	$0.933 \pm .0073$ (5)	0.988 ± .0023 (15)	0.39 ± .0157 (15)	$0.776 \pm .0027$ (5)
Eyring (E)	$0.57 \pm .0145$ (10)	$0.385 \pm .0031$ (5)	$0.228 \pm .0079$ (10)	$0.587 \pm .0037$ (20)
pig (P)	$2.408 \pm .0034$ (10)	$0.408 \pm .015$ (5)	$1.188 \pm .0061$ (5)	$2.408 \pm .0042$ (10)
cala (C)	$0.533 \pm .0112$ (15)	$0.512 \pm .0055$ (20)	$0.524 \pm .0047$ (5)	$0.504 \pm .0125$ (10)
A+E	$0.188 \pm .0058$ (5)	$0.197 \pm .0079$ (20)	$0.214 \pm .0051$ (10)	$0.204 \pm .0147$ (15)
P+C	$0.318 \pm .0012$ (5)	$0.289 \pm .0044$ (10)	$0.309 \pm .0108$ (10)	$0.320 \pm .0086$ (10)
A+E+P+C	$0.192 \pm .0056$ (15)	$0.201 \pm .0122$ (5)	$0.247 \pm .0032$ (10)	$0.231 \pm .0143$ (15)

(iv) Trade-off between real experiments and analytical models

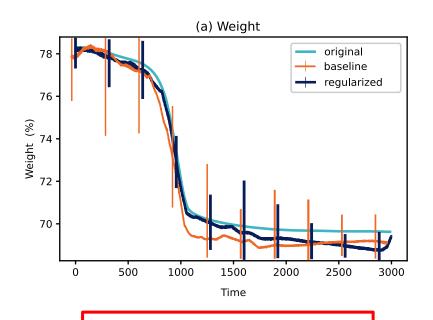
Experimental Evaluation

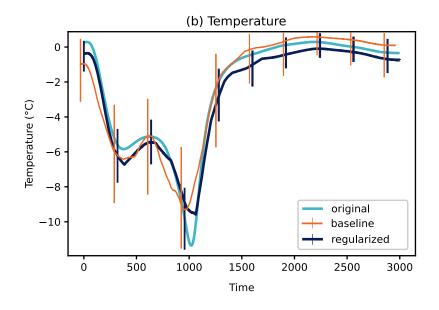
(i) Reconstruction Process

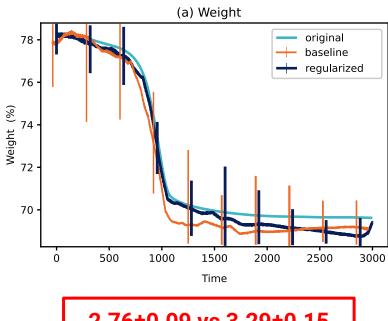

(ii) Distance between Training and Validation Experiments

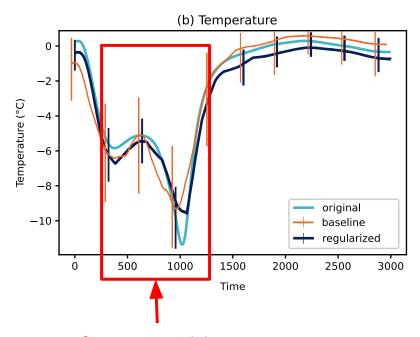

(iii) Reconstruction at specific percentages

Analytical model(s)	Reconstruction error avg. \pm std. $\times 10^{-2}$ (best extent %)			
	$\lambda = 0.001$	$\lambda = 0.01$	$\lambda = 0.1$	$\lambda = 1$
Arrhenius (A)	0.933 ± .0073 (5)	0.988 ± .0023 (15)	0.39 ± .0157 (15)	0.776 ± .0027 (5)
Eyring (E)	$0.57 \pm .0145$ (10)	$0.385 \pm .0031(5)$	$0.228 \pm .0079$ (10)	$0.587 \pm .0037$ (20)
pig (P)	$2.408 \pm .0034$ (10)	$0.408 \pm .015$ (5)	$1.188 \pm .0061$ (5)	$2.408 \pm .0042$ (10)
cala (C)	$0.533 \pm .0112$ (15)	$0.512 \pm .0055$ (20)	$0.524 \pm .0047$ (5)	$0.504 \pm .0125$ (10)
A+E	$0.188 \pm .0058$ (5)	$0.197 \pm .0079$ (20)	$0.214 \pm .0051$ (10)	$0.204 \pm .0147$ (15)
P+C	$0.318 \pm .0012$ (5)	$0.289 \pm .0044$ (10)	$0.309 \pm .0108 (10)$	$0.320 \pm .0086$ (10)
A+E+P+C	$0.192 \pm .0056$ (15)	$0.201 \pm .0122$ (5)	$0.247 \pm .0032 (10)$	$0.231 \pm .0143$ (15)


(iv) Trade-off between real experiments and analytical models

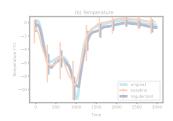

(i) Evaluation of the Reconstruction Process

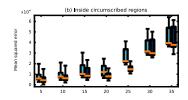

(i) Evaluation of the Reconstruction Process



2.76±0.09 vs 3.29±0.15

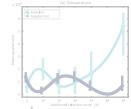
(i) Evaluation of the Reconstruction Process


2.76±0.09 vs 3.29±0.15

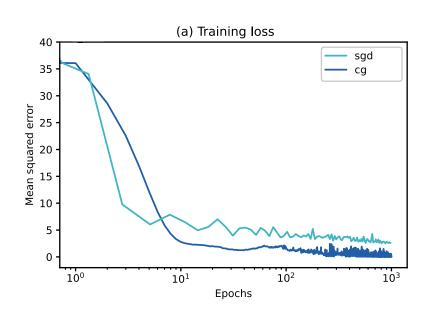


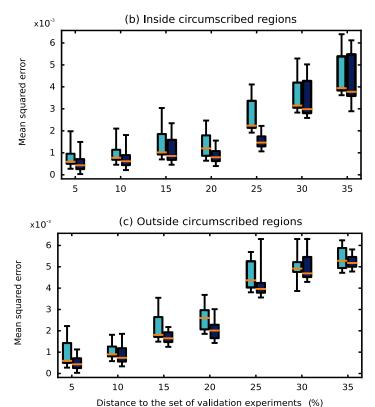
Phase transitions between ~ 250°C and 1250°C

Experimental Evaluation


(i) Reconstruction Process

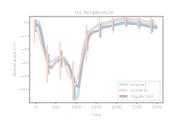
(ii) Distance between Training and Validation Experiments

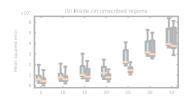

(iii) Reconstruction at specific percentages



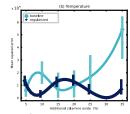
Analytical model(s)	Reconstruction error avg. ±std. ×10 ⁻² (best extent %)			
	$\lambda = 0.001$	$\lambda = 0.01$	$\lambda = 0.1$	$\lambda = 1$
Arrhenius (A)	0.933 ± .0073 (5)	0.988 ± .0023 (15)	0.39 ± .0157 (15)	0.776 ± .0027 (5)
Eyring (E)	$0.57 \pm .0145$ (10)	$0.385 \pm .0031(5)$	$0.228 \pm .0079$ (10)	$0.587 \pm .0037$ (20)
pig (P)	$2.408 \pm .0034$ (10)	$0.408 \pm .015$ (5)	$1.188 \pm .0061$ (5)	$2.408 \pm .0042$ (10)
cala (C)	$0.533 \pm .0112$ (15)	$0.512 \pm .0055$ (20)	$0.524 \pm .0047$ (5)	$0.504 \pm .0125$ (10)
A+E	$0.188 \pm .0058$ (5)	$0.197 \pm .0079$ (20)	$0.214 \pm .0051$ (10)	$0.204 \pm .0147$ (15)
P+C	$0.318 \pm .0012$ (5)	$0.289 \pm .0044$ (10)	$0.309 \pm .0108 (10)$	$0.320 \pm .0086$ (10)
A+E+P+C	$0.192 \pm .0056$ (15)	$0.201 \pm .0122$ (5)	$0.247 \pm .0032$ (10)	$0.231 \pm .0143$ (15)

(iv) Trade-off between real experiments and analytical models

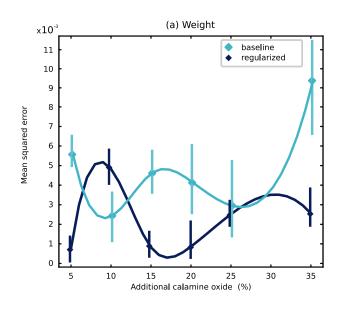

(ii) Distance between Training and Validation Experiments

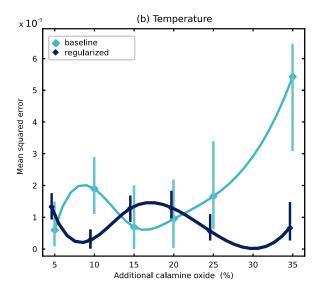


Experimental Evaluation

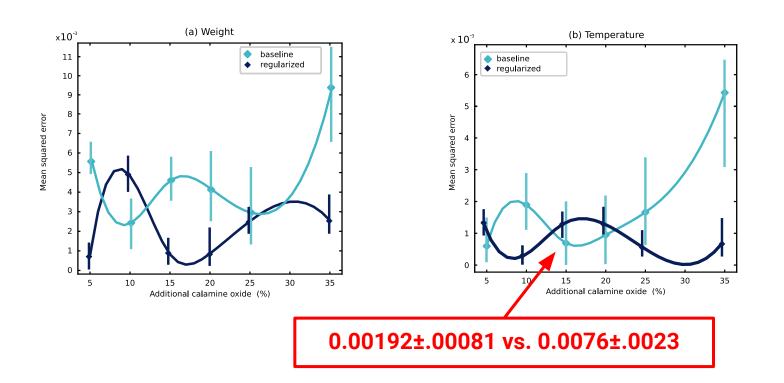

(i) Reconstruction Process

(ii) Distance between Training and Validation Experiments

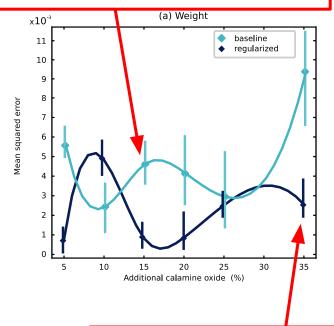

(iii) Reconstruction at specific percentages

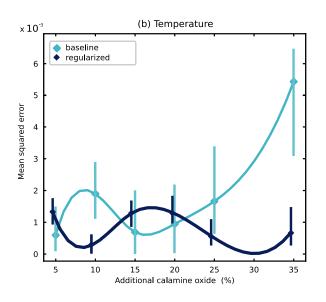


Analytical model(s)	Reconstruction error avg. \pm std. $\times 10^{-2}$ (best extent %)			
	$\lambda = 0.001$	$\lambda = 0.01$	$\lambda = 0.1$	$\lambda = 1$
Arrhenius (A)	0.933 ± .0073 (5)	0.988 ± .0023 (15)	0.39 ± .0157 (15)	0.776 ± .0027 (5)
Eyring (E)	$0.57 \pm .0145$ (10)	$0.385 \pm .0031(5)$	$0.228 \pm .0079$ (10)	$0.587 \pm .0037$ (20)
pig (P)	$2.408 \pm .0034$ (10)	$0.408 \pm .015$ (5)	$1.188 \pm .0061$ (5)	$2.408 \pm .0042$ (10)
cala (C)	$0.533 \pm .0112$ (15)	$0.512 \pm .0055$ (20)	$0.524 \pm .0047$ (5)	$0.504 \pm .0125$ (10)
A+E	$0.188 \pm .0058$ (5)	$0.197 \pm .0079$ (20)	$0.214 \pm .0051$ (10)	$0.204 \pm .0147$ (15)
P+C	$0.318 \pm .0012$ (5)	$0.289 \pm .0044$ (10)	$0.309 \pm .0108 (10)$	$0.320 \pm .0086$ (10)
A+E+P+C	$0.192 \pm .0056$ (15)	$0.201 \pm .0122$ (5)	$0.247 \pm .0032 (10)$	$0.231 \pm .0143$ (15)


(iv) Trade-off between real experiments and analytical models

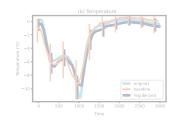
(iii) Reconstruction at Specific Percentages

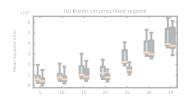



(iii) Reconstruction at Specific Percentages

(iii) Reconstruction at Specific Percentages

0.00087±.00122 vs. 0.00477±.0021





0.00246±.002 vs. 0.00932±.0056

Experimental Evaluation

(i) Reconstruction Process

(ii) Distance between Training and Validation Experiments

(iii) Reconstruction at specific percentages

Analytical model(s)	Reconstruction error avg. \pm std. $\times 10^{-2}$ (best extent %)			
	$\lambda = 0.001$	$\lambda = 0.01$	$\lambda = 0.1$	$\lambda = 1$
Arrhenius (A)	$0.933 \pm .0073$ (5)	$0.988 \pm .0023$ (15)	0.39 ± .0157 (15)	$0.776 \pm .0027$ (5)
Eyring (E)	$0.57 \pm .0145$ (10)	$0.385 \pm .0031$ (5)	$0.228 \pm .0079$ (10)	$0.587 \pm .0037$ (20)
pig (P)	$2.408 \pm .0034$ (10)	$0.408 \pm .015$ (5)	$1.188 \pm .0061$ (5)	$2.408 \pm .0042$ (10)
cala (C)	$0.533 \pm .0112$ (15)	$0.512 \pm .0055$ (20)	$0.524 \pm .0047$ (5)	$0.504 \pm .0125$ (10)
A+E	$0.188 \pm .0058$ (5)	$0.197 \pm .0079$ (20)	$0.214 \pm .0051$ (10)	$0.204 \pm .0147$ (15)
P+C	$0.318 \pm .0012$ (5)	$0.289 \pm .0044$ (10)	$0.309 \pm .0108$ (10)	$0.320 \pm .0086$ (10)
A+E+P+C	$0.192 \pm .0056$ (15)	$0.201 \pm .0122$ (5)	$0.247 \pm .0032$ (10)	$0.231 \pm .0143$ (15)

(iv) Trade-off between real experiments and analytical models

(iv) Real Experiments & Richness of Domain Models

Analytical	Reconstruction error avg. \pm std. $\times 10^{-2}$ (best extent %)			
model(s)	$\lambda = 0.001$	$\lambda = 0.01$	$\lambda = 0.1$	$\lambda = 1$
Arrhenius (A)	$0.933 \pm .0073$ (5)	$0.988 \pm .0023$ (15)	$0.39 \pm .0157$ (15)	$0.776 \pm .0027$ (5)
Eyring (E)	$0.57 \pm .0145$ (10)	$0.385 \pm .0031$ (5)	$0.228 \pm .0079$ (10)	$0.587 \pm .0037$ (20)
pig (P)	$2.408 \pm .0034$ (10)	$0.408 \pm .015$ (5)	$1.188 \pm .0061$ (5)	$2.408 \pm .0042$ (10)
cala (C)	$0.533 \pm .0112$ (15)	$0.512 \pm .0055$ (20)	$0.524 \pm .0047$ (5)	$0.504 \pm .0125$ (10)
A+E	$0.188 \pm .0058$ (5)	$0.197 \pm .0079 (20)$	$0.214 \pm .0051$ (10)	$0.204 \pm .0147$ (15)
P+C	$0.318 \pm .0012$ (5)	$0.289 \pm .0044$ (10)	$0.309 \pm .0108$ (10)	$0.320 \pm .0086$ (10)
A+E+P+C	$0.192 \pm .0056 $ (15)	$0.201 \pm .0122$ (5)	$0.247 \pm .0032$ (10)	$0.231 \pm .0143$ (15)

(iv) Real Experiments & Richness of Domain Models

Analytical	Reconstruction error avg. \pm std. $\times 10^{-2}$ (best extent %)			
model(s)	$\lambda = 0.001$	$\lambda = 0.01$	$\lambda = 0.1$	$\lambda = 1$
Arrhenius (A)	$0.933 \pm .0073$ (5)	$0.988 \pm .0023$ (15)	$0.39 \pm .0157$ (15)	$0.776 \pm .0027$ (5)
Eyring (E)	$0.57 \pm .0145$ (10)	$0.385 \pm .0031$ (5)	$0.228 \pm .0079$ (10)	$0.587 \pm .0037$ (20)
pig (P)	$2.408 \pm .0034$ (10)	$0.408 \pm .015$ (5)	$1.188 \pm .0061$ (5)	$2.408 \pm .0042$ (10)
cala (C)	$0.533 \pm .0112$ (15)	$0.512 \pm .0055$ (20)	$0.524 \pm .0047 (5)$	$0.504 \pm .0125$ (10)
A+E	$0.188 \pm .0058$ (5)	$0.197 \pm .0079 (20)$	$0.214 \pm .0051$ (10)	$0.204 \pm .0147$ (15)
P+C	$0.318 \pm .0012$ (5)	$0.289 \pm .0044$ (10)	$0.309 \pm .0108$ (10)	$0.320 \pm .0086$ (10)
A+E+P+C	$0.192 \pm .0056$ (15)	$0.201 \pm .0122$ (5)	$0.247 \pm .0032$ (10)	$0.231 \pm .0143$ (15)

(iv) Real Experiments & Richness of Domain Models

Analytical	Reconstruction error avg. \pm std. $\times 10^{-2}$ (best extent %)			
model(s)	$\lambda = 0.001$	$\lambda = 0.01$	$\lambda = 0.1$	$\lambda = 1$
Arrhenius (A)	$0.933 \pm .0073$ (5)	$0.988 \pm .0023$ (15)	$0.39 \pm .0157$ (15)	$0.776 \pm .0027$ (5)
Eyring (E)	$0.57 \pm .0145$ (10)	$0.385 \pm .0031$ (5)	$0.228 \pm .0079$ (10)	$0.587 \pm .0037$ (20)
pig (P)	$2.408 \pm .0034$ (10)	$0.408 \pm .015$ (5)	$1.188 \pm .0061$ (5)	$2.408 \pm .0042$ (10)
cala (C)	$0.533 \pm .0112$ (15)	$0.512 \pm .0055$ (20)	$0.524 \pm .0047$ (5)	$0.504 \pm .0125$ (10)
A+E	$0.188 \pm .0058$ (5)	$0.197 \pm .0079 (20)$	$0.214 \pm .0051$ (10)	$0.204 \pm .0147$ (15)
P+C	$0.318 \pm .0012$ (5)	$0.289 \pm .0044$ (10)	$0.309 \pm .0108$ (10)	$0.320 \pm .0086$ (10)
A+E+P+C	$0.192 \pm .0056$ (15)	$0.201 \pm .0122$ (5)	$0.247 \pm .0032$ (10)	$0.231 \pm .0143$ (15)

Summary

- Evaluation of a real-world application of material engineering;
- Incorporation of domain analytical models via regularization-like terms;
- Converge to Pareto-optimal solutions using conditional gradient descent;
- Extensive experimental analysis reveal remarkable efficiency improvement;

Aomar Osmani ¹, **Massinissa Hamidi** ¹, and Salah Bouhouche ²

¹ LIPN-UMR CNRS 7030, Univ. Sorbonne Paris Nord

² Research Center in Industrial Technologies, CRTI

