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Computed signal energies of Hand and Hips, provided in that we alleviate catastrophic forgetting for the remain-

Using computed magnitudes rather than raw inputs im- the validation set, (top figures) show a similar profile as the ing positions. This allows us to handle equally-well all
proves recognition performances by more than 10%. test data. sources.

Hyperparameters tuning Fine-tuning the whole network (valid. on Hand, Hips, Bag, Torso)

e The hyperparameters of the proposed architectures are tuned using the Tree-structured Parzen
Estimator (TPE);

e TPE Is a sequential model-based optimization approach which, sequentially, constructs models to
approximate the performance of hyperparameters using previously explored configurations. These
models are used to predict which hyperparameters instantiation to explore next;

e We use the Microsoft-NNI toolkit (https://github.com/microsoft/nni) which provides a compre-
hensive list of exploration strategies particularly based on hyperparameter tuning.
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Hyperparameters tuning allows us to substantially improve the recognition perfor-

mances. Noticeably, we get more than 20% improvement.
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Fine tuning using Hips inputs substantially improves recognition performances

e This network achieves approxi- .. ... . F on both Hips and Bag,. but Hand inputs are not handled well. In contrast, when we
mately 81% and 75% accuracy e = o o o (USSR R i sccracs fine-tune the model using Hand, we obtain a model that performs equally-well on
on the training and validation poeo o '“‘:: . a . . . '”;; each individual position.
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