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Abstract. The dynamics of body movements are often driven by large
and intricate low-level interactions involving various body parts. These
dynamics are part of an underlying data generation process. Incorpo-
rating the data generation process into data-driven activity recognition
systems has the potential to enhance their robustness and data-efficiency.
In this paper, we propose to model the underlying data generation pro-
cess and use it to constrain training of simpler learning models via sam-
ple selection. As deriving such models using human expertise is hard,
we propose to frame this task as a large-scale exploration of architec-
tures in charge of relating sensory information coming from the data
sources. We report on experiments conducted on the Sussex-Huawei lo-
comotion dataset featuring a sensor-rich environment in real-life settings.
The derived model is found to be consistent with existing domain knowl-
edge. Compared to the basic setting, our approach achieves up to 17.84%
improvement, by simultaneously reducing the number of required data
sources by one-half. Promising results open perspectives for deploying
more robust and data-efficient learning models.
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1 Introduction

Proliferation of internet of things technologies allows the emergence of sensor-
rich environments where sensing-enabled devices constitute sources of diverse
forms of information describing their surrounding. These sources offer a broad
range of perspectives allowing to perform robust activity recognition [33]. Indeed,
positioned in different places and featuring various sensing modalities, these
sources of information generate a lot of data which, if exploited rightfully, could
provide many advantages like improved signal-to-noise ratio, reduced ambiguity,
and enhanced reliability [22].

Learning tasks that emerge in these sensor-rich environments are profoundly
structured. This is the case of wearable technologies with the considered Sussex-
Huawei locomotion-transportation (SHL) dataset [14] studied in this paper. Our
work focuses on recognizing mobility-related human activities from data sources
materialized by on-body sensors placed at different locations of the body fol-
lowing a pre-defined and fixed topology. It has been observed that for a given
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activity, there is the emergence of dynamics that involve very specific positions
of the body parts for which a set of specific modalities can provide complemen-
tary information. Primarily, what characterizes these dynamics is the fact that
they define largely the activity in question [11, 25, 35, 5].

The dynamics of body movements are part of an underlying data generation
process (DGP) and a long line of research, e.g. [30, 31, 8], proposed to incorpo-
rate this kind of prior knowledge into activity recognition models. Specifically,
authors in [31] derive 3D body skeleton-based representations while other works
encode prior domain knowledge using ontology-based representations [29, 36].
These representations are then used to constrain training of activity recognition
models. While incorporation of prior knowledge about the dynamics of body
movements into learning systems improves performances and is appealing in
terms of interpretability, relying solely on human expertise to derive models for
these dynamics is hard [39]. Indeed, these dynamics are often driven by large
and intricate low-level interactions involving various body parts [21].

In this paper, we propose a novel approach to derive and incorporate DGP
into activity recognition models. Our approach enhances the performance of
activity recognition models through two major steps. It first constructs a model
of the DGP via a large-scale exploration of a neural architecture space. Then, it
selects highly confident data sources for inclusion in the final training set using
a variance-based importance estimation algorithm.

Our contributions can be summarized as follows. (1) We frame the derivation
of the data generation process as an exploration of the neural architecture space;
(2) We propose to estimate the relative importance of data sources and their
interactions using a variance-based method; (3) Extensive experiments show
the effectiveness of combining the data generation process through selection of
highly confident data sources. In particular, we achieve improvement of recog-
nition performances of up to 17.84% over the baseline, which is accompanied
by a substantial reduction of required data; (4) We perform a comprehensive
comparative analysis using different instantiations of the proposed approach (8
exploration strategies) on 4 different representative related datasets.

The rest of the paper is organized as follows. In Section 2, we define the
problem of data source selection based on the DGP and Section 3 presents the
details of our approach. In Section 4, we detail the empirical evaluation of the
proposed approach. We provide a related work in Section 5 and finally, Section 6
concludes this paper with a summary and future works.

2 Problem Statement

This section defines the problem of modeling the data generation process in the
context of activity recognition from sensor-rich environments.

2.1 Preliminaries

We consider settings where a collection S of M sensors (also called data genera-
tors or data sources), denoted {s1, . . . , sM}, are carried by the user during daily
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activities and capture the body movements. Each sensor si generates a stream
xi = (xi1, x

i
2, . . . ) of observations of a certain modality. Furthermore, each ob-

servation is composed of channels, e.g. the x, y, and z axes of an accelerometer.
In our work, we exploit mainly body-motion modalities that are often used in
human activity recognition applications. The goal is to recognize a set Y of
activities, like running or biking, performed in sensor-rich environments.

Definition 1 (Modality). A modality is a form of perception that conveys a
particular perspective about a given phenomenon. E.g. acceleration, gyroscopic
and magnetometric observations are different modalities each describing, in a
particular way, the motions of the body.

Definition 2 (Data source). a given data source (or sensor), denoted s, is
characterized by two main attributes: the first is the modality being produced
by the sensor and the second one is the position where the data source is located
on the body. A data source is then uniquely defined with these two attributes.

2.2 Problem Definition

Human activities are largely determined by the dynamics of the gestures. Indeed,
each activity is characterized by a different set of gestures which in turn involve
specific body parts. In the case of wearable technologies, where these body parts
are equipped with data sources, often, focusing on these specific data sources,
allows recognizing a given activity precisely. Therefore, our approach attempts
to select subsets of data sources that are highly confident and informative with
regards to these dynamics, to create a curated training set for model training.
In this work, we focus on two different notions that encode these dynamics:
importance of a single data source and degree of interaction among a set of data
sources.

Definition 3 (Importance). Given a data source si that is attached to a given
body part and an activity y, the importance of si with regards to activity y, de-
noted µyi ∈ [0, 1), is defined as a quantity that represents the relative involvement
of that body part in the dynamics of the gestures pertaining to that activity.

Definition 4 (Interaction). An interaction involves two or more data sources
and is defined as their degree of dependence regarding the relative involvement of
the body parts, they are attached to, in the dynamics of the gestures. The greater
the degree, the more interacting the data sources. Given a set of interacting data
sources, S ⊂ S, their degree of interaction is denoted by µyS ∈ [0, 1). Specifically,
in the case of two interacting data sources, si and sj, it is denoted µyij.

Problem 5 (Data source selection based on DGP). Let DGP : ℘(S)×Y −→ [0, 1)
be the data generation process, which gives, for each activity y ∈ Y the influence
of a set of data sources S ⊂ S. The goal is to use DGP as an indicator function to
select data sources (or samples) that are highly confident and informative to be
included in the final training set of activity recognition models. Let τimp ∈ [0, 1)
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and τint ∈ [0, 1) be two parameters that determine the thresholds above which
a given set of data sources S ⊂ S can be selected. It follows that the subsets of
interacting data sources pertaining to activity y ∈ Y, denoted Sy, is defined as
Sy := {si ∈ S|DGP ({si}, y) = µysi ≥ τimp} ∪ {S ( S|DGP (S, y) = µyS ≥ τint}

Learning using curated sources of information is widely used in machine
learning [38, 17]. The DGP in the Problem 5 presents a natural solution for
selecting such sources in the context of activity recognition from sensor-rich
environments.

3 Approach

Our approach enhances the performance of activity recognition models through
two major steps: (1) construct a model of the DGP as described in the Problem 5
using an architecture space as a surrogate model (proxy), and (2) select highly
confident and informative data sources for inclusion in the final training set
using a variance-based importance estimation algorithm. These two steps are
described in the following and Algorithm 1 outlines the complete process.

3.1 Architecture Space as Proxy for the DGP

We use the space defined by multimodal analysis architectures as a proxy for
the dynamics of the body movements. The exploration of this architecture space
serves, then, to derive the DGP as defined in Problem 5.

An architecture is defined as a set of architectural components responsible for
extracting valuable insights, in the form of features, from the observations and
efficiently fusing different data sources carrying different modalities and various
spatial perspectives. We distinguish four types of architectural components: fea-
ture extraction (FE), feature fusion (FF), decision fusion (DF), and analysis unit
(AU) as defined in [2]. These are illustrated in Fig. 1 (left). An architectural com-
ponent takes as inputs either raw data, features, or decisions and outputs either
a feature or a decision. The way a given component processes each individual
input is controlled by a hyperparameter.

It is convenient to represent an architecture as a directed acyclic graph where
the architectural components are connected together using valued edges. We as-
sociate a value (hyperparameter) hvu with every edge in the directed graph that
connects two components Cu and Cv. These values control how architectural
components process each individual input and by the same occasion their influ-
ence on the overall architecture performance. We refer to the set of all hyperpa-
rameters of a given architecture by H.

We focus, particularly, on the insights that stem from tuning and adapting
these architectures, through their hyperparameters and specifically those con-
trolling the influence of the data sources. At each layer of a given architecture,
setting the right combination of hyperparameters is critical. In particular, choos-
ing the right instantiation for the features learning and sensor fusion components
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Fig. 1: (Left) feature extraction and multimodal fusion components defined in [2]. Fea-
ture extraction (FE), feature fusion (FF), decision fusion (DF), and analysis unit (AU).
These building blocks can be combined in order to form feature-level, decision-level,
and hybrid multimodal analysis. Additionally, the hyperparameters hi controlling the
effects of each individual input are depicted. (Right) An illustration of an architec-
ture where each node corresponds to a component. An edge from component Cu to
component Cv denotes that Cv receives the output of Cu as input.

can lead to an architecture capable of building, from the various data sources,
an original set of features which is suitable for recognizing a given activity. We
take into account the following assumption: let Hs ( H be the set of hyperpa-
rameters controlling the impact of a given data source s. The global impact of
Hs on the recognition performances represents the impact of the data source s.

The problem of modeling the DGP becomes, then, an exploration of the
architecture (hyperparameter) space. This exploration is determined by three
aspects: (1) a search space which defines the architectural components and the
type of branching that is allowed for the architectures (e.g. convolutional layers);
(2) a search strategy which decides how the exploration of the space should be
carried (e.g. Bayesian optimization of the hyperparameters); and (3) a perfor-
mance estimation strategy (e.g. sequence classification problem) [9].

In the case of convolutional layers, for example, architectures can be con-
structed by stacking a series of Conv1d/ReLU/MaxPool blocks followed by
Fully-Connected/ReLU layers. Denote by νk the validation loss of a particu-
lar instantiation k of the set of hyperparameters. The exploration strategy tries
to find an architecture k∗ that minimizes the validation loss ν∗k(w∗). The weights
w associated with the architecture are obtained by optimizing the weights of the
components using, for example, a gradient descent algorithm over a predefined
class of functions.

Given an exploration budget B, the exploration strategy yields a series of
validation losses ν1, . . . , νB including partial validation losses pertaining to indi-
vidual activities. The task of modeling the DGP, therefore, reduces to find a link
between these validation losses and the impact of each individual data source.
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3.2 Variance-Based Importance Estimation

Let V be a set of validation losses where each validation loss νk represents the
estimated performance of a particular instantiation of the hyperparameters. To
estimate the importance of each individual data source, we decompose the non-
linear relation f described by V as follows

f(S, y) = µy0 +

M∑
i=1

µyi (si) +
∑
i 6=j

µyij(si, sj) + · · ·+ µy1...M (si, . . . , sM ) (1)

a constant mean µy0 plus first-order effects (µyi ), plus second-order effects (µyij)
and so on. The lower the variance induced by a data source, the higher its influ-
ence of on the non-linear relation f . This formulation corresponds to an additive
expansion and the variance of each term can be estimated using the functional
analysis of variance (fANOVA) [18]. It can be quantified using the efficient im-
plementation proposed in [19] which is based on a linear-time algorithm for
computing marginals of random forest predictions.

As we have access to the set of validation losses indexed by the hyperparame-
ters instantiation, in order to estimate the decomposition, we have to determine,
first, the correspondence between each individual data source and the set of
hyperparameters that controls their influence.

Data source/hyperparameters correspondence. Given an architecture A, we de-
termine a correspondence, CorrA : S −→ ℘(H × R), between each individual
data source and the hyperparameters that influence their effects, as follows:

CorrA(s) =
⋃

(u,v)∈s−→∗t

< hvu, w > (2)

where s −→∗ t denotes all paths in the architecture that have s as a source and t as
sink, hvu the hyperparameter associated with edge (u, v), and w corresponds to a

weight computed as w = ω1·dist(s,v)+ω2·δ−(v)
ω1+ω2

which ponders the correspondence
of a given hyperparameter hvu depending on its distance (dist(s, v)) to the input
s and the number of incoming edges to the component v (δ−(v)). The weight
parameters ω1, ω2 ∈ [0, 1) are both set to 1

2 . In the case an edge is shared
by many different paths, we sum the weights assigned to the corresponding
hyperparameter following each path.

4 Experiments and Results

In this section, we perform empirical evaluation of the proposed approach. We
first derive a model of the data generation process from the SHL dataset using
different space exploration strategies. We, then, demonstrate the effectiveness of
incorporating the derived model into four different activity recognition datasets
(including SHL). Code to reproduce the experiments is publicly made available 1.

1 Software package and code to reproduce empirical results are publicly available at:
https://github.com/sensor-rich/shl-nas
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Algorithm 1: DGP-based Data Sources Selection

Input : (i) {xi}Mi=1 streams of annotated observations generated by the data
sources, (ii) B exploration budget, (iii) τimp, (iv) τint,
(v) E exploration strategy, (vi) O maximal order of interaction effects

Result: Sy ∈℘(S)|y∈Y , the sets of most important and interacting data
sources for each individual human activity

1 begin
2 V ← ∅, Sy ← ∅
3 (X,Y )← segmentation({xi}Mi=1) ; % preprocess for sequence classif. pblm
4 V ← E(X,Y,B) ; % architecture space exploration
5 foreach s ∈ S do
6 {(h,w)|h ∈ H, w ∈ R}s ← CorrA(s) ; % DS/HPs correspondence
7 end
8 {µy

S |S ( S} ← QuantifyImportance(V, {{(h,w)}s}, O) ; % Section 3.2
9 foreach activity y′ ∈ Y do

10 foreach µy
S ∈ {µ

y
S |S ( S, y = y′} do

11 if µy
S > τint then
; % use τimp if S = s

12 Sy ← Sy ∪ S
13 end

14 end

15 end
16 return {Sy}y∈Y
17 end

4.1 Datasets

We use the SHL dataset primarily to derive the data generation model. The
derived model is then incorporated into the SHL dataset itself and three other
datasets including (1) USC-HAD [42] containing body-motion modalities of 12
daily activities collected from 14 subjects (7 male,7 female) using MotionNode, a
6-DOF inertial measurement unit, that integrates a 3-axis accelerometer, 3-axis
gyroscope, and a 3-axis magnetometer; (2) HTC-TMD [41] containing accelerom-
eter, gyroscope, and magnetometer data all sampled at 30Hz from smartphone
built-in sensors in the context of energy footprint reduction; and (3) US-TMD [6]
featuring motion data collected from 13 subjects (9 male, 4 female) using smart-
phone built-in sensors.

SHL dataset. The SHL dataset [15] is a highly versatile and precisely annotated
dataset dedicated to mobility-related human activity recognition. In contrast
to related representative datasets like [43, 42, 41, 6], the SHL dataset provides,
simultaneously, multimodal and multilocation locomotion data recorded in real-
life settings. There are in total 16 modalities including accelerometer, gyroscope,
cellular networks, WiFi networks, audio, etc. making it suitable for a wide range
of applications. Data collection was performed by each participant using four
smartphones simultaneously placed in different body locations: Hand, Torso,
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Hips, and Bag. These four positions define the topology that allows us to model
and leverage the dynamics of body movements for activity recognition models.
Among the 16 modalities of the original dataset, we select the body-motion
modalities to be included in our experiments, namely: accelerometer, gyroscope,
magnetometer, linear acceleration, orientation, gravity, and in addition, ambient
pressure.

4.2 Training Details

We use Tensorflow [1] for building the neural architectures. In this work, we con-
struct neural architectures by stacking Conv1d/ReLU/MaxPool blocks. These
blocks are followed by a Fully Connected/ReLU layers. Architecture performance
estimation is based on the validation loss and is framed as a sequence classifica-
tion problem. As a preprocessing step, annotated input streams from the SHL
dataset are segmented into sequences of 6000 samples which correspond to a du-
ration of 1 min. given a sampling rate of 100 Hz. For weight optimization, we use
stochastic gradient descent with Nesterov momentum of 0.9 and a learning-rate
of 0.1 for a minimum of 12 epochs (we stop training if there is not improvement).
Weight decay is set to 0.0001. Furthermore, to make the neural networks more
stable, we use batch normalization on top of each convolutional layer [20].

Different exploration strategies will lead to different sets of hyperparame-
ter instantiations. In our experiments, we instantiate our approach with various
exploration strategies. We use the Microsoft-NNI toolkit 2 which provides a
comprehensive list of exploration strategies, in particular, those based on hy-
perparameter tuning, including (1) exhaustive search (random search [3], and
grid search); (2) heuristic search (näıve evolution [34], anneal [4], and hyper-
band [23]); and (3) sequential model-based optimization (Bayesian optimiza-
tion hyperband [10], tree-structured Parzen Estimator [4], and Gaussian process
tuner [4]).

We quantify the influence of data sources using the efficient implementation
of fANOVA proposed in [19], which is based on a linear-time algorithm for com-
puting marginal predictions in random forests. Interaction structure of the data
sources is estimated using fanova-graph [26].

4.3 Performance Evaluation

In our experiments, each architecture is evaluated with a 10-fold meta-segmented
cross-validation to avoid the problem of overestimation of the quality of results
induced by standard cross-validation procedure [16]. This technique relies on
a modified partitioning procedure that alleviates the neighborhood bias, which
results from the high probability that adjacent (moreover, overlapping) segments
fall into training and test-set at the same time.

We use the f1-score in order to assess performances of the architectures. We
compute this metric following the method recommended in [12] to alleviate bias

2 https://github.com/microsoft/nni
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Fig. 2: (a) Contribution of the data sources to the overall recognition performances of
each human activity. (b) Estimated interaction structure (fANOVA graph [26]) of the
data sources for 3 different activities (bike, run, and walk). Data sources are grouped
by their respective positions. The circumference of the circles represents main effects
(importance), the thickness of the edges represents total interaction effects.

that could stem from unbalanced class distribution. Given the usual definition
of precision Pr(i) and recall Re(i) for the ith fold, we compute the f1-score by
averaging its different components obtained for each fold as Favg = 1

k ·
∑k
i=1 F(i)

where F(i) = 2 · Pr(i)·Re(i)

Pr(i)+Re(i)
, if both Pr(i) and Re(i) are defined. The i-super-

scripted measures correspond to measures obtained when the ith fold is used as
the test set.

4.4 Evaluation of the Data Generation Model

Here we evaluate the data generation model that is derived using our proposed
approach. We specifically assess the plausibility of the derived important data
sources and their interactions based on a comprehensive set of studies around ac-
tivity recognition. These studies are compiled into a data generation model that
we refer to as human expertise-based data generation model HExp. Furthermore,
we instantiate our proposed approach using different space exploration strategies
and compare the derived knowledge using each strategy.

Fig. 2 shows how data sources grouped by their respective positions con-
tribute to the overall recognition of each human activity. Fig. 3 and Table 1
summarize results of the variance-based importance estimation conducted using
the fANOVA framework (Sect. 3.2). The estimated first and second order effects
of the hyperparameters controlling the importance of each considered modality
are illustrated, respectively.

Data source location. Results in Fig. 2 show that the contributions of data
sources for recognizing bus, train, and subway related activities are equivalent.
More variability appears in the case of the bus activity. Data sources located on
the hips, for their part, yield overall the smallest variability. This variability is
to some extent more important in the case of bus and run activities but stays
in fairly acceptable terms. In the case of car-related activities, relying on the
data sources located on the hips seems to be sufficient, this position yielding the
best models overall (90%-95% f1-score). The same observation can also be made
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Hyperparam.
Interaction

(×10−4)

(ks2gyr, ks2gra) 9.2778
(ks1mag, ks2ori) 7.0166
(ks2gyr, ks2ori) 5.5122
(ks1acc, ks

1
mag) 4.0382

(ks1pre, ks3gyr) 2.3154
(ks3gyr, ks1mag) 2.2472

Table 1: Most important interactions of
the kernel size (ks) hyperparameter. Hy-
perparameters are grouped by the corre-
sponding modalities that they control.

regarding bike and walk activities where Hips data sources seem to discriminate
them accurately. This may be explained by the tight link that exists between
these activities and the hips position: biking, walking and conducting a car
involve specific repetitive patterns that are their hallmark [6].

Data source modality. From modalities perspective, data sources carrying grav-
ity, gyroscope, and magnetometer account for a large part of the variability that
is observed on the recognition performances. Surprisingly, another set of modal-
ities emerges from the derived model rather than the accelerometric data which
is considered to be one of the most important modalities in representative re-
lated work [40, 35]. Indeed, the respective individual marginal importance of the
accelerometer-related data lies approximately around 0.004 and does not exceed
0.006, while those of gravity, gyroscope, as well as magnetometer, reach 0.01
and almost 0.02 (See Fig. 3). This observation is further confirmed when we an-
alyze the pairwise marginals of the hyperparameters controlling the set of three
modalities mentioned above.

Impact of the space exploration strategies. Here, we compare the data gener-
ation models obtained using different space exploration strategies. Specifically,
we compare the derived subsets of data sources in terms of their level of agree-
ment with those aggregated in the human expertise-based data generation model
(HExp). We use for this, Cohen’s kappa coefficient [7] which measures the agree-
ment between two raters. We also compare the average recognition performance
νk of the explored architectures which can indicate many aspects concerning the
exploration strategy, like the concentration of important sets of data sources in
regions of the architecture space.

Results in Table 2 show that the sequential model-based exploration strate-
gies are indeed better than heuristic search-based ones. Exhaustive search-based
strategies are far behind with an agreement that does not exceed 3. It is worth
mentioning that even with a larger exploration budget allowed to exhaustive
search, using these kinds of strategies does not allow to derive a valuable data
generation process. This could be explained by the fact that important sets of
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Exploration strategy Agreement νk on avg.

Exhaustive search
Random Search 0.156± 0.04 67.12%
Grid Search 0.251±0.05 66.78%

Heuristic search
Näıve evolution 0.347±0.12 73.35%
Anneal 0.481±0.05 75.47%
Hyperband 0.395±0.08 74.2%

Sequential Model-Based
BOHB 0.734±0.03 84.25%
TPE 0.645±0.1 83.87%
GP Tuner 0.865±0.02 84.95%

Table 2: Degree of agreement with human expertise and average cardinality of the
derived sets of data sources obtained using different space exploration strategies.

data sources are concentrated in very specific regions the grid search, for exam-
ple, can not capture. As the GP tuner yields the highest agreement with HExp,
in the following, we will, first, use the data generation process derived using this
strategy to assess the effectiveness of incorporating such knowledge into activity
recognition models.

4.5 Effectiveness of the Data Generation Model

In this second experiment, we incorporate the derived data generation model into
activity recognition models via sample selection. We select highly informative
data sources to form training sets. During the training phase, activity recognition
models are encouraged to concentrate on the provided subsets of data sources
to learn the corresponding human activities. We refer to this setting as w-DGP,
which stands for, with data generation process.

For this, we construct activity recognition models based on neural networks,
similar to the architectures used to derive the data generation model, but re-
stricted to 3 Conv1d/ReLU/MaxPool stacked blocks. These blocks are followed
by a Fully Connected/ReLU layers. The weights of the layers corresponding to
all inputs are optimized during training without distinction, the constraining
being specified via data augmentation. Indeed, in this setting, for each subset
of interacting data sources, we perform data augmentation by assigning values,
drawn from a normal distribution, to the unimportant data sources. The goal
is to make the neural network insensitive to the remaining inputs. We provide
training examples to the neural network according to the given subsets of inter-
acting data sources that we extract from the derived model. Furthermore, we
experiment with different values of τint and τimp to extract the subsets of data
sources.

For comparison, we train the activity recognition models on the whole data
sources of each dataset, i.e., without incorporation of the derived data generation
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train the models is shown. The left-most
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Dataset
Performances

wo-DGP w-HExp w-DGP

USC-HAD 72.1% 75.38% 89.33%

HTC-TMD 74.4% 77.16% 78.9%

US-TMD 71.32% 80.28% 83.64%

SHL 70.86 % 77.18% 88.7%

Table 3: Comparison of different DGP in-
corporation settings in terms of recogni-
tion performances. Scores of column w-
DGP correspond to top-performing mod-
els selected while varying the data source
importance threshold τimp.

model. These models constitute our baselines and we refer to this setting as
wo-DGP. In addition, we also incorporate the data generation model based on
human expertise (HExp). We refer to this setting as w-HExp. Table 3 compares
recognition performances obtained, on each dataset, using these settings. Overall,
we obtain substantial improvements for all datasets when incorporating a data
generation process (either w-HExp or w-DGP). It is to note, though, that for
HTC-TMD, we get a smaller improvement compared to the other datasets. This
could be related to the limited number of modalities and unavailability of the
precise location of the data sources.

Fig. 4 shows the evolution of the obtained recognition performances depend-
ing on the parameters τint and τimp. In addition, this figure illustrates the average
number of data sources, that are included in the subsets, depending on these two
thresholds. In particular, when, for example, τimp and τint are set to 0, all data
sources are included. We find that the neural networks trained with smaller sub-
sets of data sources perform better than the baseline and most of the settings
which rely on a higher number of data sources. Noticeably, we get a recognition
performance of 88.7%±0.6, measured by the f1-score, using subsets containing
on average 12 data sources. Thus, an improvement over the baseline of 17.84%
in terms of recognition performances and a reduction of one-half concerning the
required quantities of data. Surprisingly, we do not see a lot of bad subsets
of interacting data sources for 0.2 ≤ τimp ≤ 0.6, where the number of data
sources per subset is confined between 5 and 12. It is also worthy to note that
in some configurations where |Sy| = 13, the trained model performs badly (less
than 40%±0.16 f1-score). In the contrary, for smaller subsets (|Sy| ≤ 5), trained
models get high recognition performances (more than 80%±0.05 f1-score). A
Deeper inspection of these configurations reveals that the location of selected
data sources plays an important role, in particular, the latter subsets are mainly
composed of hips data sources.
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Dataset
Exhaustive Heuristic Sequential

search search model-based
Random Grid Näıve Anneal HB BOHB TPE GP Tun.

USC 79.28% 79.58% 80.76% 83.56% 85.27% 86.66% 82.37% 89.33%

HTC-TMD 76.34% 75.17% 74.98% 73.18% 77.45% 75.86% 80.13% 78.9%

US-TMD 74.14% 72.21% 79.71% 81.13% 80.80% 79.17% 84.39% 83.64%

SHL 72.2% 71.32% 79.46% 84.16% 82.33% 84.22% 86.7% 88.7%

Table 4: Recognition performances of activity recognition models while incorporating
the data generation models derived using different space exploration strategies.

4.6 Alternative Exploration Strategies

In the previous experiment, we constrain training of activity recognition mod-
els using data generation model derived using the Gaussian process tuner as it
had the highest degree of agreement with HExp. Since the exploration strategies
tend to favor different regions of the architecture space, we hypothesize that the
derived models will be characterized by variety in terms of combinations of data
sources but will still hold the same property, which is being highly informative
with regards to the dynamics of body movements. Here we evaluate the effective-
ness of the data generation models derived using the other exploration strategies.
Table 4 presents the results obtained for this setting on each individual dataset.

Note that TPE outperforms GP tuner in the case of HTC-TMD and US-
TMD datasets. It is also interesting to note that even though exhaustive search
strategies have a low degree of agreement with HExp, incorporation of their
corresponding data generation models is competitive for both HTC-TMD and
USC-HAD, which can be explained by the ability of our approach to derive
knowledge that is hardly captured by the sole human expertise.

5 Related Work

In our work, we proposed to derive and incorporate the DGP into activity recog-
nition models. Incorporating domain knowledge into activity recognition models
is particularly appealing and attracted lots of research.

A long line of research, e.g. [39, 21, 30, 31, 8], proposed to incorporate the 3D
body skeleton-based representation into activity recognition models. Specifically,
authors in [31] estimate centroids for upper, middle and lower body and use
slopes of the segments delimited by these centroids in order to represent the
posture in terms of the overall orientation of the upper and lower body. In [30],
authors introduced a representation based on the calculation of spherical angles
between selected joints and the respective angular velocities. They used their
system for real-time tracking of human activities. Other works encode prior
domain knowledge using ontology-based representations [29, 36] which are then
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used to constrain training of activity recognition models. While incorporation of
domain knowledge into learning processes is beneficial, the way it is done differs
substantially from one approach to another. In [21], the obtained ontology serves
as a basis for constructing a network of Bayesian inference while in [31], the
constructed representations help the neural networks to self-organize.

Beyond activity recognition, many other applications leverage domain mod-
els to enforce certain conditions or equations, which are part of prior knowledge,
within machine learning models. In [37, 27], authors propose to incorporate do-
main knowledge, like known laws of physics, by constraining neural networks via
regularization. Their settings introduce new challenges for encoding knowledge
into appropriate loss functions and avoiding trivial solutions in the constraint
space. In the same vein, authors in [28] propose to make use of a more exper-
imented model, a proxy, that is responsible for selecting samples in order to
train new generations of models in the context of industrial monitoring. New
paradigms, like Vapnik’s learning using privileged information [38] and Hinton’s
distilled knowledge [17], propose to incorporate high capacity models, similar to
proxy’s, called ”intelligent teachers” into machine learning models.

A growing volume of work proposes to exploit domain knowledge to improve
the performances of machine learning models. Our experiments encourage an
even broader range of future applications, where larger and more experienced
models like the proposed neural architecture space, form surrogates for prior
domain knowledge and provide guidance to simpler models via sample selection.

6 Summary and Future Work

We presented in this paper a novel approach for deriving a model of the data
generation process underlying sensor-rich environments. We framed this task as
an exploration of the neural architecture space and proposed a variance-based
method to estimate the relative importance of data sources and their interac-
tions. Incorporating the derived data generation model into activity recognition
models allows us to obtain consistent improvement in recognition performances
using a reduced number of data sources. We performed a comprehensive compar-
ative study on various representative datasets using different instantiations of
the space exploration strategy. Obtained promising results open perspectives for
the development of more robust and data-efficient learning systems pertaining
to the internet of things.

In this work, we used exploration strategies based on hyperparameters tun-
ing. An alternative way is to have fine-grained control on the architectural com-
ponents that make up the neural architectures allowing for more specialized ar-
chitectures. Recent approaches in neural architecture search, such as ENAS [32]
and DARTS [24], enable this kind of granularity. Furthermore, recent advances
in weight-agnostic neural architectures [13] and the possibility of building archi-
tectures that are completely specialized in a given task and requiring no further
weight adjustments open perspectives for these kinds of approaches. As part of
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our future work, we plan to derive more precise data generation processes using
these fine-grained control mechanisms.

References

1. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: OSDI.
vol. 16, pp. 265–283 (2016)

2. Atrey, P.K., Hossain, M.A., El Saddik, A., Kankanhalli, M.S.: Multimodal fusion
for multimedia analysis: a survey. Multimedia systems 16(6), 345–379 (2010)

3. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. JMLR
13, 281–305 (2012)

4. Bergstra, J.S., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter
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