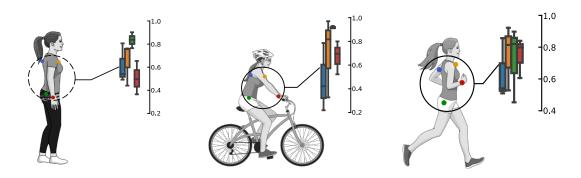
Data Generation Process Modeling for Activity Recognition

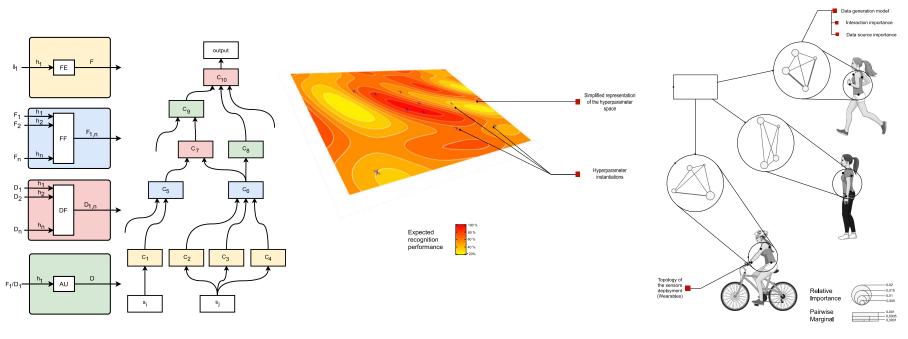


Massinissa HAMIDI and Aomar OSMANI LIPN-UMR CNRS 7030, Univ. Sorbonne Paris Nord

Motivation

Topology of the wearable sensors deployment in the Sussex Huawei locomotion transportation (SHL) dataset used in this work

Overview



Contributions

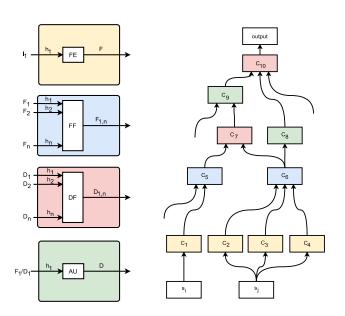
- Evaluation on the **Sussex-Huawei locomotion dataset** featuring a sensor-rich environment in real-life settings;
- **Comprehensive comparative analysis** using 8 exploration strategies on 4 different representative related datasets;
- Improvement of recognition performances accompanied by a substantial reduction of required learning examples;

Massinissa HAMIDI and Aomar OSMANI LIPN-UMR CNRS 7030, Univ. Sorbonne Paris Nord

Proposed Approach

- Multimodal Architectures
- Architecture Space Exploration
- Variance-Based Importance Estimation

Multimodal Architectures

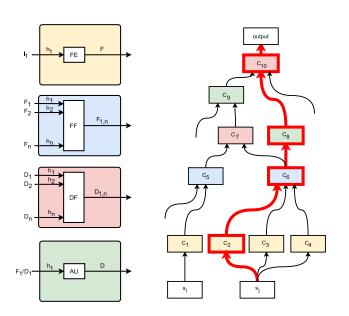


Four types of architectural components [Atrey et al., 2010]:

- feature extraction (FE);
- feature fusion (FF);
- decision fusion (DF);
- analysis unit (AU)

We associate a hyperparameter h_u^v with every edge in the directed graph that connects two components C_u and C_v .

Multimodal Architectures



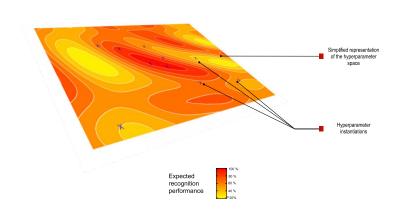
Four types of architectural components [Atrey et al., 2010]:

- feature extraction (FE);
- feature fusion (FF);
- decision fusion (DF);
- analysis unit (AU)

We associate a hyperparameter h_u^v with every edge in the directed graph that connects two components C_u and C_v .

The global impact of a set of hyperparameters (controlling the impact of s_j) on the architecture's performances represents the impact of s_j

Architecture Space Exploration



Exploration is determined by three aspects:

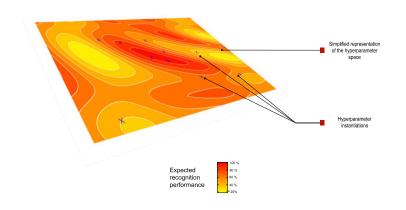
- search space;
- search strategy;
- performance estimation strategy.

The exploration strategy tries to find an architecture k^* that minimizes the validation loss ν_{k^*} .

Given an exploration budget \boldsymbol{B} the exploration strategy yields a series of validation losses

$$\nu_1,\ldots,\nu_B$$

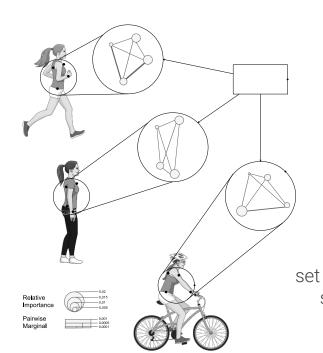
Architecture Space Exploration



search strategies:

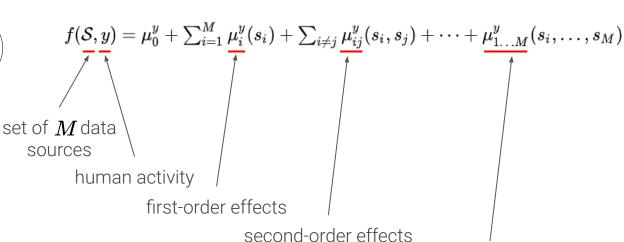
- Exhaustive search
 - random search; grid search;
- Heuristic search
 - naive evolution; anneal; hyperband;
- Sequential model-based
 - o BOHB; TPE; GP tuner;

Variance-Based Importance Estimation

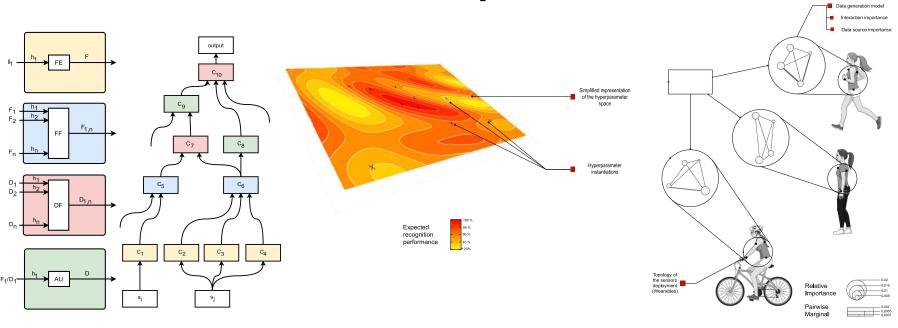


Let $\mathcal{V} = \{\nu_1, \dots, \nu_B\}$ be a set of validation losses.

To estimate the importance of each individual data source, we decompose the non-linear relation f described by $\mathcal V$ as follows:



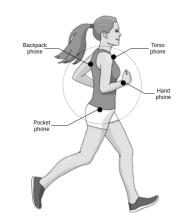
Recap'



Experiments

Experimental Setup

- Datasets:
 - Sussex-Huawei locomotion (SHL) dataset [Gjoreski et al., 2018];
 - USC-HAD; US-TMD; HTC-TMD
- Architectural components:
 - Stacking of Conv1d/ReLU/MaxPool blocks (Tensorflow);
- Architecture space exploration:
 - Microsoft Neural Network Intelligence (NNI);
- Architectures evaluation:
 - Meta-segmented CV [Hammerla et al., 2015];
 - Averaged f1-score [Forman et al., 2010];
- Variance-based importance estimation
 - functional analysis of variance [Hoos et al., 2014]



Topology of the wearable sensors deployment in the Sussex Huawei locomotion transportation (SHL) dataset used in this work

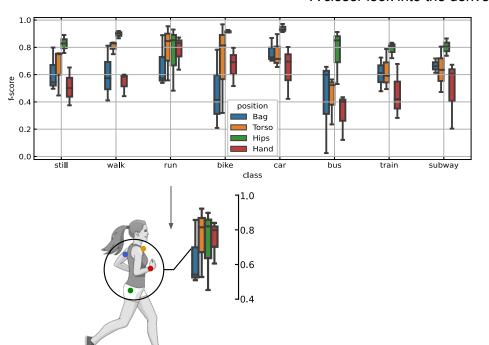
Derived Data Generation Model

Impact of the space exploration strategies

Exploration strategy	Agreement	ν_k on avg.
Exhaustive search		
Random Search	$0.156 \pm\ 0.04$	67.12%
Grid Search	$0.251 {\pm} 0.05$	66.78%
Heuristic search		
Naïve evolution	$0.347 {\pm} 0.12$	73.35%
Anneal	$\bf0.481 {\pm} 0.05$	75.47%
Hyperband	$0.395 {\pm} 0.08$	74.2%
Sequential Model-Ba	$_{ m sed}$	
ВОНВ	0.734 ± 0.03	84.25%
TPE	$0.645 {\pm} 0.1$	83.87%
GP Tuner	$\boldsymbol{0.865 {\pm} 0.02}$	84.95%

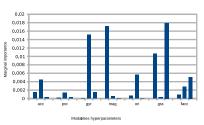
Derived Data Generation Model

A closer look into the derived model



Hyperparam.	Interaction $(\times 10^{-4})$
(ks_{gyr}^2, ks_{gra}^2)	9.2778
(ks_{mag}^1, ks_{ori}^2)	7.0166
(ks_{gyr}^2, ks_{ori}^2)	5.5122
(ks_{acc}^1, ks_{mag}^1)	4.0382
(ks_{pre}^1, ks_{gyr}^3)	2.3154
(ks_{gyr}^3, ks_{mag}^1)	2.2472

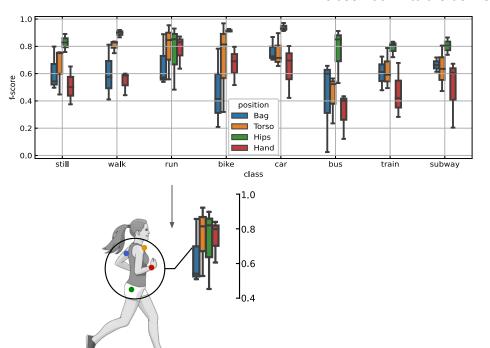
Most important pairwise marginals of the kernel size hyperparameter



Individual marginal importance of the kernel size hyperparameter

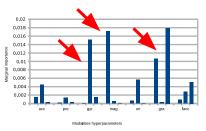
Derived Data Generation Model

A closer look into the derived model



Hyperparam.	Interaction $(\times 10^{-4})$
(ks_{gyr}^2, ks_{gra}^2)	9.2778
(ks_{mag}^1, ks_{ori}^2)	7.0166
(ks_{gyr}^2, ks_{ori}^2)	5.5122
(ks_{acc}^1, ks_{mag}^1)	4.0382
(ks_{pre}^1, ks_{gyr}^3)	2.3154
$\frac{(ks_{pre}^1, ks_{gyr}^3)}{(ks_{gyr}^3, ks_{mag}^1)}$	2.2472

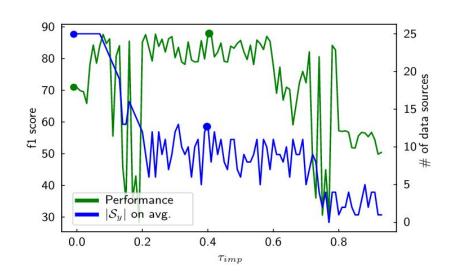
Most important pairwise marginals of the kernel size hyperparameter



Individual marginal importance of the kernel size hyperparameter

Effectiveness of the Data Generation Model

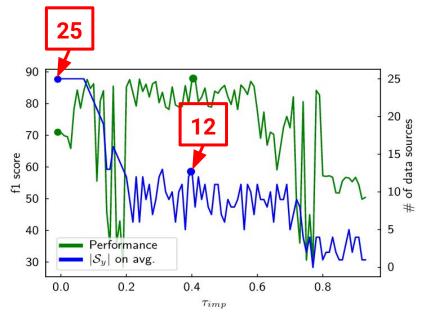
Dataset	Per wo-DGP	rformanc w-HExp	
USC-HAD	72.1%	75.38%	89.33%
HTC-TMD	74.4%	77.16%	78.9%
US-TMD	71.32%	80.28%	83.64%
SHL	70.86 %	77.18%	88.7%



 $au_{imp} \in [0,1]$ is a parameter that determine the threshold above which a given set of data sources can be incorporated into the subset of important data sources.

Effectiveness of the Data Generation Model

Dataset	$\frac{\text{Performances}}{\text{wo-DGP w-HExp w-DGP}}$		
USC-HAD	72.1%	75.38%	89.33%
HTC-TMD	74.4%	77.16%	78.9%
US-TMD	71.32%	80.28%	83.64%
SHL	70.86 %	77.18%	88.7%



 $au_{imp} \in [0,1]$ is a parameter that determine the threshold above which a given set of data sources can be incorporated into the subset of important data sources.

Summary

- Evaluation on the **Sussex-Huawei locomotion dataset** featuring a sensor-rich environment in real-life settings;
- **Comprehensive comparative analysis** using 8 exploration strategies on 4 different representative related datasets;
- Improvement of recognition performances accompanied by a substantial reduction of required learning examples;

Massinissa HAMIDI and Aomar OSMANI LIPN-UMR CNRS 7030, Univ. Sorbonne Paris Nord

