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Abstract.
Markov Decision Process Models (MDPs) are a powerful tool for planning tasks and sequential decision-making issues. In

this work we deal with MDPs with imprecise rewards, often used when dealing with situations where the data is uncertain. In this
context, we provide algorithms for finding the policy that minimizes the maximum regret. To the best of our knowledge, all the
regret-based methods proposed in the literature focus on providing an optimal stochastic policy. We introduce for the first time a
method to calculate an optimal deterministic policy using optimization approaches. Deterministic policies are easily interpretable
for users because for a given state they provide a unique choice. To better motivate the use of an exact procedure for finding a
deterministic policy, we show some (theoretical and experimental) cases where the intuitive idea of using a deterministic policy
obtained after “determinizing" the optimal stochastic policy leads to a policy far from the exact deterministic policy.

Keywords: Markov Decision Process, Minimax Regret, Unknown Rewards, Branch-and-Bound, Deterministic Policy, Stochastic
Policy

1. Introduction

Markov processes are useful for modeling the stochas-
tic environments in reinforcement learning frame-
works. In recent years, attempts were made to apply
methods from reinforcement learning and optimization
approaches to construct decision support systems for
action selection in stochastic environments with uncer-
tain parameters. These uncertainties parameters can be
unknown/partially-known rewards or transition func-
tions. Although the conventional methods in planning
under uncertainty suggest stochastic decision support
systems, they can not be applied to automatic deci-
sion support systems such as those in robotics or au-
tonomous vehicles. As they do not suggest an exact ac-
tion in each sequence to the user and leave her with
stochastic based selection system [1, 2]. These meth-
ods can not gain ground with users of such systems be-
cause the made decisions can not be easily interpreted
by the users.

Typically, in MDPs the reward functions are esti-
mated either from observations or external sources.
Mannor et al. [3] demonstrate that the policy found via
an optimization process under the MDPs with exact

numerical parameters, sometimes can be much worse
than the anticipated policy under bounded and impre-
cise reward values. This motivates using MDPs that ac-
count for this ambiguity in model parameters. To cope
with this problem, MDPs with imprecise rewards (IR-
MDP) should be used. There exists several alternative
models in the literature including symbolic-based re-
wards approaches [4, 5] and numerical-based rewards
approaches [1, 2, 6].

One common approach in computing a robust solu-
tion is the maximin method, which computes a policy
maximising the value with respect to the worst-case
scenario [7–10]. maximin policies are conservative nat-
urally [11], thus minimax regret approach [1, 2] has
been introduced as solution to cope with this issue. The
minimax robustness can be considered as a game be-
tween two adversaries, one finds a policy with max-
imum values while the adversary chooses an instan-
tiation of the reward functions that minimize the ex-
pected value. There are some recent works that propose
some techniques for dependent uncertainties in MDPs
[12, 13]. In this paper, the uncertain reward functions
are independent from each other.
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Several methods in the past have only focused on
computing optimal stochastic policies for IRMDPs op-
timization approaches [1, 2, 14].When it comes to de-
terministic policies, only heuristic algorithms are avail-
able in the literature. As an example, Ahmed et al.
[15] proposed a mixed integer linear program for com-
puting approximation of deterministic policies when
a set of samples from uncertain rewards is given. In
this paper we propose an exact approach receiving the
set of whole uncertain rewards without any sampling.
To the best of our knowledge, there is no work that
handle deterministic policy computation on MDPs un-
der uncertainties using exact optimization approaches.
The existing works on deterministic policies computa-
tion deal usually with MDPs with precise parameters
[16, 17]. To find the best policy (strategy), we use the
minimax regret criterion. The basic idea is to find the
policy with the minimum lost in comparison with other
possible policies and reward instantiations. Minimiz-
ing the max regret is more optimistic than minimizing
the worst case scenario and has been widely used in the
literature.

The most of the exact and approximate methods for
solving an MDP accept to have stochastic policies as
feasible policies for the MDP. The use of stochastic
policies presents two main advantages. From an al-
gorithmic point of view, finding an optimal stochas-
tic policy is usually easier than finding the optimal de-
terministic policy. Moreover, with stochastic policies
the solution space increases, allowing to have optimal
policies with a better value than the optimal determin-
istic policies. However, a deterministic policy is easier
to understand from a user’s point of view and there-
fore it is more likely to be used in practice. Finally, in
several situations the nature of the problems does not
allow any choices and requires a deterministic policy,
this is due to either the discrete/combinatorial nature
of the problem studied or to the fact that the algorithm
must be executed only once, losing the relevance of the
stochastic aspects.

In this paper, we introduce a first study of finding
the deterministic policy that minimizes the maximum
regret in an MDP with uncertain rewards. After giving
some preliminaries concepts (see section 2) we present
an exact enumerative scheme to find the optimal de-
terministic solution in section 3. Our method finds the
best deterministic policy in a computing time that is
relatively close to the one needed to compute the op-
timal stochastic policy. Section 4 presents some theo-
retical analysis of the optimal deterministic policy. Fi-
nally, section 5 reports an experimental study on ran-
dom and diamond MDPs, in which we analyze the per-
formances of our algorithms.

2. Preliminaries

Markov Decision Process. An MDP [18] is defined
by a tuple M(S , A, P, r, γ, β), where: S is a finite set of
states; A is finite set of actions, P : S × A × S −→
[0, 1] is a transition function where P(s′|s, a) encodes
the probability of going to state s′ by being in state s,
and choosing action a; r : S × A −→ R is a reward
function (or penalty, if negative) obtained by choosing
action a in state s; γ ∈ [0, 1[ is the discount factor; and
β : S −→ [0, 1] is an initial state distribution function
indicating probability of initiating in state s by β(s).

A (stationary) deterministic policy is a function π :
S −→ A, which takes action π(s) when in state s.
A (stationary) stochastic policy is a function π̃ : S ×
A −→ [0, 1] which indicates with probability π̃(s, a),
action a is chosen in state s according to policy π̃.
A policy π̃ induces a visitation frequency function f π̃
where f π̃(s, a) is the total discounted frequency of be-
ing in state s and choosing action a under the policy π̃
(see [1] or Section 6.9 in [18]):

f π̃(s, a) =
∑
s′∈S

β(s′)
∞∑

t=0

γt−1P(S t = s′|At = a, S 1 = s)

where the sum is taken over trajectories defined by
S 0 ∼ β, At ∼ π̃(S t) and S t+1 ∼ P(.|S t, At). The policy
is computable from f π̃, via

π̃(s, a) =
f π̃(s, a)∑

a′ f π̃(s, a′)
. (1)

For a deterministic policy we have that f π(s, a) = 0,
∀a 6= π(s).
Policies are evaluated by expectation of discounted
sum of rewards w.r.t to the infinite horizon discounted
criterion, namely value function V : S −→ R:

V π̃(s) = E(
∞∑

t=0

γtr(st, π̃(st)).

Another way for defining the quality of policies is the
Q-value function Q : S × A −→ R given by:

Qπ̃(s, a) = r(s, a) + γ
∑
s′∈S

P(s′|s, a)V π̃(s′) . (2)

For a given initial state distribution β, the value of
the optimal policy is β · V π̃, this quantity can be ex-
pressed in terms of the visitation frequency function
(see [18]):
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β · V π̃ = r · f π̃ . (3)

An MDP always has an optimal policy π∗ such that;
π∗ = argmaxπβ · Vπ or f ∗ = argmax f r · f , where the
optimal policy can be recovered from f ∗ using Equa-
tion 1.

MDPs with Imprecise Rewards. When designing
real cases as MDPs, specifying the reward function
is generally a hard problem. For instance preferences
stating which (state, action) pairs are good or bad
should be interpreted into numerical costs. Note that
even knowing all these preferences is time consuming.
In order to tackle this complexity, we use MDPs with
imprecise reward values (IRMDP). An IRMDP [1] is a
tuple M(S , A, P,R, γ, β) where S , A, P, γ and β are de-
fined as in the previous section, whileR is a set of pos-
sible reward functions on S × A. R models the uncer-
tainty on the vector of real reward values r.

Similar to several previous works in the literature
[1, 15, 19–22], we assume that the set of possible re-
wards is modelled as a polytope R = {r : Cr 6 d}.
The only real restriction we make concerning the un-
certainty set is that we want it to be convex because
it is well known that any convex set can be approxi-
mated with a polytope. For simplicity, in our experi-
ments we work with a box as uncertainty set. However,
our method is valid for any generic polytopeR.

Limited stochastic policies. A stochastic policy can
potentially recommend many actions for each state. It
is harder for a user, especially under time pressure, to
select an action among a list of available actions sug-
gested by the stochastic policy. One of the motivations
of looking for a deterministic policy is precisely to
have a solution that is easy to interpret. On the other
hand, in this section we propose to improve the read-
ability for the user by still allowing multiple possible
actions per state but, at the same time, limiting the total
number of choices in each state.

More formally, we define a (stationary) limited
stochastic policy of cardinality k as a function π̃ :
S × A −→ [0, 1] which indicates with probability
π̃(s, a), action a is chosen in state s according to pol-
icy π̃. For each state s, we must have that π̃(s, a) > 0
for at most k actions, while π̃(s, a) = 0 for the others.
It is clear that a limited stochastic policy of cardinal-
ity 1 is a deterministic policy, on the other hand. For
completeness, we have that a limited stochastic policy
of cardinality ∞ is a stochastic policy in the general
sense.

Minimax Regret. In order to solve the IRMDP we
use the minimax regret criterion (see [1, 2]).

The regret of policy f π over reward function r ∈
R is the loss or difference in value between f and the
optimal policy under r and is defined as

R( f π, r) = maxg∈F r · g− r · f .

where F represents the set of all valid policies. The
maximum regret for policy f π is the maximum regret
of this policy w.r.t the reward setR:

MR( f π,R) = maxr∈R R( f π, r) .

In other words, when we should select the f policy,
what is the worst case loss over all possible rewards
R. Considering it as a game, the adversary tries to find
a reward value in order to maximize our loss for the
given f π.

Finally we define the minimax regret of feasible re-
ward setR as

MM(R) = min f π MR( f π, r) .

Any policy f ∗ that minimizes the maximum regret is
the minimax-regret optimal policy for the MDP. We
recall that usually such optimal policies are consid-
ered stochastic and not deterministic. There are sev-
eral approaches for computing the minimax regret
[1, 2, 19, 20, 23]. In this paper, we use the approach
presented by Regan and Boutilier [1] based on Ben-
ders Decomposition [24]. The idea is to formulate the
problem as series of Linear Programs (LPs) and Mixed
Integer Linear Programs (MILPs):

Master Program (MP)

minimizeδ, f δ (4)

subject to: r · g− r · f 6 δ ∀〈gr, r〉 ∈ GEN (5)

γE> f + β = 0 (6)

Slave Program (SP)

maximizeQ,V,I,r β · V − r · f (7)

subject to: Qa = ra + γPaV ∀a ∈ A (8)

V > Qa ∀a ∈ A (9)

V 6 m(1− Ia)Ma + Qa ∀a ∈ A
(10)

Cr 6 d (11)
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∑
a∈A

Ia = 1 (12)

Ia(s) ∈ {0, 1} ∀s ∈ S , a ∈ A
(13)

Ma = M> − M⊥a ∀a ∈ A (14)

The Master Program (MP) is a Linear Program com-
puting the minimum regret with respect to all the
possible combinations of rewards and adversary poli-
cies.The set containing all the combinations of rewards
and adversary policies is called GEN. In the first set of
constraints, one constraint for each element 〈gr, r〉 ∈
GEN is considered. The second set of constraints of the
Master Program, γE> f + β = 0 guaranties that f is a
valid visitation frequency function. For the sake of ab-
breviation, the E matrix is generated according to the
transition function P; E is a |S ||A| × |S |-matrix with
a row for each state action, and one column for each

state: Esa,s′ =

{
P(s′|s, a) if s′ 6= s
P(s′|s, a)− 1

γ
if s′ = s

.

The intuition behind this constraint is related to the
dual linear program of the Bellman Equation (see for
example [25], Chapter 4 or [18], Section 6.9).

From a practical point of view, it is not convenient
to enumerate a-priori all the constraints (5). Benders
decomposition is based on the idea of starting with a
small (maybe empty) subset of constraints (5) and in-
teracting with the Slave Program to have either a cer-
tificate of optimality of the Master Program or a new
inequality that can potentially change the value of the
master.

The Slave Program receives a feasible policy f ∗ and
searches for a policy and a reward value that maximize
the regret of the given policy, in other words, it finds
a r and g such that r · g − r · f ∗ > δ∗. If such a (r, g)
is found, it is added to GEN and the Master Program
is solved again. If this is not the case, the procedure
stops and f ∗ is the (stochastic) policy that minimizes
the maximum regret.

The interaction between Master and Slave Programs
can be viewed as a game between two players. The
Master Program finds an optimal policy that minimizes
the regret w.r.t the adversarial choices found so far by
the Slave Program, while the Slave Program searches
for an adversarial choice that gives the maximum gain
against the current master policy. This game continues
until the Slave Program can not find neither a policy as
g nor a reward as r to generate a higher regret for the
given f by the Master Program.

The Slave Program is a reformulation of the MR( f ,R)
for the received policy f from the Master Program. Ac-
cording to equation (3), the objective function r·g−r· f
is rewritten as β · V − r · f . Constraint (8) ensures
that equation (2) is satisfied and constraints (9) and
(10) ensure that Q(s, a) = V(s),∀a. For each a, we
have that the constant Ma is equal to M>−M⊥, where
M> is the value of the optimal policy for maximum re-
ward values. In case of a box uncertainty set, we com-
pute the optimal policy for M(S , A, P, rmax, γ, β), where
rmax is the vector corresponding to the maximum val-
ues for each reward. This can be found using the clas-
sical methods such as value iteration or policy itera-
tion [25]. Similarly M⊥ is the Q-value for the optimal
policy with the minimum rewards onR.

I is a |S | × |A|-matrix defining the policy related
to V . Constraints (12) and (13) impose to have a de-
terministic policy, i.e., with one and only one selected
action a per state s. Notice that the Slave Program
proposes a deterministic adversary to the Master Pro-
gram, while the Master Program always approximates
a stochastic policy. Since the adversary policy proposes
an extreme policy w.r.t the given f , a MILP model for
the Slave Program is sufficient.

3. Finding an optimal deterministic (or limited
stochastic) policy

We are now focusing on the description of an al-
gorithm that can provide an optimal either determin-
istic or limited stochastic policy for an IRMDP. We
use a branch-and-bound framework with the Benders
decomposition as bounding procedure to achieve this
goal. We show how to obtain a limited stochastic pol-
icy of cardinality k. To obtain a deterministic policy, it
is sufficient to fix k = 1.

The branch-and-bound algorithm is one of the most
popular and efficient algorithms for solving combina-
torial problems for decades (see [26] section 11 for
a full explanation of a generic version of the branch-
and-bound algorithm). A branch-and-bound algorithm
consists of a clever enumeration of the space of feasi-
ble policies through a space search: the set of limited
stochastic policies that can potentially be the optimal
is represented with a rooted tree with the full set as-
sociated to the root. The algorithm explores branches
of this tree, where each branch represents a subset of
the solution set. Once a new branch of the tree is cre-
ated, and before that branches is split again in addi-
tional subbranches, a (lower) bounding procedure is
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Fig. 1. Example of a branch-and-bound tree for an MDP with 4 states
and 3 actions per state.

executed on that branch. The bounding procedure gives
an underestimation of the optimal solution of the prob-
lem over the feasible set associated to the given branch.
The branch is hence discarded if it cannot produce a
better solution than the best one found so far by the
algorithm.

In our case, the root of the branch-and-bound tree is
associated to the full set of limited stochastic policies,
while a branch is obtained by selecting a couple (s, a)
of state and action and subsequently imposing the fol-
lowing disjunction on the two child nodes:

• fs,a′ = 0,∀a′ 6= a for the “left” child node.
• fs,a = 0 for the “right” child node.

The disjunctions impose to the left child represents
only limited stochastic policies with fs,a 6= 0 (i.e.
π(s, a) = 1). On the other hand, the right child rep-
resents limited stochastic policies with fs,a = 0 (i.e.
π(s, a) = 0) 1. Figure 1 presents an example of a
branch-and-bound tree for an MDP with 4 states and 3
actions.

As already mentioned, to avoid exploring the whole
tree, we need a lower bounding procedure to prune
some of the nodes that do not contain the optimal pol-
icy. In our application, we use the optimal stochas-
tic policy as under-estimator of the optimal limited
stochastic policy for a given branch of the tree (we
remind that we are looking for the policy with mini-
mal value, for this reason the under-estimator can be
viewed as an optimistic estimation of the policy). In
this way, if a node has a stochastic policy higher than
the best limited stochastic policy found so far it is not
necessary to continue exploring that branch and the
node can be pruned. Every time that a stochastic policy

1The total number of choices (i.e., the number of state-action
pairs) is finite, therefore also the size of the branch-and-bond tree is
finite.

computed in the bounding procedures is also limited
stochastic, its value can be used to update the value of
the best known limited stochastic policy.

The final ingredient of a branch-and-bound is a pro-
cedure to find feasible limited stochastic policies. In
our implementation, every time a stochastic policy
computed in the bounding procedures is also limited
stochastic, its value can be used to update the value of
the best known limited stochastic policy.

In Figure 2 we show the pseudo-code of our im-
plementation of the branch-and-bound algorithm. The
algorithm starts by initializing the value of the best
known limited stochastic policy to +∞ and the list of
unexplored nodes to the root node (i.e., the one with no
constraints on the f variables). The while loop extracts
one unexplored node from the list, fixes the f corre-
sponding to its sub-region of feasible limited stochas-
tic policies and computes a lower bound with Benders
decomposition (if N is the empty set, then no f vari-
able is fixed to zero). If the resulting optimal stochas-
tic policy has a maximum regret δ∗ greater or equal
than the lower maximum regret found so far for a lim-
ited stochastic policy, no additional nodes are created
and the loop extracts another node from the list. If the
node is not pruned but the stochastic policy is also lim-
ited stochastic, the maximum regret of the best limited
stochastic solution is updated to δ∗. As last option, if
the stochastic solution is not limited stochastic, a state
s with more than one f different from zero is found
and the f ∗s,a with the highest value is used to create the
next two child nodes.

Cut-and-branch version of the algorithm. In the
computational experiments, we test also a modification
of the algorithm, called cut-and-branch. In this version
of the algorithm, we decide to solve the root node of the
branch-and-bound tree as usual. Once the algorithm
starts to branch, additional Benders cuts are added only
if the policy found by the Master Program is limited
stochastic. In this way we are sure to compute correctly
the value of the maximum regret of a limited stochas-
tic solution. In Figure 2, the cut-and-branch option is
activated if C&B=TRUE.

The advantage of the proposed approach is that the
computing time needed to process a node is lower than
the one needed by the basic version of the algorithm.
On the other hand, the lower bounds obtained in the
second case are weaker, this means that the total num-
ber of nodes explored can potentially be higher. In the
computation section we show how the cut-and-branch
version of the algorithm outperforms the basic imple-
mentation.
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Algorithm branch-and-bound search for an optimal
limited stochastic policy of cardinality k:

BestVal := +∞ /* best value fixed to infinity */
N = {{∅}} /* the collection of open nodes is initialized with
the empty set */
whileN is not empty do

extract node N fromN
for each f in N do:

fix f = 0 in the MP
if (N = {∅} or C&B=FALSE) then:

solve the MP and generate additional cuts
else:

solve the MP
(δ∗, f ∗) := optimal solution of the MP
if δ∗ < BestVal then:
/* comparing the stoc. pol. with the best det. pol. */

if f ∗ is limited stochastic of cardinality k then:
BestVal = δ∗ /* update best det. policy */

else: /* create the two child nodes */
find f ∗s,a of highest value among the ones
associated to a non det. state
NL := N ∪s′ 6=s fs′,a, NR := N ∪ fs,a
N := N ∪ NL ∪ NR

Fig. 2. Algorithm to compute an optimal limited stochastic policy of
cardinality k. If k = 1 we obtain an optimal deterministic policy. If
C&B=TRUE, the cut-and-branch option is activated.

4. Theoretical analysis of the optimal deterministic
policy

The goal of this section is to give a theoretical mo-
tivations of the importance of studying specific algo-
rithms for finding an optimal deterministic policy.
We introduce the intuitive concept of determinised pol-
icy, a way to obtain a feasible deterministic policy
starting from a stochastic policy. This procedure is
based on the assumption that, if only one action is pos-
sible for each state, it is reasonable to assume that the
most probable action should be chosen. This procedure
is fast and it can be applied to any feasible stochas-
tic policy. However, there exists no guarantee on the
quality of the policy obtained, regardless of the quality
of the stochastic policy used. In this section we theo-
retically show that using this “common sense” idea of
adapting a stochastic policy can lead to solution sig-
nificantly sub-optimal. In Section 5 we show how the
computational results obtained are consistent with the
findings of this section.

The determinised policy. Let f̃ be a given visitation
frequency value for the optimal stochastic policy. The
corresponding “rounding” deterministic policy π̂ can
be computed as follows:

• for each s′ ∈ S :

� find the action a′ = argmaxa∈A fs′,a.
� fix the rest of the action to zero: f̂s′,a = 0,∀a 6=

a′

• recover the deterministic policy π̂ obtained from
the above fixing f̂ .

The approach computes the deterministic policy by
selecting the action with the highest probability for
each state. Despite being pretty simple, this approach
represents a plausible behavior of a user that want to
derive a deterministic policy starting from a stochastic
one. From now on, we will name this rounding deter-
ministic policy as “deteminised policy”.

A small counterexample.. We define the Trident IR-
MDP (see Figure 3) as follows:

• Three states: s0, s1, s2, three actions a0, a1, a2 and
a discout factor γ = 1.

• A transition function:
P(s0|s2, a0) = 1, P(s1|s2, a1) = 1,
P(s0|s2, a2) = T0 and P(s1|s2, a2) = T1.

• Two unknown rewards associated to s0 and s1:
r(s0) = r0 ∈ [−A,+A] and r(s1) = r1 ∈
[−A + B,+A + B] with A, B > 0 and A � B.
Thus,R = [−A,+A]× [−A + B, A + B].2

• An initial distribution on states β(s0) = β(s1) =
0 and β(s2) = 1.

 

Fig. 3. Trident IRMDP with 3 states and 3 actions.

The following propositions give a complete charac-
terization of the optimal stochastic and deterministic
policies for the Trident MDP. With a slight abuse of no-
tation, we use the subscript a instead of using s2, a, i.e.
instead of writing π(s2, a) we use πa. We also use r0 in

2in this formulation rewards are dependent on states. They can be
easily modified to the reward function notation given in this paper
r(s, a)
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place of r(s0) and r1 in place of r(s1). Each stochastic
policy on the trident MDP can be demonstrated as a tu-
ple π = (π0, π1, π2). Similarly, the visitation frequency
functions are presented as f = ( f0, f1, f2).

Proposition 1. An optimal stochastic policy that min-
imizes the maximum regret (see Section 2) for the Tri-
dent MDP is the policy π̃ = (π0, π1, π2) defined as:

π0 =
2A− B
4A

, π1 =
2A + B
4A

, π2 = 0 .

Proof. We first observe that for every policy π′ =
(π′0, π

′
1, π
′
2) with π′2 > 0, it is possible to construct a

policy π′′ = (π′′0 , π
′′
1 , π
′′
2) with π′′2 = 0 and with the

same value in the following way:

π′′0 = π′0 + π′2T0, π′′1 = π′1 + π′2T1 .

If we compute the value of the first policy we notice
that:

β · Vπ′ = Vπ′(s2) =

r
0
π′0 + r

1
π′1 + r

0
T0π
′
2 + r

1
T1π
′
2 =

r0(π
′
0 + T0π

′
2) + r1(π

′
1 + T1π

′
2) = r

0
π′′0 + r

1
π′′1

= Vπ′′(s2) = β · Vπ′′

showing that both policies have the same value. More-
over, the equivalence shows that β · Vπ′ = β · Vπ′′ ,
∀r ∈ R. This implies that π′ and π′′ have equivalent
maximum regret, because:

MR(π′,R) = maxrmaxgr · g− β · Vπ′ =

maxrmaxgr · g− β · Vπ′′ = MR(π′′,R).

We can hence suppose that there exists an optimal
stochastic policy with π2 = 0 as a solution for mini-
max regret.

As second part of the proof, we compute the value of
the optimal policy considering π̃ = (π0, π1, 0) where
π0, π1 > 0 similarly its equivalent visitation frequency
is f̃ = ( f0, f1, 0). We notice that the adversary policy
by its equivalent visitation frequency g giving a maxi-
mum regret is always deterministic (see Section 2). For
this reason, we have only two adversary policies: we
can have either g = (g0, g1, g2) where g0 = g2 = 0
and g1 > 0 or the opposite, g′ = (g0, g1, g2) where
g0 > 0 and g1 = g2 = 0. (With arguments analogous

to the ones used in the first part of the proof, we can
rule out the case where g2 > 0.)

Knowing that the maximum regret is the maximum
among two choices for the adversary policies, the max-
imum regret associated to the policy g = (0, g1, 0) (ob-
tained by fixing r0 = −A and r1 = A + B) is the fol-
lowing:

r · g− r · f̃ = A + B + Aπ0 − (A + B)π1 (15)

and the maximum regret associated to the policy g′ =
(g0, 0, 0) where g0 > 0 is obtained by fixing r0 = A
and r1 = −A + B, leading to a value of

r · g− r · f̃ = A− Aπ0 − (B− A)π1 . (16)

We are interested in minimising the max regret, this
means that we want to find the values of π0 and π1
that minimize max{(15), (16)}. The optimal stochas-
tic policy can hence be obtained by solving the follow-
ing system of two equations:{
A + B + Aπ0 − (A + B)π1 = A− Aπ0 − (B− A)π1
π0 + π1 = 1

It has as optimal solution the values π0 =
2A− B
4A

and

π1 =
2A + B
4A

, concluding the proof. �

Proposition 1 implies the following Lemma:

Lemma 1. The determinised policy (rounding policy)
for the Trident MDP is π̂ = (0, 1, 0) and its maximum
regret is MR( f̂ ,R) = 2A− B.

Proof. It is a direct consequence of the fact that in the
optimal stochastic policy we always have π1 > π2 and
π0 = 0. �

Proposition 2. If T1 > T0, the optimal determinis-
tic policy is π∗ = (0, 0, 1) and its maximum regret is
MR( f ∗,R) = A− AT0 + (A− B)T1.

Proof. We prove the statement by explicitly comput-
ing the maximum regret of the three possible deter-
ministic policies: π = (1, 0, 0), π′ = (0, 1, 0) and
π′′ = (0, 0, 1).

Maximum regret of π = (1, 0, 0). We want to find
the adversary policy that maximizes the regret for the
policy π. We do that by computing all possible combi-
nations of adversary policies and rewards:
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• If a visitation frequency for adversary policy is
g = (0, g1, 0) where g1 > 0, the reward maximiz-
ing the regret is r0 = −A and r1 = A+B, leading
to a maximum regret of

A + B− (−A) = 2A + B (17)

• If the adversary policy is g′ = (0, 0, g2) where
g2 > 0, we need to check all four combinations of
extreme rewards:
� r0 = −A and r1 = A + B. Maximum regret of

−AT0 + (A + B)T1 + A = (1− T0 + T1)A + T1B
(18)

� r0 = A and r1 = A + B. Maximum regret of

AT0 + (A + B)T1 − A = (−1 + T0 + T1)A + T1B
(19)

� r0 = A and r1 = −A + B. Maximum regret of

AT0 + (−A + B)T1 − A = (−1 + T0 − T1)A + T1B
(20)

� r0 = −A and r1 = −A + B. Maximum regret of

−AT0 + (−A + B)T1 + A = (1− T0 − T1)A − T1B
(21)

By hypothesis we have that A� B and T0+T1 =
1, this implies that

(17) > max{(18), (19), (20), (21)}.

Therefore, the maximum regret if g2 > 0 is
MR( f π,R) = 2A + B.

Maximum regret of π′ = (0, 1, 0). It is trivial to
check, with calculations analogous to the one used
above to compute the regret of π, that the maximum
regret in this case is equal to MR( f π

′
,R) = 2A− B.

Maximum regret of π′′ = (0, 0, 1). Also in this case,
we need to consider the two cases of g = (g0, 0, 0)
where g0 > 0 and g′ = (0, g1, 0) with g1 > 0. For g,
we fix r0 = A and r1 = −A + B, obtaining a regret
equal to

A− AT0 + (A− B)T1 (22)

And for g′ we fix r0 = −A and r1 = A + B, obtaining
a regret equal to

A + B + AT0 − (A + B)T1 . (23)

The maximum between (22) and (23) depends on the
values of T0 and T1. By imposing A − AT0 + (A −
B)T1 > A + B + AT0 − (A + B)T1 we obtain:

2AT1 > 2AT0 + B .

We recall that by construction we have A� B, this im-
plies that if T1 > T0 (resp. T1 6 T0) we have that the
maximum regret is equal to (22) (resp. (23)). The min-
imum maximum regret found so far is the one obtained
for π = π′ = (0, 1, 0), and it is equal to MR( f π

′
,R) =

2A−B. Therefore, it remains to check for which values
of T0 > T1 we have that 2A− B > (22):

A− AT0 + (A− B)T1 6 2A− B

⇔ A− A(1− T1) + (A− B)T1 6 2A− B

⇔ (2A− B)T1 6 2A− B⇔ T1 6 1 .

Since we have by construction that T1 6 1 we can con-
clude that for any T1 > T0 the optimal deterministic
policy is π∗ = π′′ = (0, 0, 1) and its maximum regret
is equal to MR( f π

′′
,R) = A− AT0 + (A− B)T1. �

Proposition 2 and Lemma 1 show that for any Tri-
dent MDP we have that the optimal deterministic pol-
icy and the determinised policy (rounding policy) are
always different.

The following Lemma shows that the rounding pol-
icy could be significantly worse than the optimal deter-
ministic policy:

Lemma 2. The ratio between the maximum regret of
the determinised policy and the optimal deterministic
policy goes to 2 with the increase of the value of A with
respect to B and the increase of T1. In other words:

lim
A/B→∞,T1→ 1

2
+

2A− B
A− AT0 + (A− B)T1

= 2

Proof. The statement follows from the definition of
the limit. �

From a theoretical point of view, it is still unknown
what is the highest possible value we can have for the
ratio between the maximum regret of the determinised
policy and the optimal deterministic policy. From a
practical point of view, such small example shows how
the use of the determinised policy can lead to a max-
imum regret 100% far from the optimal. One possi-
ble intuition for explaining this high value of the ratio
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is that the number of states that can be reached with
an executed action are limited. For this reason, in Sec-
tion 5 we introduce a new set of random MDPs, called
limited, with the mentioned property. In this way, it is
possible to experimentally verify if the intuition is cor-
rect in practice.

5. Experimental results

In this section, we provide an experimental evalu-
ation of our algorithms based on three classes of test
instances: random MDPs with unlimited connections
among states, random MDPs with limited connections
among states and diamond MPDs. The aim of this sec-
tion is twofold: we first investigate how in practice the
optimal deterministic policy is different from the de-
terminised policy obtained from the optimal stochastic
policy (We recall that we compare our results against
the determinised policies because it reflects what a nor-
mal system user would do when forced to obtain a de-
terministic policy from a stochastic one). Secondly, we
show how the new cut-and-branch version of the algo-
rithm helps to solve faster the considered instances.

5.1. Instance description

Unlimited Random MDPs. A random MDP with un-
limited connections (Random -unlim MDP) is de-
fined by a given number of states |S | and actions |A|.
The rewards are bounded between two real random
values uniformly selected in the intervall [−1.0, 1.0].
The transition function has the following proper-
ties: from any state s we restrict transitions to reach
dlog2(n)e number of next states. For each pair of (s, a)
we draw reachable states based on uniform distribu-
tion over the set of states. For drawn states, the tran-
sition probabilities are formed based on Gaussian dis-
tribution. The initial state distribution β is uniform
and we choose a discount factor γ = 0.95. In our
tests we use instances with |S | ∈ {10, 15} and |A| ∈
{2, 3, 4, 5, 10}. The instances with |S | = 15 and |A| =
10 are excluded because their solution time exceeds the
time limit of 24 hours.

Random MDPs, limited connections (Random-lim).
These instances are inspired by the Trident IRMDP
presented in Section 4 (See Figure 3). A random-lim
MDP is a random MDP where the number of next
states that can be reached with a given action are
limited in comparison with random-unlimit MDPs. A
random-lim MDP is identified by its number of states
|S | and a fixed number of reachable states n. The re-
wards are bounded between two real random values
uniformly selected in the interval [−1.0, 1.0]. The tran-
sition function has the following properties: from any
state s the number of reachable states S ′ is equal to
n, uniformly selected over the set of states. The num-
ber of actions depends on the value of n. First, we de-
fine n actions, where each of them reaches only a sin-
gle state from S ′. Secondly, each of the remaining ac-
tions reaches all the possible pairs of states from S ′.
Therefore, we have a total of n + n(n−1)

2 actions. The
initial state distribution β is uniform and we choose a
discount factor γ = 0.95. In our tests we use instances
with |S | ∈ {5, 6, 7, 8, 9, 10} and |A| ∈ {3, 6}.

Fig. 4. Diamond MDP: actions a0 (left) and a1, a2 (right) (Figure
taken from [20]).

Diamond MDPs (Diamond). This class of MDPs
has been introduced for the first time in Benavent and
Zanuttini [20].

This class of MDPs has a diamond structure, with
one top and one bottom state (playing the role of
start and terminal states in the MDP), one intermedi-
ate layer of states, containing all the uncertainties on
rewards, plus two intermediate layers between the ex-
treme states and the intermediate layer.

The diamond MDP structure is given in Figure 4. In
diamond MDP, each action a0 has probability 0.5 to
reach each child node. On the other hand a1 (resp. a2)
has a probability of p (resp. 1 − p) to reach the left
(resp. right) child node and to reach its parent other-
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wise. The imprecise values of the rewards for the mid-
dle layer are [−600, 600], while the one of the bottom
node is [600, 1000] (see [20] for more details on the
structures). We propose a generalization of this family
of MDP by testing a range of parameters for the prob-
ability p ∈ {0.05, 0.10, . . . , 0.40, 0.45}.

|S| 10 15
|A| 2 3 4 5 10 2 3 4 5

VRDD, Avg. 1.11 1.15 1.04 1.06 1.01 1.03 1.05 1.02 1.03
VRDD, Max. 1.27 1.78 1.13 1.18 1.03 1.15 1.13 1.06 1.04
VRDS , Avg. 0.74 0.80 0.86 0.86 0.91 0.78 0.84 0.85 0.87
VRDS , Max. 0.81 0.86 0.97 0.93 0.94 0.84 0.96 0.88 0.88

Table 1
Value Ratio for Random-unlim MDPs.

|S| 5 6 7 8 9 10
|A| 3 6 3 6 3 6 3 6 3 6 3 6

VRDD, Avg. 1.10 1.11 1.23 1.09 1.11 1.55 1.42 1.20 1.17 1.11 1.07 1.14
VRDD, Max. 1.29 1.35 1.68 1.14 1.45 2.76 1.87 1.96 1.74 1.29 1.21 1.33
VRDS , Avg. 0.83 0.87 0.83 0.87 0.84 0.88 0.86 0.85 0.84 0.91 0.91 0.94
VRDS , Max. 0.90 0.94 0.91 0.97 0.92 0.98 0.93 0.98 0.93 0.98 0.98 0.98

Table 2
Value Ratio for Random-lim MDPs.

p 5 10 15 20 25 30 35 40 45

VRDD 1.66 1.24 1.16 1.13 1.15 1.15 1.15 1.14 1.16
VRDS 0.94 0.91 0.89 0.88 0.88 0.87 0.83 0.82 0.83

Table 3
Value Ratio for Diamond.

5.2. Comparison with the determinised policy

For a given MDP, let MR( f π̂,R) be the maximum
regret of the determinised (rounding deterministic)
policy, MR( f π

∗
,R) be the maximum regret of the op-

timal deterministic policy and MR( f π̃,R) be the max-
imum regret of the optimal stochastic policy. We de-
fine the Deterministic-Determinised (DD) Value Ratio

of such MDPs as: VRDD =
MR( f π̂,R)
MR( f π∗ ,R)

. Moreover,

we define the Deterministic-Stochastic (DS) Value Ra-

tio of such MDPs as: VRDS =
MR( f π̃,R)
MR( f π∗ ,R)

. The

VRDD gives an idea about how far is the determinised
policy from the optimal policy3. For example, a VRDD

of 1.20 means that the rounding deterministic policy
gives a value that is 20% worse in comparison with the
optimal deterministic policy.

3 It is a deterministic policy.

In Tables 1, 2 and 3 we present the Value Ratios for
the different classes of instances considered. In case of
multiple instances for each combination of settings, we
report the average and the maximum values. We first
notice that the Random-lim and Diamond MDPs
have higher VRDD in comparison to Random-unlim
MDPs. The explanation for this difference is that, for
Random-lim and Diamond MDPs, the set of states
that can be reached with a give action is consider-
ably smaller in comparison to that state that can be
reached with an action in a Random-unlim MDP.
Generally speaking, a stochastic policy can easily al-
low to “spread” the choice from a state to the dif-
ferent next states by allowing fractional values of π.
On the other side, a deterministic policy allows to
move only to a few states (the ones reached by the
single action selected). The higher is the difference
between the optimal deterministic and stochastic pol-
icy, the higher is the probability of taking a subopti-
mal choice when using the determinising procedure.
With Random-unlim MDPs, each action leads to
dlog2(n)e states (while for the other two classes of
MDPs each action leads to two states). Therefore,
for Random-unlim MDPs, even a deterministic pol-
icy can visit a significant amount of states. The rel-
ative small value of VRDD for the Random-unlim
MDPs is probably due to the mentioned behaviour: for
Random-unlim MDPs the stochastic policy is usu-
ally sufficiently close to the deterministic policy to al-
low a good approximation when determinising it.

As second observation, we see that the maximum
values of VRDD are quite high for almost all the com-
binations of parameters considered. Furthermore, for a
Random-lim instance with 7 states and 6 actions we
find a VRDD of 2.76, showing that the theoretical worse
case showed in Section 4 can be increased. Therefore,
choosing to determinise may turn out to be an unsafe
choice, specially considering that it is not possible to
check how far a determinised policy is from the opti-
mal. We finally notice that the computing time for ob-
taining the optimal deterministic policy is on average
six time bigger than the time needed to obtain the op-
timal stochastic policy.

5.3. Impact of the cut-and-branch improvement

In figures 5 and 6 we show how the use of the
cut-and-branch presented at the end of Section 3 im-
proves the computing times on the Random MDPs.
For each couple of states-actions we show the average
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Fig. 5. Impact of cut-and-branch, Random-unlim MDPs
(states-actions vs computing time, in seconds).

Fig. 6. Impact of cut-and-branch, Random-lim MDPs (states-ac-
tions vs computing time, in seconds).

computing times of the baseline implementation of the
Branch-and-bound and of the cut-and-branch version.

The use of the cut-and-branch option allows to de-
crease the computing times for all the instances con-
sidered. This increase is particularly clear for the in-
stances of Random-unlim with 10 or 15 nodes,
where the computing time can be reduced by almost
one half on the more difficult instances.

5.4. Limited stochastic policy

In Figure 7 we show how the value of the op-
timal policy decreases when the maximum number
of allowed actions increases. Each curve represents a
Random-lim MDP with 6 actions and 4 to 7 states.
On the horizontal axis we have the maximum num-
ber of actions allowed in the optimal policy; a value
equal to 1 corresponds to the case of a determinis-
tic policy and the value equal to 6 corresponds to the
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Fig. 7. Change in the value of the optimal policy for a given maxi-
mum amount of actions per state. For each MDP instance, there are
in total 6 actions per state. The x axis determines possible limited
number of actions per state (1 = deterministic policy, 6 = stochastic
policy).

stochastic policy. Vertically we show the difference
between the value of the optimal policy for a given
number of allowed actions and the optimal stochas-
tic policy. We normalize the results by dividing them
by the maximum gap (for this reason we always have
a gap of 100% for the deterministic policy and a gap
of 0% for the stochastic policy). We report the results
for Random-lim MDPs while we experimentally ob-
served that the behavior is the same for all the stud-
ied instances. We were able to obtain such results by a
generalization of our branch-and-bound algorithms.

It is important to notice that allowing to have a max-
imum of two possible actions per state leads to a pol-
icy with a maximum regret significantly closer to the
optimal stochastic policy. These results suggest that
an interesting trade-off is to allow a maximum of two
or three actions per state. In this way the policy re-
mains easy to interpret for the user as the value of the
maximum regret is only marginally worse than the one
of the optimal stochastic policy. If a future theoreti-
cal study confirms our observations for certain cate-
gories of applications, it will open a concrete perspec-
tive to the use of “determinization”. It leaves reason-
able choices to the user while keeping a quality of the
policy close to the optimal.
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6. Conclusions

We presented for the first time in the literature an
algorithm to find an optimal deterministic policy that
minimizes the maximum regret of a Markov Decision
Processes (MDP) with imprecise rewards. The pro-
posed algorithm consists of a branch-and-bound that
uses Benders decomposition as bounding procedure.
In addition to a basic implementation, we propose a
cut-and-branch implementation that turns out to reduce
the overall computing time by up to 50%. We moti-
vate the use of deterministic over stochastic policies by
showing theoretically that basic rounding procedures
find deterministic policies far from the optimal. Sec-
ondly, we show that the additional computational ef-
fort of computing the optimal deterministic policy in
comparison to the one needed to compute the optimal
stochastic policy is acceptable (approximately one or-
der of magnitude slower).
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