Model-Driven Data Warehouse Automation: A
Dependent-Concept Learning Approach

Moez Essaidi, Aomar Osmani, Céline Rouveirol

LIPN - UMR CNRS 7030, Université Paris-Nord,
99 Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France.
{essaidi, osmani, rouveirol}@lipn.univ-parisi3.fr

Abstract. We propose, in this chapter, a new methodology that com-
bines the model-driven paradigm and machine learning techniques, in
order to automate the development of data warehousing components. The
main goal is to automatically derive the transformation rules to be applied
in the model-driven data warehouse process. The proposed solution allows
the simplicity of decision support systems design and the reduction of
time and costs of development. We use the inductive logic programming
framework to express the model transformation context. We find that
in model-driven data warehouse application, dependencies exist between
transformations. So, we investigate a new machine learning methodology,
learning dependent-concepts, that is suitable to solve this kind of problem.
The experimental evaluation shows that the dependent-concept learning
approach gives significantly better results.

Keywords: Model-Driven Data Warehouse, Inductive Logic Program-
ming, Dependent-Concept Learning, Business Intelligence-as-a-Service

1 Introduction

Decision Support Systems and Business Intelligence Systems [88, 68] are the areas
of the information systems discipline that is focused on supporting and improving
decision-making across the enterprise. The decision-making process is a strategic
asset that helps companies to differentiate themselves from competitors, improve
service, and optimize performance results. The data warehouse [40,41] is the
central component of current decision support and business intelligence systems
and is responsible for collecting and storing useful information to improve decision-
making process in organization. Several data warehouse design frameworks and
engineering processes have been proposed during the last few years. However,
the framework-oriented approaches [45,69, 78] fail to provide an integrated and
a standard framework that is designed for all layers of the data warehousing
architecture. The process-oriented approaches [94,44, 32] fail, also, to define an
engineering process that handles the whole development cycle of data warehouse
with an iterative and incremental manner while considering both the business
and the technical requirements. In addition, not much effort was devoted to unify
the framework and the process into a single integrated approach. Moreover, no
intelligent and automatic data warehouse engineering method is provided.

The Model-Driven Data Warehouse gathers approaches that align the develop-
ment of the data warehouse with a general model-driven engineering paradigm [4].
The model-driven engineering is mainly based on models, meta-models and trans-
formation design. Indeed, model-driven strategy encourages the use of models
as a central element of development. The models are conforming to metamodels
and the transformation rules are applied to refine them. Therefore, transforma-
tions are the central components of the each model-driven process. However,
transformation development is a very hard task that makes the model-driven
approach more complex and entails additional costs. So, designers or programmers
must have high skills in the corresponding metamodels and the transformation
languages (e.g., Query-View-Transformation). In addition, data warehousing
projects require more knowledge about the underlying business domain and
requirements. This raises many risks and challenges during the transformations
design. One of the main challenges is to automatically learn these transformations
from existing project traces. In this context, model transformation by-ezample (in-
troduced by [90]) is an active research area in model-driven software engineering
that uses artificial intelligence techniques and proposes to automatically derive
transformation rules. It provides assistance to designers in order to simplify the
development of model transformations and it reduces complexity, costs and time
of development.

In the framework of Model-Driven Data Warehousing, several steps are needed
to automatically learn the transformation rules. The first step (the modelling
step), which has been addressed in the previous papers [14, 15], consists in isolating
stages where it is necessary to induce transformation rules; in identifying the
metamodels used to define the input/output models of these transformations
and in designing a conceptual framework for transformations learning that use
adequate representation language. We have focused on effective modelling of
the Model-Driven Data Warehouse architecture in order to simplify machine
learning framework integration. And also to effectively deploy the application,
with respect to standards and data warehousing requirements in organisations.
Then, We propose to express the model transformation problem as an Inductive
Logic Programming one [56] and to use existing project traces to find the best
transformation rules. To the best of our knowledge, this work is the only one
effort that has been developed for automating model-driven data warehousing
with relational learning and it is the first effort that provides experimentations
in this context.

In a Model-Driven Data Warehouse application, dependencies exist between
transformations. We investigate a new machine learning methodology stemming
from the application needs: learning dependent-concepts. Following work about
layered learning [83,59], context learning [89,5], predicate invention [57,80]
and cascade learning [22,99], we propose a Dependent-Concept Learning (DCL)
approach where the objective is to build a pre-order set of concepts on this
dependency relationship: first learn non dependent concepts, then, at each step,
add the learned concept as background knowledge for next concepts to be learned
according to the pre-order. This DCL methodology is implemented and applied

to our transformation learning problem. Experimental evaluation shows that the
DCL system gives significantly better results.

This chapter is organised as follows: Section 2 presents the terminology used
and outlines the concerned research fields. In Section 3, the learning aspects of
the solution are detailed. The section starts by the formalisation of key concepts
used in our approach. Then, it studies the proposed machine learning approach
(dependent-concepts) to learn transformation rules. Section 4 gives experimental
results and discussion. Our main perspectives and the future research challenges
are presented in Section 5. Section 6 summarizes our contributions and gives our
final conclusions and remarks.

2 Background

In the problem that we are going to deal with, several concepts and research
fields are considered. This section investigates the definition of these fields and
the associated terminologies. It brings together the elements that are necessary to
understand the context of our work. It provides also a review of works in various
areas (i.e., Model-Driven Data Warehouse approaches, Model Transformation
By-Example framework and Concept Learning Strategies) related to the provided
methodology.

2.1 Model-Driven Data Warehouse

The Model-Driven Engineering represents a promising approach to support
software development practices [35,4, 42]. The Model-Driven Architecture (MDA)
standard [50] represents the Object Management Group implementation to support
the model-driven approach. The MDA starts with the well-known and long
established idea of separating the specification of the operation of a system from
the details of the way that system uses the capabilities of its platform. The three
primary goals of the MDA are portability, interoperability and reusability. The
Model-Driven Architecture standard base includes also many specifications. These
include the Unified Modelling Language (UML), the Meta-Object Facility (MOF),
specific platforms models (i.e., CORBA, JEE), and the Common Warehouse
Metamodel (CWM) to design data warehouse components. The transformations
are essential for each model-driven process. And, a simple model transformation
consists in defining the mapping between elements of a source model (i.e., the input
parameter of the transformation) and a target model (i.e., the resulted output of
the transformation execution). In this context, the Query- View- Transformation
(QVT) standard plays a central role, since it allows for the specification of model
transformation rules (figure 1 is an example).

The Model-Driven Data Warehouse represents approaches that align the
development of the data warehouse with a general Model-Driven Engineering
paradigm. Related work [46,101] have tried in 2008 to adapt the model-driven
approach for the development of data warehouses using the Model-Driven Ar-
chitecture - MDA (a standard implementation of the Model-Driven Engineering)

and the QVT. For example, the approach presented in [101] describes deriva-
tion of OnLine Analytical Processing (OLAP) schemas from Entity-Relationship
(ER) schemas. The source and target models are respectivly conform to ER and
OLAP metamodels from the Common Warehouse Metamodel. Authors describe
how an ER schema is mapped to an OLAP schema and provide, also, a set
of Query-View-Transformation rules (e.g., EntityToCube, Attribute ToMeasure,
RelationShip ToDimension, etc.) to ensure this.

The designed transformation rule (by figure 1) shows a candidate Entity that
gets transformed to a corresponding Cube. The generated Cube having the same
name of the Entity but prefixed with a ”C”. Also, the transformation rules Rela-
tionShipEndToCDA and AttributeToMeasure must be done as post-conditions.
The left part of the rule check the data-source elements (i.e., Entity, Attribute,
etc) while the right part defines the derived multidimentional elements (i.e.,
Cube, Measure, etc). By the transformation AttributeToMeasure, the numeric
attributes of the candidate Entity, gets transformed to a corresponding measures
of the Cube. Also, through the transformation rule RelationShipEndToCDA,
each RelationShipEnd role with multiplicity equal to many is matching with a
CubeDimensionAssosiation.

EntityToCube
<<domain>> <<domain>>
e:Entity ER PIM OLAP PIM c:Cube
Name=N |€""====-" <> _______ > Name='C'+N
| C E
|
rse:RelationShipEnd a:Attribute | cda:CubeDimensionAssocition |
Multiplicity ="*" Type = ‘Numeric’
m:M ire
Where
RelationShipEndToCDA(rse, cda)
AttributeToMeasure(a, m)

Fig. 1. Graphical Notation of EntityToCube Relation.

Through this simple example we shows that the designed transformations
require an expert who knows the business domain, the principles of model-driven
approach, and the transformation languages [63, 29, 11]. Thus, the actuel Model-
Driven Data Warehouse automation processes are partial because the design
transformations remain manual (for example, no proposal of a framework to
learn these transormations). This could increase the time and cost of developing
the decision support information system. Also, there is no guarantee that the
proposed transformations are used for any given data-model, and that elements
defining the mapping are consistent with the initial (business and technical)
requirements. The basic idea is that: the dependencies between metamodels

concepts (e.g., Entity, Attribute, Cube, and Measure) create a post-conditions
dependency within the definition of transformations (e.g., EntityToCube and
AttributeToMeasure). And so, this kind of dependencies may change the way of
transformations design and thus enable better finding elements involved in the

mapping.

2.2 Model Transformation By-Example

The Model Transformation By-Example is related to several others by-example
based approaches: query-by-example, programming-by-example, and XSLT gen-
eration by-example. The query-by-example approach [103] aims at proposing
a language for querying relational data constructed from sample tables filled
with example rows and constraints. Programming-by-example [71, 6], where the
programmer (often the end-user) demonstrates actions on example data, and the
computer records and possibly generalizes these actions, has also proven quite
successful. The by-example approach has also been proposed in the XML world
to derive XML schema transformers [12, 64, 100], which generate XSLT code to
carry out transformations between XML documents.

Varr6 et al. in [92], present an automated Model Transformation By-Ezample
approach using the Inductive Logic Programing, an improvement of the initial
proposal introduced in [91]. The proposed method (based on Aleph ILP imple-
mentation) aims at the inductive construction of first-order clausal theories from
examples and background knowledge (restricted to Prolog clauses). A running ex-
ample is provided where a source classes diagram (based on the Unified Modelling
Language) is mapped into a target relational database diagram.

In [1], authors present a general architecture for automating metamodel
mapping using machine learning. They explore machine learning techniques and
their applicability to Model-Driven Engineering automation. Authors use the
candidate elimination algorithm and formalism is defined with a vector represen-
tation of hypotheses. However, no advanced experimentations and evaluation are
presented.

Authors In [95], present a conceptual framework for Model Transformation By-
FEzample to derive ATL (Atlas Transformation Language [31]) rules. The approach
uses the inter-model mappings representing semantic correspondences between
concrete domain models which is more user-friendly then directly specifying
model transformation rules or mappings based on the abstract syntax. The
inter-model mappings between domain models can be used to generate the
model transformation rules, by-example, taking into account the already defined
mapping between abstract and concrete syntax elements.

Strommer et al., in [84], extend the Model Transformation By-Ezample ap-
proach to the domain of business process modelling languages. The definition of
requirements for Model Transformation By-Example in the context of business
process modelling and the specification of proper mapping operators comprise
the main contribution of authors in this paper.

In [37], authors present a by-example approach, named model transformation
as optimization by examples (MOTOE) which combines transformation blocks

extracted from examples to generate a target model. Authors use an adapted
version of Particle Swarm Optimization (PSO) where transformation solutions are
modelled as particles that exchange transformation blocks to converge towards
the optimal transformation solution. In a second paper [38] authors use the
Simulated Annealing (SA) to improve the performances of the approach.

Dolques et al. in [10], study the generation of transformation rules form trans-
formations traces (transformations examples) using an extension of the Formal
Concept Analysis (FCA). FCA is based on the philosophical understanding that
a concept is constituted by two parts: its extension which consists of all objects
belonging to the concept, and its intention which comprises all attributes shared
by those objects. Authors use the Relational Concept Anaysis (RCA), one of the
extensions of Formal Concept Analysis that considers links between objects in the
concept construction. Then, lattices allow rules classification and help navigation
among the generated results to choose the relevant transformation rule. The
experimental evaluations are provided using LATEX to HTML transformation
examples.

In [85], authors discuss the limitations of above approaches and introduce a new
approach called Model Transformation By-Demonstration instead of the Model
Transformation By-Example approach. The Model Transformation By-Example
idea is about inferring the model transformation rules from a prototypical set
of mappings. However, the Model Transformation By-Demonstration approach
asks users to demonstrate how the model transformation should be done by
directly editing (e.g., add, delete, connect, update) the model instance to simulate
the model transformation process step by step. Authors describe the Model
Transformation By-Demonstration steps and provide a motivating example.

Finally, ontology-based approaches allow semantic reasoning techniques for
metamodels alignment or matching. For example, in [73], metamodels are mapped
to a pivot ontology, then an ontology-based reasoning is used to generate a
Relational-QVT transformation. In [34], authors apply refactoring to metamodels
in order to make explicit hidden concepts of metamodels and obtain an ontology
where all concepts are reified before mapping. The Similarity Flooding [48]
algorithm allows similarity values propagation in a labelled graph whose vertices
are potential mappings, authors in [19] adapt it for metamodel alignment.

2.3 Related Concept-Learning Strategies

The goal of machine learning is to program computers to use example data or
past experience to solve a given problem [2]. Many successful applications of
machine learning exist already, including systems that analyze past sales data
to predict customer behaviour, recognize faces or spoken speech, and optimize
robot behaviour so that a task can be completed using minimum resources,
and extract knowledge from bioinformatics data. Machine learning algorithms
and techniques have long been used for various purposes in software engineering
(testing, validation, security, etc.). The works in [102, 9] have studied the advances
and perspectives in applications of such approaches in the software and data
engineering fields. In our Model-Driven Data Warehouse framework, we propose

to discover the transformation rule from previous projects experiences using a
machine learning approach.

A well-posed learning problem requires a well-specified task, performance
metric, and source of training experience. A more precise definition of this is
provided by Mitchell [52]: A computer program is said to learn from experience
E with respect to some class of tasks T and performance measure P, if its
performance at tasks in T', as measured by P, improves with experience E.

In many cases, the learning task involves acquiring general concept definition
from specific training examples. This task is frequently referred to as concept
learning, or approximating a boolean-valued function from examples. A more
precise definition of this is also provided by Mitchell: When the learning task is
to infer a boolean-valued function from training examples of its input and output,
this is known as concept learning.

The Inductive Logic Programming [60] is an active research subfield of machine
learning that addresses relational learning and uses a first-order representation of
the problem domain and examples. Its objective is to provide practical algorithms
for inductively learning hypotheses, expressed as logical rules [43]. An ILP learning
task is defined by four aspects: model theory defines the semantic constraints on
hypotheses, i.e., what to search for; proof theory describes the strategy to perform
the search; declarative bias explicitly defines the hypothesis space, i.e., where
to search; and preference bias is concerned with the generalisation performance
of ILP. For a hypothesis to become a solution, semantic requirements set by an
ILP learning task have to be satisfied. The ILP learning tasks can follow two
important settings: descriptive and predictive settings. In our approach, we are
concerned by the predictive setting using the well known Aleph framework [79].
The predictive setting is formally defined as below:

Definition 1 (Predictive Setting). Given background knowledge B, some
positive ezamples ET and negative examples E~, the predictive setting is to learn
a hypothesis H, such that H covers all positive examples and none of the negative
examples, with respect to B.

We will investigate a new machine learning methodology stemming from
the application needs: Learning Dependent-Concepts. Following work about
Layered Learning, Context Learning, Predicate Invention and Cascade Learning,
we propose a new methodology that automatically updates the background
knowledge of the concepts to be learned (i.e., the learned child-concepts are used
to update the background knowledge of parent-concepts).

Stone et al. introduce in [83] the Layered Learning machine learning paradigm.
In [59] authors study the problem of constructing the approximation of higher level
concepts by composing the approximation of lower level concepts. Authors in [25,
28] present an alternative to standard genetic programming that applies layered
learning techniques to decompose a problem. The layered learning approach
presented by Muggleton in [55] aims at the construction of a large theory in
small pieces. Compared to layered learning, the Dependent-Concept Learning
(DCL) approach aims to find all concepts theory using the theories of concepts

on which they depend. Then, while the layered learning approach exploits a
bottom-up, hierarchical task decomposition, the DCL algorithm exploits the
dependency relationships between specific concepts of the given dependency
graph. The dependency structure in [83] is a hierarchy, whereas our dependency
structure is a directed acyclic graph. A breadth-first search algorithm is used to
explore the dependency graph.

Within the field of Inductive Logic Programming the term Predicate Invention
is introduced [54] and it involves the decomposition of predicates being learned
into useful sub-concepts. Muggleton in [57] defines Predicate Invention as the
augmentation of a given theoretical vocabulary to allow finite axiomatisation
of the observational predicates. Stahl in [80, 81], studies the utility of Predicate
Invention task in ILP and its capabilities as a bias shift operation. Rios et al.
investigate in [72] on specification language extension when no examples are
explicitly given of the invented predicate. The proposed Dependent-Concept
Learning and Predicate Invention approaches share the fact that they correspond
to the process of introducing new theoretical relationships. However, in the case
of Predicate Invention, the approach is usually based on decomposition of the
theory to learn on simple sub-theories and the DCL approach is based on the
composition of a theory from the learned theories.

In [23], authors introduce the Cascade Generalization method. This approach
is compared to other approaches that generate and combine different classi-
fiers like the Stacked Generalization approach [96, 86, 87]. In [99], Xie proposes
several speed-up variants of the original cascade generalization and show that
the proposed variants are much faster than the original one. As the Cascade
Generalization, the Dependent-Concept Learning approach extends the back-
ground knowledge at each level by the information on concepts of the sub-level
(according to the dependency-graph). But, within the DCL approach, we use the
same classifiers for all iterations. In our experiments, we report the results of the
extension of the background knowledge by instances (as first setting) and the
learned theory/rules (as second setting). The first setting is named DCLI and
the second setting is named DCLR.

The Model Transformation By-Ezample approach aims to find contextual
patterns in the source model that map contextual patterns in target model. This
task is defined as Context Analysis in [90]. The machine learning approaches
that exploit context to synthesize concepts are proposed in [89, 5]. In [89] author
provides a precise formal definition of context and list four general strategies
for exploiting contextual information. Authors in [5] introduce an enhanced
architecture that enables contextual learning in the Neurosolver (a problem
solving system). Nevertheless, the notion of context is different in the Dependent-
Concept Learning approach. In fact, in the DCL, contextual information is the
result of the learning process (which will form the transformation rule); while
within the Contextual Learning strategy the context is part of input information
that improves the performance of the learner.

3 Learning-Approach

The main goal is to automatically derive the transformation rules to be applied in
the Model-Driven Data Warehouse process. This aims to reduce the contribution
of transformations designer and thereby reducing the time and the cost of
development. We use the Inductive Logic Programming framework to express
the model transformation and we find a new methodology (the Dependent-
Concept Learning) that is suitable to solve this kind of problem. In this section,
a formalisation of model-driven concepts is provided and the problem statement
in a relational learning setting is expressed. The DCL problem is defined and the
learning approach of model transformations is provided.

3.1 Key Concepts Formalisation

First, we define the notion of model. Then, we recall the definition of a metamodel
and the relation between models and metamodels. Finally, the definition of a
model transformation is given.

Definition 2. (Model) A model M = (G,MM,u) is a tuple where: G =
(Ng, Eg, I'q) is a directed multi-graph*, M M is itself a model called the reference
model of M (i.e., it’s metamodel) associated to a graph Gy = (Nyrags Envine, I'inina)
and p: Ng U Eg — N is a function associating elements (nodes and edges)
of G to nodes of G-

The relation between a model and its reference model (metamodel) is called
conformance and is noted conformsTo. Elements of M M are called meta-elements
(or meta-concepts). p is neither injective (several model elements may be associ-
ated to the same meta-element) nor subjective (not all meta-elements need to be
associated to a model element). The relation between elements and meta-elements
is an instantiation relation. For example, the Invoice (InvoiceFact) element in a
DSPIM (MDPIM) is an instance of Class (Cube) meta-class in the UML CORE
(CWM OLAP) metamodel.

Definition 3. (Metamodel and Meta-Metamodel) A meta-metamodel is a
model that is its own reference model (i.e., it conforms to itself). A metamodel is
a model such that its reference model is a meta-metamodel [30].

The metamodeling architecture (part of the Model-Driven Architecture in-
ternational standard) is based on meta-levels: M3, My, My and My. Mj is the
meta-metamodel level and it forms the foundation of the metamodeling hierarchy
(the meta-object-facility is an example of meta-metamodel). My consists of the
metamodel level (the Unified Modelling Language and the Common Warehouse
Metamodel are examples of metamodels). M; regroups all user-defined models
and My represents the runtime instances of models.

1 A directed multi-graph G = (Ng, Eg, I'c) consists of a finite set of nodes Ng, a finite
set of edges F¢, and a function I'¢ : Ec — Ng X Ng mapping edges to their source
and target nodes [30].

10

In [7], authors provide a classification of models transformation approaches
(template-based, graph-based, relational and so on). In our case, we are interested
in Relational Approaches that can be seen as a form of constraint solving. The
basic idea is to specify the relations among source and target element types
using constraints. Declarative constraints can be given executable semantics, such
as in logic programming. In fact, logic programming with its unification-based
matching, search, and backtracking seems a natural choice to implement the
relational approach, where predicates can be used to describe the relations [7].
For example, in [24], authors explore the application of logic programming. In
particular Mercury, a typed dialect of Prolog, and F-logic, an object-oriented logic
paradigm, to implement transformations. In [75] authors discuss a formalization of
modeling and model transformation using a generic formalism, the Diagrammatic
Predicate Logic (DPL). The DPL [8,74] is a graph-based specification format
that takes its main ideas from both categorical and first-order logic, and adapts
them to software engineering needs.

Definition 4. (Model Transformation) A model transformation is defined
as the generation of a target model from a source model (a general definition).
Formally, a model transformation consists of a set of transformation rules which
are defined by input and output patterns (denoted by P) specified at the My level
(the metamodel level) and are applied to instances of these meta- models. Thus,
a model transformation is associated to a relation R(MM, MN) C P(MM) x
P(MN) defined between two metamodels which allows to obtain a target model
N conforming to MN from a source model M that conforms to metamodel
MM [82].

3.2 Relational Learning Setting

The data warehouse is a database used for reporting; therefore a candidate
language used to describe data is a relational database language. This language
is close to datalog language used in relational learning. In addition, the concep-
tual models are defined in term of relations between elements of different types
(properties, classes and associations). Therefore, it is natural to use supervised
learning techniques handling concept languages with the same expressive level as
manipulated data in order to exploit all information provided by the relationships
between data. Even if there are quite a number of efficient machine learning algo-
rithms that deal with attribute-value representations, relational languages allows
encoding structural information fundamental for the transformation process.
The attribute-based approaches are limited to non-relational descriptions
of objects. In fact, the learned descriptions do not specify relations among the
objects’ parts. The background knowledge is expressed in rather limited form
and the concept description language is usually inappropriate for some domains.
The Mode-Driven Data Warehouse is a new and a complex application and it is
different from usual applications. In the proposed framework, the learning process
will use data-models (or data schemas) to set examples and background knowledge.
So, the definition of relations between model elements (e.g., class, attribute,

11

association, etc.), is required to set-up the learning process. Relational learning
provides the appropriate approach to answer this problem. This framework
provides several advantages, because the defined relational information plays an
important role in the resulted transformation rules.

This is why ILP algorithms [56, 43] have been selected to deal with this learning
problem. As ILP suffers from a scaling-up problem, the proposed architecture [15,
16] is designed in order to take into account this limitation. Thus, it is organised
as a set of elementary transformations such that each one concerns a few number
of predicates only, to reduce the search space.

We consider the machine learning problem as defined in [51]. A (single) concept
learning problem is defined as follows. Given i) a training set £ = E+ U E~
of positive and negative examples drawn from an example language L. ii) a
hypothesis language L}, iii) background knowledge B described in a relational
language Ly, iv) a generality relation > relating formulas of £, and L}, learning
is defined as search in Ly for a hypothesis h such that h is consistent with F. A
hypothesis h is consistent with a training set F if and only if it is both complete
(Vet € EY h, B > e™) and correct (Ve™ € E7,h, B # ¢7). In an ILP setting,
Le, Ly and L), are Datalog languages, and most often, examples are ground facts
or clauses, background knowledge is a set of ground facts or clauses and the
generality relation is a restriction of deduction.

We used in our experiments the well known Aleph system, because of its
ability to handle rich background knowledge, made of both facts and rules. Aleph
follows a top-down generate-and-test approach. It takes as input a set of examples,
represented as a set of Prolog facts and background knowledge as a Datalog
program. It also enables the user to express additional constraints C' on the
admissible hypotheses. Aleph tries to find a hypothesis h € L, such that h
satisfying the constraints C' and which is complete and partially correct. We
used Aleph default mode: in this mode, Aleph uses a simple greedy set cover
procedure and construct a theory H step by step, one clause at a time. To add a
clause to the current target concept, Aleph selects an uncovered example as a
seed, builds a most specific clause as the lowest bound of its search space and
then performs an admissible search over the space of clauses that subsume this
lower bound according the user clause length bound. In the next section, we show
the reduction of the source-model, the target-model and the mapping between
them into an ILP problem.

3.3 Problem Statement in a Relational Learning Setting

In the ILP framework (regarding the background knowledge and examples), a
model M; is characterized by its description M D;, i.e., a set of predicates that
correspond to the contained elements. The predicates used to represent M; as
logic programs are extracted from its metamodel M M;. For example, consider
a data model used to manage customers and invoices. The classes Customer
and Invoice are defined respectively by class(customer) and class(invoice). The
one-to-many association that relates Customer to Invoice is mainly defined by
association(customer-invoice, customer, invoice) (others predicates, given in the

12

additional report, are used to define multiplicities of the association). Then,
the logic description of models from project’s traces constitutes the generated
background knowledge program in ILP.

Definition 5. (Transformation Example) A transformation example (or
trace model) R(M,N) = {r1,...,rx} C P(M) x P(N) specifies how the ele-
ments of M and N are consistently related by R. A training set is a set of
transformation examples.

The transformation examples are project’s traces or they can be collected
from different experts [39]. For instance, we are interested in the transformation
of the data-source PIM (DSPIM) to the multidimensional PIM (MDPIM).
The DSPIM represents a conceptual view of a data-source repository and its
conformsTo the UML CORE metamodel (part of the unified-modeling-language).
The MDPIM represents a conceptual view of a target data warehouse repository
and its conformsTo the CWM OLAP metamodel (part of the common-warehouse-
metamodel).

The predicates extracted from the UML CORE metamodel to translate source
models into logic program are: type(name), multiplicity(bound), class(name),
property(name, type, lower, upper), association(name, source, target), associa-
tionOwnedAttribute(class, property), and associationMemberEnds(association,
property). Then, according to the CWM OLAP metamodel, the predicates defined
to describe target models are: cube(Name), measure(Name, Type, Cube), dimen-
sion(Name, isTime, isMeasure), cubeDimensionAssociation(Cube, Dimension),
level(Name), levelBasedHierarchy(Name, Dimension), and hierarchyLevel Associ-
ation(LevelBasedHierarchy, Level).

By analysing the source and target models, we observe that structural re-
lationships (like aggregation and composition relations, semantic dependency,
etc.) define a restrictive context for some transformations. For instance, let us
consider the concept PropertyToMeasure. For instance, we know that there is a
composition relation between Class and Property and there is also a composition
relation between Cube and Measure in the metamodels. This implies that the con-
cept PropertyToMeasure must be considered only when the concept ClassToCube
is learned. Therefore, the ClassToCube concept must be added as background
knowledge in order to learn the PropertyToMeasure concept.

This domain specificity induces a pre-order on the concept to be learned
and defines a dependent-concept learning problem. Therefore, in our approach,
concepts are organized to define a structure called dependency graph. In [13],
Esposito et al. use the notion of dependency graph to deal with hierarchical
theories. Authors define the dependency graph as a directed acyclic graph of
concepts, in which parent nodes are assumed to be dependent on their offspring.

Definition 6. (Dependency Graph after [13]) A dependency graph is a di-
rected acyclic graph of predicate symbols, where an edge (p, q) indicates that atoms
of predicate symbol q are allowed to occur in the hypotheses defining the concept
denoted by p.

13

3.4 Dependent-Concept Learning Problem

Let {c1,ca,...,¢cn} be a set of concepts to be learned in our problem. If we
consider all the concepts independently, each concept ¢; defines an independent
ILP problem, i.e., all concepts have independent training sets E; and share the
same hypothesis language L; and the same background knowledge B. We refer
to this framework as the Independent-Concept Learning (ICL).

The second framework, Dependent-Concept Learning (DCL), takes into ac-
count a pre-order relation? < between concepts to be learned such that ¢; < c; if
the concept ¢; depends on the concept ¢; or in other term, if ¢; is used to define
¢; (Definition 5 — Dependency Graph). More formally, a concept ¢; is called
parent of the concept ¢; (or ¢; is the child of ¢;) if and only if ¢; < ¢; and there
exists no concept ¢y such that ¢; < ¢ < ¢;. ¢; = ¢; denotes that c¢; depends on
¢; for its definition. A concept ¢; is called root concept iff there exists no concept
¢k such that ¢, = ¢; (in other words, a root concept ¢; does not depend on any
concept ¢, for k #).

The DCL framework uses the idea of decomposing a complex learning problem
into a number of simpler ones. Then, it adapts this idea to the context of ILP
multi-predicate learning. A dependent-concept ILP learning algorithm accepts
a pre-ordered set of concepts, starts with learning root concepts, then children
concepts and propagates the learned rules to the background knowledge of their
parent concepts and continues recursively the learning process until all dependent-
concepts have been learned. Within this approach, we benchmark two settings:
(i) the background knowledge B; of a dependent-concept (parent) ¢; is extended
with the child concept instances (as a set of facts — this framework is referred
to as DCLI) and (ii) B; is extended with child concept intensional definitions:
all children concepts are learned as sets of rules and are added to B; — this
frameworks is referred to as DCLR in the following sections.

In both cases, DCLI or DCLR, all predicates representing child of c; can
be used in the body of ¢;’s definition. Our claim here is that the quality of the
¢;’s theory substantially improves if all its children concepts are known in Bj,
extensionnally or intensionnally. In the next Section (i.e., Evaluation), we provide
results concerning the impact of child concepts’ representation (extensional vs.
intensional) on the the quality of the c;.

Finnaly, the task of empirical Dependent-Concept Learning of model-driven
context in ILP can be formulated as follows: Given a dependency graph
Ga = (Cy4, Eq) where Cd = {c1, ca, ..., cn} the set of concepts to learn such that
Ve; € Cy: set of transformation examples (i.e., examples) E = {E, Ea, ..., E,}
is given; and defined as (where |T'M| is the number of training models): E; =
{RI(M7,N7) | R(M7,N7) C P(M?) x P(N7), j < |TM|} and a background
knowledge B which provide additional information about the examples and de-
fined as: B = {P(M7) UP(N7) | M7 conformsTo MM, N7 conformsTo MN)}
Find: Vc; € Cy4, based on E; and following a BFS strategy®, learn a transfor-
2 A pre-order is a binary relationship reflexive and transitive.

3 Start by an offspring and non-dependent concept (i-e., a root concept), then follow
its parents dependent-concepts

14

mation rule R;(MM,MN) C P(MM) x P(MN); where MM is the reference
source-metamodel and M N is the reference target-metamodel.

Compared to layered learning, the DCL approach aims to find all concepts
theory using the theories of concepts on which they depend. Then, while the lay-
ered learning approach exploits a bottom-up, hierarchical task decomposition, the
DCL algorithm exploits the dependency relationships between specific concepts
of the given dependency graph. The dependency structure in [83] is a hierarchy,
whereas our dependency structure is a directed acyclic graph. A breadth-first
search algorithm is used to explore the dependency-graph.

The DCL and Predicate Invention approaches share the fact they correspond
to the process of introducing new theoretical relationships. However, in the case of
Predicate Invention, the approach is usually based on decomposition of the theory
to learn on simple sub-theories and the DCL approach is based on the composition
of a theory from the learned theories. Then, as the Cascade Generalization, the
DCL approach extends the background knowledge at each level by the information
on concepts of the sub-level (according to the dependency graph). But, within the
proposed DCL, we use the same classifiers for all iterations. In our experiments,
we report the results of the extension of the background knowledge by instances
(first setting named DCLI) and the learned theory (second setting named DCLR).

The Model Transformation By-Example approach aims to find contextual
patterns in the source model that map contextual patterns in target model. This
task is defined as Context Analysis in [90]. However, the notion of context is
different in DCL. In fact, in the DCL, contextual information is the result of
the learning process (which will form the transformation rule); while within the
Contextual Learning strategy the context is part of input information’s that
improve the performance of the learner.

4 Evaluation

For the evaluation, we propose to compare the following approaches: (i) The
Independent-Concept Learning (ICL) approach, which proposes to learn the set
of considered concepts independently. And (ii) The Dependent-Concept Learning
(DCL) approach, which consider a dependency graph to learn the concepts. Within
this approach, we benchmark two settings: (i) the background knowledge B of
dependent-concepts (i.e., parent-concepts) is updated with their child instances
(denoted as DCLI) and (ii) with their chlid intensional definitions (denoted as
DCLR).

4.1 Materials and Methods

We use a set of real-world data models for experimentations. The models represent
projects’ traces such as the example presented in figure 2. In each project trace,
we find the source-model(s), the target-model(s) and the transformations. The
source-models description includes mainly the definition of classes, associations,

15

and properties elements. In the target-models, we find elements like cubes, mea-
sures, dimensions and levels. From each model, we extract a set of positive and
negative examples that define respectively positive and negative transformations
as explained before.

We define the language bias using the metamodel level (M2 level) of the
meta-modelling architecture. This gives the advantage to define a clear set of
predicates with an optimal level of abstraction. Predicates obtained from the M2
level will ensure obtaining understandable transformation rules, equivalent to
transformation designed manually. In the proposed Model-Driven Data Warehouse
framework, this process will extract predicates from UML CORE and CWM
OLAP metamodels. UML CORE defines the predicates used for the representation
source-models examples (denoted as DSPIMs in figure). CWM OLAP defines the
predicates used for representing target-models examples (denoted as MDPIMs
in figure). For example, the following are part of the defined predicates to
describe source models (DSPIMs): class(Name); property(Name, Type, Lower,
Upper); association(Name, Source, Target). As part of the defined predicates to
describe target models (MDPIMSs): cube(Name); measure(Name, Type, Cube);
dimension(Name, isTime, isMeasure). And type(Name) and multiplicity(Bound)
are defined as common predicates used for all models definition.

As an example of trace model, consider a data schema used to manage cus-
tomers and invoices (figure 2). With respect to the defined UML CORE and
CWM OLAP predicates the following code is example of the generated back-
ground knowledge program of DSPIM: type(integer); type(float); class(invoice);
class(customer); property(amount, float, 1, 1). And, cube(invoiceFact); mea-
sure(amount, float, invoiceFact); dimension(customerDim, false, false) as part
of the generated background knowledge program of MDPIM.

The mapping model describes all transformations of the source elements to
the target elements. The transformation predicates are of the form: transforma-
tion(SourceElement, TargetElement) where SourceElement and TargetElement
represent, respectively, input and output of the transformation rule. Given project
traces, we extract the situation where the Invoice class is translated into a cube
InvoiceFuct, each such situation defines a positive example. Similarly, the situa-
tion where a class is not transformed into a cube defines a negative example. In
the example, classtocube(invoice) is a positive example and classtocube(customer),
classtocube(seller), classtocube(region) are negative examples.

For the experiments presented in [18], we have selected 10 model instances
(of database schemas), provided by an industrial partner, and describing several
application domains (invoices, sales, e-commerce, banking-investment, and so on).
Concerning the experimentations of this paper, we use the Microsoft Adventure-
Works 2008R2 sample database family reference databases [49]. The Microsoft
AdventureWorks reference databases are Adventure Works Sample OLTP Database
(Adventure WorksOLTP) and Adventure Works Sample Data Warehouse (Adven-
ture WorksDW). The Adventure WorksOLTP is a sample operational database
used to define the source-model (i.e., the data-source schema — DSPIM). The
Adventure WorksDW is a sample data warehouse schema used as target-model

—_
(@)

<<class>> | 1 * <<class>> 1 * <<class>>
Seller seller Customer invoice _ _ Invoice
name : String ~amount : Flogl;‘ ,

postDate : Date |

<<class>> |1 dueDate : Date 1

1
1

T . | —=—=== _: _________ discoUnTAmaunt : F‘oat
1
|

Region region _ _ _ _ _ Lo o_..

comments : String |
t

]
£
]
£
(%)
)
o
o 1
5 1
3
o
(7] 1 : 1
! : | name : String : : category |t - ___ 1
E ! | I <<class>> |
% [F========" 1= Category !

1 1
a 1! : : I discountRate : Integer | 1
o U U 1 1
c vyVvv v v v
& ClassToLevel RelationShipToDimension ClassToCube PropertyToMeasure PropertyToDimension
s (] 1 1 i

[| L, e == |
® [1 ¥ -
£ L1y &<level>> 1 <[<<level>> | 4 ! * <<cube>> | |*
2 1’| ; Seller Customer 0 InvoiceFact |
S =
] . ! name : String | <<di ion>> m g e s | <<di ion>>
o SCoUR AT 1 -
50 [|- omcustomer | SSORATEN oot | pimTime
£ L] <<tever>> :
II- | Region 1 1

| -
name : String <<level>> <<level>> <<level>>

= 1 e— |
a 1 Year 1 « Month 1 x Day
a [N <<level>>
= Category 1

discountRate : Integer

Fig. 2. Mapping UML CORE Instance (DSPIM) to CWM OLAP Instance (MDPIM).

(i.e., the multidimensional schema — MDPIM). The Adventure WorksOLTP, Ad-
venture WorksDW and the mapping between them (evaluated by the expert)
are considered as a reference project-trace. This will allow us to benchmark
our approach on a new extended schema (that generate more examples) and
a new dependency-graph. The databases elements (i.e., classes, properties and
associations) are encoded as background knowledge (B) and the mapping in-
stances between their elements allows to define positive (E™) and negative (E~)
examples.

Concerning the number of examples, we have ||EciassTocube|| = 71 denoting
the number of example (positives and negatives) used to learn ClassToCube
concept. Then, concerning PropertyToMeasure, | EpropertyToMeasure | = 249, and
for other concepts ||EPrope'rtyToDimension|| = 2457 ||ERelationShipToDimension|| =
93; |‘EElementToHierarchyPath|| = 3383 and ‘IEElementToDimensionLevelH = 338.
Average results from the 10x10-fold cross validation are then reported.

As input, Aleph takes: (i) background information in the form of predicates,
(ii) a list of modes declaring how these predicates can be chained together, and
(iii) a designation of one predicate as the "head” predicate to be learned. (iv)
Lists of positive and negative examples of the head predicate are also required.
The learned logical clauses give the relationship between the transformations and
the contextual information (elements) in the models. We run Aleph in the default
mode, except for the minpos, parameter, :- set(minpos, 2) establishes as 2 the
minimum number of positive examples covered by each rule in the theory. The
mode definitions in Aleph are required to produce a theory. We give below the
Aleph modes declaration for ClassToCube and PropertyToMeasure as examples:

:— modeh(1,classtocube(+class)).

17

:— modeb(*,class(+class)).

:— modeb (*,property(+property,#type,#multiplicity,#multiplicity)).
:— modeb(*,association(-association,+class,-class)).

:- modeb (*,associationOwnedAttribute(+class,-property)).

:— modeb (*,associationMemberEnds(+association,-property)).

:— modeh(1,propertytomeasure (+property)) .

:— modeb(*,class(+class)).

:— modeb(*,classtocube(+class)).

:— modeb (*,property (+property, #type, #multiplicity,#multiplicity)).
:— modeb (*,associationOwnedAttribute(-class,+property)).

ElementToHierarchyPath ElementToDimensionLevel
PropertyToMeasure RelationShipToDimension

PropertyToDimension

ClassToCube

Fig. 3. The Considered Dependency Graph of Second Experiments.

We run Aleph in the default mode, except for the minpos and noise parameters:
:- set(minpos, p) establishes as p the minimum number of positive examples
covered by each rule in the theory (for all experiments we fix p = 2); and :-
set(noise, n) is used to report learning performance by varying the number of
negative examples allowed to be covered by an acceptable clause (we use two
setting n = 5 and n = 10). We propose also to compare the The Independent-
Concept Learning (ICL) and the dependent-concept learning (with more different
settings) approaches. We identify the concept dependencies illustrated by the
graph in figure 3:

— ClassToCube = PropertyToMeasure: The PropertyToMeasure concept de-
pends on the concept ClassToCube. In general, the context of transformation
of properties depends on contextual information of transformed classes and
the context of obtaining measures is part of the context of obtaining cubes. In
fact, Properties that become Measures are numeric properties of classes that

18

become cubes. So, we need information about the context of ClassToCube
transformation in order to find the context of PropertyToMeasure.

— ClassToCube =< PropertyToDimension: This defines dependency between
classes transformed into cubes and their properties that can be transformed
into dimensions. Regarding the UML CORE metamodel, we find a structural
dependency between Class and Property elements (a Class includes attributes,
represented by the ownedAttribute role that defines a set of properties). Then,
regarding the CWM OLAP metamodel, we have a structural dependency
between Cube and Dimension elements. Current experiments confirm that
structural dependencies in the metamodel act on the ways to perform learning.

— ClassToCube = RelationShip ToDimension: Indeed, dimensions are, also, ob-
tained from relationships of the Class that is transformed into Cube. The
CubeDimensionAssociation meta-class relates a Cube to its defining dimen-
sions as showed by the CWM OLAP metamodel in [18]. These relationships
define the axes of analysis in the target multidimensional schema [97].

— (PropertyToDimension, RelationShipToDimension) < ElementToHierarchy-
Path: A Dimension has zero or more hierarchies. A Hierarchy is an organi-
zational structure that describes a traversal pattern through a Dimension,
based on parent/child relationships between members of a Dimension. Then,
elements that are transformed into dimensions (properties and relationships)
extend the background knowledge used to find hierarchy paths.

— (PropertyToDimension, RelationShip ToDimension) < ElementToDimension-
Level: A LevelBasedHierarchy describes hierarchical relationships between
specific levels of a Dimension (e.g., Day, Month, Quarter and Year levels for
the Time dimension). So, rules of transforming elements into Dimension are
used to find rules of obtaining the levels.

4.2 Results and Discussion

In the first experiments, we examined the accuracy of the learned rules to show
the impact of the number of training models and examples and we report the
obtained test accuracy curves for ClassToCube and PropertyToDimension. The
accuracy of current experiments based on the new dataset (of AdventureWorks)
confirm the results reported in [18]. Then, considering the second dependency
graph, we study also the performances of the DCL approach (with the two
settings DCLI and DCLR) compared to the ICL approach. We report, in this
section, the ROC curves of the tested approaches (ICL, DCLI and DCLR) based
on the new dataset and the new enhanced dependency-graph. Accuracy is defined,
based on the contingency table (or confusion matrix), as:

TP+TN 1
P+N)
Where P (N) is the number of examples classified as positive (negative), T'P
(T'N) is the number of examples classified as positive (negative) that are indeed
positive (negative).
For ClassToCube, Aleph induces the following rules with the best score:

Accuracy =

19

classtocube(A) :- associationOwnedAttribute(A,B),
property(B,float,1,1), association(C,A,D).
classtocube(A) :- associationOwnedAttribute(A,B),

property(B,integer,1,1), association(C,A,D).

For PropertyToDimension, Aleph induces the following rule with the best
score:

propertytodimension(A) :- property(A,date,1,1).

Concerning concepts PropertyToMeasure, Relationship ToDimension and ClassToLevel,
Aleph induces the following rules with the best score. For each concept, the ob-
tained rules include predicates of child-concepts in the dependency-graph, when
learned in the Dependent-Concept Learning framework:

% PropertyToMeasure

propertytomeasure(A) :- associationOwnedAttribute(B,A),
classtocube(B), property(A,float,1,1).

propertytomeasure(A) :-associationOwnedAttribute(B,A),
classtocube(B), property(A,integer,1,1).

% RelationshipToDimension
relationshiptodimension(A) :- association(A,B,C), classtocube(B).

% ClassToLevel

classtolevel(A) :- association(B,C,A), relationshiptodimension(B).

classtolevel(A) :- association(B,C,A), classtocube(C),
relationshiptodimension(B) .

We note that the learned rules are close to the rules designed manually. We
compare the resulted rules with those provided by related work. For example
in [101], the source-model context of the proposed EntityToCube is formed by
Entity, RelationShipEnd (with multiplicity = ’*’) and Attribute (numeric types)
relations. Indeed, as it is shown above in the resulted ClassToCube transfor-
mation rule, we find also the relations: (classtocube(A) :- associationOuwnedAt-
tribute(A,B), property(B,float,1,1), association(C,A,D).) and classtocube(A) :-
associationOwned Attribute(A,B), property(B,integer,1,1), association(C,A,D).

Regarding the resulted rules, associationOwnedAttribute(A,B) and associ-
ation(C,A,D) atoms are assiciated with RelationShipEnd (with multiplicity =
7#7) relation; then property(B,float,1,1) and property(B,integer,1,1) to Attribute
(numeric types) relation. We have proposed a good language bias and a good
modelling bias based on the same domain metamodel used by experts (UML and
CWM) and this explains the obtained rules. Also, all of the resulted rules are
found in a reasonable time. Indeed, we note 30s average search time for each
concept in this configuration.

The Receiver Operating Characteristics (ROC) graphs are a useful technique
for visualizing, organizing and selecting classifiers based on their performance [20].

20

The following metrics are used to report the ROC graphs. The true-positive-rate
(also called hit rate and recall) and the false-positive-rate (also called false alarm
rate) of a classifier are estimated as:

TP FP
tp rate = 5 fp rate = N (2)

Additional terms associated with ROC curves are sensitivity and specificity:

e Trp e TN
sensitivity = recall = i i specificity =1 — fp rate = N (3)

ROC graphs are two-dimensional graphs in which tp rate (sensitivity) is
plotted on the Y axis and fp rate (1 - specificity) is plotted on the X axis.

~+ICL #+DCLI +DCLR -N-DCLI --N-DCLR/N2-DCLR -+N2-DCLI ~+ICL *DCLI -+DCLR/N-DCLR/N2-DCLR --N-DCLI -+-N2-DCLI

1

=)

| e

True-Positive Rate
<

True-Positive Rate

R Y
—
N

0 02 04 06 08 1 0 02 04 06 08 1
False-Positive Rate False-Positive Rate

Fig. 4. Learning PropertyToMeasure (n=>5 for left) and (n=10 for right).

In order to assess the impact of a child concept rules quality on the learning
performances of a parent concept, we experiment the case where the child concept
is noisy. This experiment is made within the DCL approach, we add noise to the
non-dependent concept (i.e., ClassToCube) and we observe results of learning
dependent-concepts with different acceptable noise setting (n = 5 and n = 10). We
report the cases where 10% (denoted N-DCLI and N-DCLR) and 20% (denoted
N2-DCLI and N2-DCLR) of the examples are noisy. To add noise, we swap
positives and negatives examples.

We use also, the Area Under the ROC Curve (AUC) as a common measure
to compare the tested methods. The obtained results within current experiments
are reported by figures 4, 5, 6, 7 and 8). Figures show that n = 10 setting
(right part of each figure) gives best performances compared to n = 5. This
confirms that the choice of this parameter is important to deal with noisy
information of database models in general. Indeed, data quality and conceptual
models quality [47,36] play an important role in the design of information systems,
and in particular decision support systems. Then, comparing ICL, DCLI and

21

~+ICL =DCLI -+DCLR/N-DCLR/N2-DCLR --N-DCLI -+N2-DCLI ~+ICL #+DCLI +DCLR -<N-DCLI --N-DCLR/N2-DCLR -+-N2-DCLI

—
a?f A

0 02 04 06 08 1 0 02 04 06 08 1
False-Positive Rate False-Positive Rate

=

kY

True-Positive Rate
True-Positive Rate

<
—

Fig. 5. Learning PropertyToDimension (n=>5 for left) and (n=10 for right).

DCLR approaches, results show that the DCLI has greater AUC than other
tested methods. The DCLI curves follow almost the upper-left border of the ROC
space. Therefore, it has better average performance compared to the DCLR and
ICL (AUCperr > AUCperr > AUCrcor). The ICL curves almost follow to the
45-degree diagonal of the ROC space, which represents a random classifier. The
DCLR setting exhibits good results with respect to the ICL approach, which are
nevertheless slightly worse than results of the DCLI setting.

~+ICL -+DCLI -+DCLR/N-DCLR/N2-DCLR --N-DCLI -+-N2-DCLI ~+ICL -#DCLI +DCLR -<N-DCLI --N-DCLR/N2-DCLR -+N2-DCLI

7= =

0 02 04 06 08 1 0 02 04 06 08 1
False-Positive Rate False-Positive Rate

=

=

=

R

True-Positive Rate
<

True-Positive Rate

<

Fig. 6. Learning RelationshipToDimension (n=>5 for left) and (n=10 for right).

Also, in the actual setting, AUCpcrr > AUCpcerr > AUCjcr result is ex-
pected, because the DCLI configuration, when learning a parent concept, uses in
its background knowledge child-concepts as set of facts (extensional definition), as
opposed to DCLR, which previously learns as sets of rules definition for offspring
concepts. In case lower level concepts (i.e., child-concepts) are not perfectly iden-
tified, the errors for offspring concepts propagate to parent concepts. We assume
here that examples are noise-free, which explains why DCLI has a better behaviour
than DCLR. Thus, for PropertyToMeasure, PropertyToDimension and Relation-

22

ship ToDimension, results integrate the error rate from ClassToCube learned rules.
For the parent-concepts ElementToHierarchyPath and ElementToDimensionLevel
that depend on (PropertyToDimension and Relationship ToDimension), results
are influenced by the error rate propagation from learning ClassToCube and then
PropertyToDimenston and RelationshipToDimension.

Another remarkable point concerning curves is that the gap between ICL
and DCL becomes more important more when we learn top-level concepts (i.e.,
parent-concepts) in the dependency-graph. So in this case, the contribution of
DCL becomes more significant. We observe for example that the gap is moez
important for ElementToHierarchyPath and ElementToDimensionLevel concepts
(in figures 7 and 8)) than PropertyToMeasure concept (in figure 4). This is
explained by the fact that when finding top-level concepts using ICL, the learning
configuration will be deprived of much more information on all intermediate
concepts.

~+ICL -*DCLI/N2-DCLI +DCLR ~+N-DCLI -N-DCLR/N2-DCLR ~+ICL -*DCLI/N2-DCLI ~+DCLR -+N-DCLI -N-DCLR/N2-DCLR

0 02 04 06 08 1 0 02 04 06 08 1
False-Positive Rate False-Positive Rate

=

3

_

<

True-Positive Rate
<

True-Positive Rate

S
S

Fig. 7. Learning ElementToHierarchyPath (n=>5 for left) and (n=10 for right).

Then, considering the N-DCLI/N2-DCLI and N-DCLR/N2-DCLR, we have
mainly: AUCN_pcrr > AUCna—pcerr and AUCN_pcrr > AUCN2—-DCLR-
Curves show that the obtained performances depend on the concept to learn and
its degree-of-dependence on ClassToCube (the noisy non-dependent concept of
this configuration). For instance, in figures 5 and 6, PropertyToDimension and
Relationship ToDimension are most impacted than PropertyToMeasure (in figure
4). The PropertyToDimension and RelationshiptoDimension concepts are highly
dependent on ClassToCube. This can be observed on most schemas (remarks
provided in first experiments) and it is confirmed by the expert point-of-view.
For example, in the case of Relationship ToDimension, the N2-DCLI curve seems
to reach the 45-degree diagonal. This gives us an idea of the noise that we can
accept when learning specific dependency relationships.

Then, the ElementToHierarchyPath and ElementToDimensionLevel concepts
are impacted by the noisy data of ClassToCube, but less than PropertyToDimen-

23

sion and Relationship ToDimension. We observe that ElementToHierarchyPath
and ElementToDimensionLevel are not in direct dependence with ClassToCube.

In this evaluation, a sensitivity analysis of classifiers is performed. Indeed,
we can tell how robust a classifier is, by noting the classification accuracy
of learning approaches using noisy data of different noise levels. We use two
different percentages of noise, 10% of the original data set (approaches working
on the obtained noisy dataset are denoted N-DCLI and N-DCLR) and 20% (the
obtained datasets are denoted N2-DCLI and N2-DCLR). Similar experiments on
all datasets are performed and the resulted behaviors are compared to the ICL
and DCL results using original datasets. Figures show that, in the presence of
noise, and for most concepts, the classification accuracy of the DCLs settings
drops less than those of the ICL approach. The performance degradation measures
effect of noise on the classifiers. A classifier is more tolerant and resistant to the
noise when it shows a smaller performance deviation.

Regarding child-concepts (e.g., ClassToCube, PropertyToMeasure), the be-
havior of approaches that learn on noisy-datasets remains close to the DCLs
working on the standard datasets (noise-free datasets). Nevertheless, the more we
advance in levels of the dependency-graph, the less resistant are these approaches
to noise. Their accuracy will be much lower than the non-noisy approaches and
gets closer to the performance of ICL setting. We conclude that child-concepts
are more tolerant to noise, because the learning environment is easier (none or
few dependencies exist) and the search space is reduced. Also, noisy-data do
not support obtaining good performance in the case of large dependency graphs.
Thus, a larger hierarchy of concepts can significantly reduce the quality of the
rules at the parent-concepts, because their learning environment is noisy by error
propagation of learning child-concepts.

~+ICL -+DCLI/N-DCLI/N2-DCLI -+DCLR -+N-DCLR/N2-DCLR ~ICL -+DCLI/N-DCLI/N2-DCLI -+DCLR --N-DCLR/N2-DCLR

,r//
[

=

s

{I’

(/

0 02 04 06 08 1 0 02 04 06 08 1
False-Positive Rate False-Positive Rate

e

kS

True-Positive Rate
<

True-Positive Rate

<

Fig. 8. Learning ElementToDimensionLevel (n=5 for left) and (n=10 for right).

We performed experiments on two different datasets, and we note that in
both cases, the transformations (their number and the dependencies between
them) are not the same. Moreover, through these experiments, we conclude that

24

more the number of models (or data) from the knowledge base is important, more
the dependency graph is complex (increased number of nodes and relationships).
Regarding the increased number of transformations in the second graph, we show
that the application keeps acceptable performance in terms of execution time
and quality rules. This is explained by the fact that the proposed architecture
has several advantages in terms of division of the problem. The overall design
is organized through several levels of modelling (and so learning levels). The
representation language is reduced for each transformation and then offers a
support for scalability.

The number of model-elements used for experiments forms the size of the
background knowledge. In the first experiment we use a dataset consisting of 10
models with 475 model-elements. In the second experiment, the sample consists
of 6 schemas (of AdventureWorks) containing 1028 elements (has doubled). The
results of running show almost equivalent performance between the first and
second experiment. The average seek time of a concept in the first experiment is
30-32s and it is estimated at 36-39s for the second. The proposed architecture and
the partitioning allow the use of a small number and specific predicates for each
concept. The search space remains invariant as it always uses the same number of
elements of metamodels that describe the background knowledge and examples.
This structure is used to define invariants of transformation from the definition
of metamodels. We conclude that this type of Model-Driven Architecture with
a two-dimensional partitioning (layers and design-levels) is the best to support
and scaling-up machine learning integration.

The model-driven process, based on Two Track Unified Process is one of the
components of the architecture that we propose. This process offers a comprehen-
sive partitioning by layer (or component) and a local partitioning (by design-level).
The proposed frameworks, largely based on Unified Modelling Language (UML)
and Common Warehouse Metamodel (CWM) define the second component of the
architecture. These frameworks are used to define the representation language of
transformations to learn. The choice of industry standards (e.g., UML, CWM),
recognized by experts, allows ensuring a good level of system integrity and also
provides an optimal representation language (for understandable rules).

The transformations are bound by the execution-dependency (the where
relationship , or the post-condition). The proposed approach, based on the
dependency-graph is consistent with this definition of transformations. Execution-
dependencies are transformed (or reduced) into search-dependencies. This re-
duction problem creates the best environment for defining parent-concepts and
improves the quality of the obtained rules; thus ensuring an effective assistance
to experts.

When there are more changes, there are more execution-dependencies (prob-
lem of scaling-up). If these dependencies are not considered (this is the ICL case),
the error rate, the lack of information and consistency will be more important in
scaling. The DCL approach addresses this problem by an analysis and definition of
a dependency-graph taking into account the number of possible transformations.
The analysis of project traces allows identifying specific business goals that must

25

be addressed by the generated data warehousing system. The structure of the
data warehouse will be generated by the learned transformations. Therefore the
context of these transformations must be consistent with the stated goals in order
to generate the expected data warehouse specification. It is concluded that a
step of data analysis project is required to identify the necessary transformations
and relationships between them (dependencies). A careful definition of the trans-
formations context and a faithful design of the dependency-graph can improve
learning performance thereafter. This step and the resulted information’s allow
defining a language bais (i.e., the transformations context) of and a search bias
(i.e., the dependency-graph).

Why DCL is better? because adding a child-concept description allows the
definition a new information or other context to consider when learning the
parent-concept. This adds dependency information considered as an informational
context that enriches the search space of the parent-concept and helps finding
expected relations. This plays as an additional language bias, but also a search
bias, allowing for good learning performances and good rules quality. The learned
theory of the child-concept extends the background knowledge with a specific
theory simple to learn, but at the same time it defines a sub-context of the
parent-concept theory.

So, this learning strategy, find first relations that are simple to learn with a
minimum number of model elements. Then, the resulted sub-theories are used
to set-up the learning context of parents-concepts. This approach is suitable to
solve model-driven based problem because: (i) in metamodels definitions, we find
dependencies between model elements (class, attribute, cube, measure, etc.), and
(ii) in the manually designed rules, the "where” part of the transformation defines
rules that must be activated (or executed) as post-condition. This post-condition
information is a form of dependency.

5 Future Research Directions

Our future work, regarding Model-Driven Data Warehouse automation will exper-
iments the case when a business goals model is considered during transformations.
For example, the derivation of the MDPIM from the pair (DSPIM, MDCIM),
where MDCIM defines the organisation requirements/goals. We plan also to
extend the approach to new application domains that provide a large dependency-
graph (e.g., the Extraction, Transformation and Loading (ETL) process in the
data warehousing architecture). Then we plan for an extension of the proposed
Model-Driven Architecture (MDA) and the conceptual transformation learning
framework to knowledge engineering seems also an interrresting and a challenging
future work. For example, a recent work [70] proposes an MDA approach to
knowledge engineering that addresses the problem the mapping between Com-
monKADS knowledge models and Production Rule Representation (PRR). Below
we discuss others important directions in the fields of Data Warehouse Perfor-
mance Management and Semantic Model-Driven Policy Management that we
consider interesting.

26

The book entitled DW 2.0: The Architecture for the Next Generation of
Data Warehousing [27] describes an architecture of the second-generation data
warehouses. It presents also the differences between DW 2.0 (introduced as the
new generation) and the first generation data warehouses. Authors start by an
overall architecture of DW 2.0 and give its key characteristics. Then, they present
the DW 2.0 components and the role of each component in the architecture.

The proposed architecture focuses on three key features: (i) the data warehouse
repository structure (organization on four sectors: interactive, integrated, near
line, and archival); (ii) unstructured-data integration and organization; and (iii)
unified meta-data management. We confirm that unstructured data and web-
data integration constitutes a future challenge. Thus, we support semantic-based
approaches [58] for web-data integration and data warehouses contextualization
with documents [66]. This kind of approaches will probably represent the essential
part of what we call the ”’DW 3.0 architecture”. The DW 3.0 concept (or content
data warehouse) is a unified architecture that includes the data warehouse, the
document warehouse and the web warehouse.

According to authors [27], DW 2.0 represents the way corporate data needs
to be structured in support of web access and Service Oriented Architecture
(SOA). For this purpose, an effort is provided by [98]. So, we believe that
Business Intelligence-as-a-Service platforms need a more efficient, personalized
and intelligent web-services discovery and orchestration engines. The perfect
marriage of SOA/SaaS infrastructures is a key issue to design future on-demand
business intelligence services.

In [67], the author studies the evolving state of data warehousing platforms and
gives options available for next generation data warehousing. The options include
concepts presented in [17]: SaaS and open-source business intelligence tools. It
presents also many important features such as: real-time data warehousing, data
management practices and advanced analytics. In [65], the author discusses other
remaining challenges to extend traditional data warehouse architecture. The
focus is mainly given for the data warehouse full-scale problem (world warehouse)
and the privacy in data warehousing systems.

Metadata management for Business Intelligence-as-a-Service infrastructures
and cloud-based databases will be an interesting research direction. Indeed,
current standards and models should be extended in this new architectural
context. Finally, we believe that our proposal for Model-Driven Data Warehouse-
as-a-Service is a key characteristic to provide future data warehouse design in
the cloud.

The purpose of the Common Warehouse Metamodel (CWM) specification is
to define a common interchange specification for metadata in a data warehouse.
This definition provides a common language and metamodel definitions for the
objects in the data warehouse. CWM describes a format to interchange metadata,
but lacks the knowledge to describe any particular type of interchange. The need
to define the context of a CWM interchange was discovered when the CWM
co-submitting companies produced the CWM interoperability showcase. In order
to make an effective demonstration of CWM technology, the participants needed

27

to agree upon the set of metadata to be interchanged. In this context, the Object
Management Group (OMG) propose the CWM Metadata Interchange Patterns
(CWM MIP) specification in order to address the limitations of the CWM.

The purpose of CWM MIP specification is to add a semantic context to
the interchange of metadata in terms of recognized sets of objects or object
patterns. We will introduce the term Unit of Interchange (UOI) to define a valid,
recognizable CWM interchange. From this information, a user of CWM, working
in conjunction with CWM MIP, should be able to produce truly interoperable
tools. CWM MIP augments the current CWM metamodel definitions by adding
a new metamodel package. This new metamodel will provide the structural
framework to identify both a UOI and an associated model of a pattern, and
providing the necessary object definitions to describe both. In our future work,
we will study in detail the CWM MIP in order to define new features that can
impouve the proposed architecture.

The Ontology Definition Metamodel (ODM) has been used as a basis for ontol-
ogy development as well as for generation of OWL ontologies. The specification
defines a family of independent metamodels, related profiles, and mappings among
the metamodels corresponding to several international standards for ontology and
Topic Maps definition, as well as capabilities supporting conventional modelling
paradigms for capturing conceptual knowledge, such as entity-relationship mod-
elling. The ODM is used for ontology development and analysis on research in
context-aware systems. As part of the OMG metamodeling architecture (ODM is
a MOF-comliant metamodel), the ODM enables using Model Driven Architecture
standards in ontological engineering. The ODM is applicable to knowledge rep-
resentation, conceptual modelling, formal taxonomy development and ontology
definition, and enables the use of a variety of enterprise models as starting points
for ontology development through mappings to UML and MOF.

The software engineering community is beginning to realize that security is
an important requirement for software systems, and that it should be considered
from the first stages of its development. Unfortunately, current approaches which
take security into consideration from the early stages of software development
do not take advantage of Model-Driven Development. Security should definitely
be integrated as a further element of the high-level software system models
undergoing transformation until the final code generation [21]. Thus, Model-
Driven Development for secure information systems, Model-Driven Security and
dynamic refinement of security policy are a new promising research direction.
Another important aspect related to this, is semantics. In fact, dynamic refinement
of security require to apply innovative semantic reasoning techniques to security
metrics and contextual information. We consider this as an interessting problem
for model-driven approach and its application. Our innovative ideas around thees
topics are discussed below.

Perspective, we seek to answer the question of how to provide intelligent
methods and techniques to dynamically refine security policy using the contextual
information? It addresses different new issues such as: advanced semantic rea-
soning, recent security standards integration and deployment of the approach

28

in several application domains. The project covers also the extension and the
improvement of several existing approaches such as: related-policies management,
context-aware and smart nodes, and the improvement of policies refinement
techniques. Modularity, adaptability and consistency will be the main features of
the proposed architectures, methods and standards. Thus, the dynamic policy
refinement life-cycle proposed in this document aims to ensure these important
aspects.

This proposal addresses the use of the Model-Driven Development for security
policies derivation and standards recommendation for policies definition and
representation. The general research area related to this proposal is called Model-
Driven Security. The idea is derived from the research challenges discussed in [21,
93], where authors briefly explore some of the important related works [3,26, 77,
76,53, 33] and standards [61, 62] to this context. So, an adapted architecture using
a model-driven approach and that provide our vision of the problem is described.
Regarding the problem description, the ”Semantics and Reasoning” component
will represents the core workflow element of the proposed architecture. This
component is responsible of semantic policy adaptation (or reactions generation)
based on policy changes and users activity. The project description also implies
that the overall workflow contains a human approval step.

When we talk about automatic derivation (or generation), the application of
the Model Driven Architecture approach is directly possible. In the case of the
proposed framework, the terms are around model-driven security or model-driven
policy. The aim of our proposal is to take advantages of the semantic-driven
approaches and the model-driven approaches. So, considering the ”Semantics &
Reasoning” component definition and the model-driven engineering definition,
several questions arise: (i) how allow interoperability between the reasoning
process (reasoning mechanisms) and the MDA process (policies generation mech-
anisms)? (ii) Which representation languages are available to define policy in
order to ensure the integrity of the entire process? And (iii) in more general, how
provide a unified semantic model-driven and reasoning approach?

To address this problem, we propose the use of several industry standards
covering the semantics, security, and the MDA aspects. In addition, based on our
experience on MDA-compliant architectures, a common approach showing the use
of these standards is defined. The ontology is the central concept of any semantic-
driven development. The Ontology Definition Metamodel specification [62] is
an OMG standard (MDA-compliant and extensible metamodel) that allows
model-driven ontology engineering. It provides standard profiles for ontology
development in UML and enables consistency checking, reasoning, and validation
of models in general.

The ODM include five main packages: At the core are two metamodels that
represent formal logic languages: DL (Description Logics) which, although it is
non-normative, is included as informative for those unfamiliar with description
logics and CL (Common Logic), a declarative first-order predicate language.
There are three metamodels that represent more structural or descriptive repre-
sentations that are somewhat less expressive in nature than CL and some DLs.

29

These include metamodels of the abstract syntax for RDFS, the Ontology Web
Language (OWL) and Topic Maps (TM). Thus, the ODM standard is highly rec-
ommended in an MDA-based process because it is conform to MOF metamodeling
architecture. In this case, is important to have a generic ontologies representa-
tion in order to: (i) facilitate the transformation of semantic models using the
MDA-enabled frameworks; and (ii) ensure interoperability between the different
components,/tools (including the reasoning engine and the transformation engine).

Security policy definition is very important in organization because it should
cover many aspects. Several security specifications are proposed. However, the
OMG security specifications [61] catalog remains the most comprehensive and
extensible. The OMG catalog mainly contains: (i) the Authorization Token Layer
Acquisition Service (ATLAS) specification which describes the service needed to
acquire authorization tokens to access a target system using the CSIv2 protocol;
(ii) The Common Secure Interoperability Specification, Version 2 (CSIv2) which
defines the Security Attribute Service that enables interoperable authentication,
delegation, and privileges; (iii) the CORBA Security Service which provides
a security architecture that can support a variety of security policies to meet
different needs (identification and authentication of principals, authorization and
infrastructure based access control, security auditing, etc.); (iv) the Public Key
Interface (PKI) specification which provides interfaces and operations in CORBA
IDL to support the functionality of a PKI (issuance, management, and revocation
of digital certificates); and (v) the Resource Access Decision Facility (RAD)
specification which provides a uniform way for application systems to enforce
resource-oriented access control policies. The integration of these standards in
the final architecture allows more quality in policy representation and a more
unified, interoperable model-driven security approach with MDA. Note also that
the proposed approach is open for integration of others security specifications
and profiles.

In the proposed approach we focus on the ”Semantics & Reasoning” module.
Thus, we discuss some details of the ”Semantics & Reasoning” flow based on our
main objectives (i.e., adaptability, consistency) and the model-driven support
that we add. Figure 9 illustrate the workflow that we explain below.

Semantic Reasoning: the policies adaptation flow starts by a semantic
analysis step. This step considers at the input several semantic conceptions:
context, users activities/profiles, auditing, etc. These informations are represented
in general by ontologies and/or rules. As discussed above, the ontologies models
are conform to the Ontology Definition Metamodel metamodel.

Policy Adaptation: this step corresponds to the Model-Driven Architecture
transformation process. Based on the results of semantic reasoning step, it selects
the appropriate transformation from transformations repository and apply it
on current policy model. Thus, information given by the reasoning engine is
automatically projected on policy by the transformation engine. In a model-driven
context this supposes that policies models are conforming to the specifications
cited above (ATLAS, RAD, etc.) or other profiles already recognized by the

30

Ontologies/Rules/Context

Semantics

‘ Semantic Reasoning ‘

‘ Model Transformation
Policy Adaptation

Conform to Security Consistency Verification
Profiles

Policy
Human Approval

Fig. 9. Semantic Model-Driven Policy Adaptation.

transformation. This allows for more interoperability between reasoning and
transformation engines.

Counsistency Verification: it is a machine approval foregoing the human
approval. During this step the system checks if the main security constraints
are violated or not. If a constraint is violated, the transformation process must
be re-executed with new parameters (information about the violation is also
audited), else the system waits for human approval.

Human Approval: it can be a very important step in the approval workflow
mechanisms of some organizations. Indeed, in the detailed requirements we stress
this sentence: automatic reactions on a policy might not be accepted by security
officers, or even more simply might not be suitable in real-life.

Finally, in this proposal we discuss briefly the application of the Model-Driven
Engineering for policy adaptation in the respect of the problem description.
So, based on our contributions to improve model-driven methodologies, an
adapted Model-Driven Security approach is defined. Then, we provide also
recommendations for specification (perspectives to integrate new policy languages)
to define policy. Future work will provide a detailed analysis, more research and
improvements around the proposed approach.

6 Conclusion

This chapter studies a complex problem at the crossroad of several research fields.
We study the Model-Driven Data Warehouse engineering and its automation using

31

machine learning techniques. The automation of information systems engineering
and, in particular, Decision Support Systems remains a difficult and a challenging
task. Indeed, the model-driven data warehouses require a transformation phase
of the models that necessitate a high level of expertise and a large time span to
develop.

The main goal of this work is to automatically derive the transformation
rules to be applied in the model-driven data warehouse process. This process of
transformation concerns for instance the creation of an OLAP cube in business
intelligence from an UML diagram of the considered application. The proposed
solution allows the simplicity of decision support systems design and the reduction
of time and costs of development. First, we use the Model-Driven Engineering
paradigm for data warehouse components development (as first level of automa-
tion). Then, we use inductive relational learning techniques for automatic model
transformation generation (as second level for automation). Finally, we propose
a deployment solution for Business Intelligence-as-a-Service architecture based
on promising architectural model and open technologies in order to reduce time
and costs of the infrastructure installation.

The modelling step [14, 15], considered as modelling bias (or architecture bias)
is important to manage these risks and make efficient the task of transformations
learning. In this step, the Model-Driven Data Warehouse framework is extended
by Inductive Logic Programming (ILP) capabilities in order to support the expert
in the transformation process. The ILP offers a powerful representation language
and the given results (i.e., transformation rules) are easy to understand. We
have focused on providing an optimized representation of the language bias (or
declarative bias) based on Unified Modelling Language (UML) and the Common
Warehouse Metamodel (CWM) standards. This declarative bias addresses the
reduction of CWM-UML problem into ILP and aims to restrict the representation
to clauses that define best the transformation rules.

Through the learning approach step, we contribute to the definition of the
optimal way to learn transformation rules in model-driven frameworks. Indeed,
dependencies exist between transformations within the Model-Driven Data Ware-
house architecture. We investigate a new machine learning methodology stemming
from the application needs: Learning Dependent-Concepts (DCL). This DCL
method is implemented using the Aleph ILP system and it is applied to our trans-
formation learning problem. We show that the DCL approach gives significantly
better results and performances across several experimental settings.

References

1. J. Abd-Ali and K. El Guemhioui. Automating Metamodel Mapping Using Machine
Learning. In 8M4MDA, pages 103—109, 2006.

2. E. Alpaydin. Introduction to Machine Learning. The MIT Press, 2nd edition,
2010.

3. D. A. Basin, J. Doser, and T. Lodderstedt. Model driven security: From uml
models to access control infrastructures. ACM Trans. Softw. Eng. Methodol.,
15(1):39-91, 2006.

4. J. Bézivin. Model driven engineering: An emerging technical space. In GTTSE,
pages 36—64. Springer, 2006.

32

10.
11.
12.
13.
14.
15.
16.

17.

18.

19.

20.
21.

22.
23.
24.
25.

26.

27.

28.
29.
30.
31.

A. Bieszczad and K. Bieszczad. Contextual learning in the neurosolver. In IJCANN,
pages 474-484. Springer, 2006.

A. Cypher, D. C. Halbert, D. Kurlander, H. Lieberman, D. Maulsby, B. A. Myers,
and A. Turransky, editors. Watch what I do: programming by demonstration. MIT
Press, Cambridge, MA, USA, 1993.

K. Czarnecki and S. Helsen. Feature-based survey of model transformation
approaches. IBM Syst. J., 45:621-645, July 2006.

Z. Diskin and U. Wolter. A diagrammatic logic for object-oriented visual modeling.
FElectr. Notes Theor. Comput. Sci., 203(6):19-41, 2008.

D. Djuric, V. Devedzic, and D. Gasevic. Adopting Software Engineering Trends
in Al. IEEFE Intelligent Systems, 22:59—-66, 2007.

X. Dolques, M. Huchard, and C. Nebut. From transformation traces to transfor-
mation rules: Assisting model driven engineering approach with formal concept
analysis. In ICCS, pages 093-106, Moscow, Russia, 2009.

Eclipse. The Model To Model (M2M) Transformation Framework., 2010.

M. Erwig. Toward the automatic derivation of xml transformations. In XSDM,
pages 342-354. Springer, 2003.

F. Esposito, G. Semeraro, N. Fanizzi, and S. Ferilli. Multistrategy theory revision:
Induction and abduction in inthelex. Machine Learning, 38(1-2):133-156, 2000.
M. Essaidi and A. Osmani. Data Warehouse Development Using MDA and 2TUP.
In SEDE, pages 138—-143. ISCA, 2009.

M. Essaidi and A. Osmani. Model driven data warehouse using MDA and 2TUP.
Journal of Computational Methods in Sciences and Engineering, 10:119-134, 2010.
M. Essaidi and A. Osmani. Towards Model-driven Data Warehouse Automation
using Machine Learning. In IJCCI (ICEC), pages 380383, Valencia, Spain, 2010.
SciTePress.

M. Essaidi and A. Osmani. Business Intelligence-as-a-Service: Studying the
Functional and the Technical Architectures, chapter 9, pages 199-221. IGI Global,
2012.

M. Essaidi, A. Osmani, and C. Rouveirol. Transformation Learning in the Context
of Model-Driven Data Warehouse: An Experimental Design Based on Inductive
Logic Programming. In ICTAI, pages 693-700. IEEE, 2011.

J.-R. Falleri, M. Huchard, M. Lafourcade, and C. Nebut. Metamodel matching for
automatic model transformation generation. In MoDFELS, pages 326-340, Berlin,
Heidelberg, 2008. Springer-Verlag.

T. Fawcett. Roc graphs: Notes and practical considerations for researchers. Tech-
nical report, HP Laboratories, 2004.

E. Fernandez-Medina, J. Jiirjens, J. Trujillo, and S. Jajodia. Model-driven de-
velopment for secure information systems. Information € Software Technology,
51(5):809-814, 20009.

J. Gama. Combining Classifiers by Constructive Induction. In ECML, pages
178-189. Springer, 1998.

J. a. Gama and P. Brazdil. Cascade Generalization. Mach. Learn., 41:315-343,
December 2000.

A. Gerber, M. Lawley, K. Raymond, J. Steel, and A. Wood. Transformation: The
missing link of mda. In ICGT, pages 90-105. Springer, 2002.

S. M. Gustafson and W. H. Hsu. Layered Learning in Genetic Programming for
a Cooperative Robot Soccer Problem. In EuroGP, pages 291-301, London, UK,
2001. Springer-Verlag.

M. Hafner, R. Breu, B. Agreiter, and A. Nowak. Sectet: an extensible framework
for the realization of secure inter-organizational workflows. Internet Research,
16(5):491-506, 2006.

W. Inmon, D. Strauss, and G. Neushloss. DW 2.0: The Architecture for the
Next Generation of Data Warehousing. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2008.

D. Jackson and A. P. Gibbons. Layered learning in boolean GP problems. In
FEuroGP, pages 148-159. Springer-Verlag, 2007.

F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. Atl: A model transformation
tool. Sci. Comput. Program., 72}\1—2%:317397 2008.

F. Jouault and J. Bézivin. KM3: A DSL for Metamodel Specification. In FMOODS,
pages 171-185. Springer, 2006.

F. Jouault and I. Kurtev. Transforming models with atl. In MoDELS Satellite
FEvents, pages 128-138. Springer, 2005.

32

33.

34.

35.
36.

37.

38.

39.

40.
41.

42.
43.
44.

45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.

33

C. Kaldeich and J. O. e S4. Data Warehouse Methodology: A Process Driven
Approach. In CAiSE, pages 536—-549. Springer, 2004.

S. Kallel, A. Charfi, M. Mezini, M. Jmaiel, and A. Sewe. A holistic approach for
access control policies: from formal specification to aspect-based enforcement. Int.
J. Inf. Comput. Secur.

E. Kapsammer, H. Kargl, G. Kramler, T. Reiter, W. Retschitzegger, and M. Wim-
mer. Lifting metamodels to ontologies - a step to the semantic integration of
modeling languages. In MoDELS/UML, pages 528-542. Springer, 2006.

S. Kent. Model driven language engineering. Electr. Notes Theor. Comput. Sci.,
72(4), 2003.

G. Kersulec, S. S.-S. Cherfi, I. Comyn-Wattiau, and J. Akoka. Un environnement
pour lévaluation et lamélioration de la qualité des modeles de systéemes dinforma-
tion. In INFORSID, pages 329-344, 2009.

M. Kessentini, H. Sahraoui, and M. Boukadoum. Model Transformation as an
Optimization Problem. In MoDELS, pages 159-173, Berlin, Heidelberg, 2008.
Springer-Verlag.

M. Kessentini, H. Sahraoui, and M. Boukadoum. Méta-modélisation de la trans-
formation de modéles par ’exemple : approche par méta-heuristiques. In LMO,
2009.

M. Kessentini, M. Wimmer, H. Sahraoui, and M. Boukadoum. Generating trans-
formation rules from examples for behavioral models. In BM-FA, pages 2:1-2:7.
ACM, 2010.

R. Kimball and M. Ross. The Data Warehouse Toolkit: The Complete Guide to
Dimensional Modeling. John Wiley & Sons, Inc., New York, USA, 2002.

R. Kimball and M. Ross. The Kimball Group Reader: Relentlessly Practical Tools
for Data Warehousing and Business Intelligence. John Wiley & Sons, Inc., New
York, USA, 2010.

V. Kulkarni, S. Reddy, and A. Rajbhoj. Scaling up model driven engineering -
experience and lessons learnt. In MoDFELS, pages 331-345. Springer, 2010.

N. Lavrac and S. Dzeroski. Inductive Logic Programming: Techniques and Appli-
cations. Ellis Horwood, New York, 1994.

B. List, J. Schiefer, and A. M. Tjoa. Process-Oriented Requirement Analysis
Supporting the Data Warehouse Design Process - A Use Case Driven Approach.
In DEXA, pages 593-603. Springer, 2000.

S. Lujan-Mora, J. Trujillo, and L.-Y. Song. A UML profile for multidimensional
modeling in data warehouses. Data Knowl. Eng., 59(3):725-769, 2006.

J.-N. Mazén and J. Trujillo. An mda approach for the development of data
warehouses. Decis. Support Syst., 45:41-58, 2008.

K. Mehmood, S. S.-S. Cherfi, and I. Comyn-Wattiau. Data quality through
conceptual model quality - reconciling researchers and practitioners through a
customizable quality model. In ICIQ), pages 61-74. HPI/MIT, 2009.

S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity Flooding: A Versatile
Graph Matching Algorithm and Its Application to Schema Matching. In ICDFE,
pages 117-128. IEEE Computer Society, 2002.

Microsoft. Microsoft AdventureWorks 2008R2, 2011.

J. Miller and J. Mukerji. MDA Guide Version 1.0.1. Technical report, Object
Management Group (OMG), 2003.

T. M. Mitchell. Generalization as search. Artificial Intelligence, 18:203-226, 1982.
T. M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

N. Moebius, K. Stenzel, and W. Reif. Generating formal specifications for security-
critical applications - a model-driven approach. In ITWSESS, 2009.

S. Muggleton. Inductive Logic Programming. New Generation Computing, 8:295—
318, 1991.

S. Muggleton. Optimal Layered Learning: A PAC Approach to Incremental
Sampling. In ALT, pages 37-44, London, UK, 1993. Springer-Verlag.

S. Muggleton and L. D. Raedt. Inductive logic programming: Theory and methods.
J. Log. Program., 19/20:629-679, 1994.

S. Muggleton and K. Road. Predicate Invention and Utilisation. Journal of
Ezxperimental and Theoretical Artificial Intelligence, 6:6-1, 1994.

V. Nebot and R. B. Llavori. Building data warehouses with semantic data. In
EDBT/ICDT Workshops. ACM, 2010.

S. H. Nguyen, J. G. Bazan, A. Skowron, and H. S. Nguyen. Layered Learning for
Concept Synthesis. T. Rough Sets, 3100:187-208, 2004.

34

60.

61.
62.

63.
64.
65.
66.

67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
7.
78.
79.
80.
81.
82.
83.
84.

85.
86.
87.
88.
89.
90.

-H. Nienhuys-Cheng and R. de Wolf. Foundations of Inductive Logic Program-
ing, chapter 8, pages 127-159. Springer, 1997.

. M. G. (OMG). The OMG Security Specifications Catalog., 2008.

. M. G. (OMG). The Ontology Definition Metamodel (ODM) Specification.,

SUJ

800

009.

. M. G. (OMG). The Query/View/Transformation (QVT) Specification., 2010.
K. Ono, T. Koyanagi, M. Abe, and M. Hori. Xslt stylesheet generation by example
with wysiwyg editing. In SAINT, pages 150-161, Washington, DC, USA, 2002.
IEEE Computer Society.

T. B. Pedersen. Warehousing the world: a few remaining challenges. In DOLAP,
pages 101-102, New York, NY, USA, 2007. ACM.

J. M. Pérez, R. Berlanga, and M. J. Aramburu. A relevance model for a data
warehouse contextualized with documents. Inf. Process. Manage., 45(3):356-367,
2009.

Philip Russom. Next Generation Data Warehouse Platforms. http://www.oracle.
com/database/docs/tdwi-nextgen-platforms.pdf, 2009.

V. Poe, S. Brobst, and P. Klauer. Building a Data Warehouse for Decision Support.
Prentice-Hall, Inc., Upper Saddle River, USA, 1997.

N. Prat, J. Akoka, and I. Comyn-Wattiau. A UML-based data warehouse design
method. Decis. Support Syst., 42(3):1449-1473, 2006.

N. Prat, J. Akoka, and I. Comyn-Wattiau. An MDA Approach to Knowledge
Engineering. Ezpert Syst. Appl., 39(12):10420-10437, 2012.

A. Repenning and C. Perrone. Programming by example: programming by
analogous examples. Commun. ACM, 43(3):90-97, 2000.

R. Rios and S. Matwin. Predicate Invention from a Few Examples. In Al pages
455-466, London, UK, 1998. Springer-Verlag.

S. Roser and B. Bauer. An approach to automatically generated model transfor-
mations using ontology engineering space. In SWESE, 2006.

A. Rutle, A. Rossini, Y. Lamo, and U. Wolter. A diagrammatic formalisation of
mof-based modelling languages. In TOOLS, pages 37-56. Springer, 2009.

A. Rutle, U. Wolter, and Y. Lamo. A diagrammatic approach to model transfor-
mations. In FATIS, 2008.

F. Seehusen and K. Stglen. Maintaining information flow security under refinement
and transformation. In FAST, 2007.

F. Seehusen and K. Stglen. A transformational approach to facilitate monitoring
of high-level policies. In POLICY, pages 70-73. IEEE Computer Society, 2008.
A. Simitsis. Mapping conceptual to logical models for ETL processes. In DOLAP,
pages 67-76. ACM, 2005.

A. Srinivasan. A learning engine for proposing hypotheses (Aleph).
http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph, 2006.

I. Stahl. On the Utility of Predicate Invention in Inductive Logic Programming.
In ECML, pages 272-286. Springer, 1994.

I. Stahl. The Appropriateness of Predicate Invention as Bias Shift Operation in
ILP. Mach. Learn., 20:95-117, July 1995.

P. Stevens. Bidirectional model transformations in QVT: semantic issues and
open questions. Software and System Modeling, 9(1):7-20, 2010.

P. Stone and M. M. Veloso. Layered learning. In ECML, pages 369-381. Springer,
2000.

M. Strommer, M. Murzek, and M. Wimmer. Applying model transformation
by-example on business process modeling languages. In FR, pages 116-125, Berlin,
Heidelberg, 2007. Springer-Verlag.

Y. Sun, J. White, and J. Gray. Model transformation by demonstration. In
MoDELS, pages 712-726. Springer, 2009.

K. M. Ting and I. H. Witten. Stacked generalization: when does it work? In
IJCAI pages 866-871. Morgan Kaufmann, 1997.

K. M. Ting and I. H. Witten. Issues in stacked generalization. J. Artif. Intell.
Res. (JAIR), 10:271-289, 1999.

E. Turban, R. Sharda, and D. Delen. Decision Support and Business Intelligence
Systems. Prentice Hall, 2010.

P. D. Turney. Exploiting context when learning to classify. In ECML, pages
402-407, London, UK, 1993. Springer-Verlag.

D. Varré. Model Transformation by Example. In MoDELS, pages 410-424, Genova,
Italy, October 2006. Springer.

o

91.
92.

93.

94.
95.
96.
97.
98.
99.
100.

101.

102.
103.

35

D. Varré. Model transformation by example. In MoDFELS, pages 410-424. Springer,

2006.

D. Varr6 and Z. Balogh. Automating model transformation by example using

fductive logic programming. In SAC, pages 978-984, New York, NY, USA, 2007.
CM.

R. Villarroel, E. Ferndndez-Medina, and M. Piattini. Secure information systems

development - a survey and comparison. Computers € Security, 24(4):308-321,

2005.

P. Westerman. Data warehousing: using the Wal-Mart model. Morgan Kaufmann

Publishers Inc., San Francisco, USA, 2001.

M. Wimmer, M. Strommer, H. Kargl, and G. Kramler. Towards Model Transfor-

mation Generation By-Example. In HICSS, page 285b, Washington, DC, USA,

2007. IEEE Computer Society.

D. H. Wolpert. Stacked Generalization. Neural Networks, 5:241-259, 1992.

R. Wrembel and C. Koncilia. Data Warehouses and OLAP: Concepts, Architectures

and Solutions. 1GI Global, 2007.

L. Wu, G. Barash, and C. Bartolini. A service-oriented architecture for business

intelligence. Service-Oriented Computing and Applications, 0:279-285, 2007.

Z. Xie. Several Speed-Up Variants of Cascade Generalization. In FSKD, pages

536-540, Xi’an, China, September 2006. Springer.

L. L. Yan, R. J. Miller, L. M. Haas, and R. Fagin. Data-driven understanding

and refinement of schema mappings. In SIGMOD, pages 485-496, New York, NY,

USA, 2001. ACM.

L. Zepeda, M. Celma, and R. Zatarain. A Mixed Approach for Data Warehouse

Conceptual Design with MDA. In ICCSA, pages 1204-1217, Perugia, Italy, June

2008. Springer-Verlag.

D. Zhang and J. J. P. Tsai. Advances in Machine Learning Applications in Software

Engineering. 1GI Publishing, Hershey, PA, USA, 2007.

M. M. Zloof. Query-by-example: the invocation and definition of tables and forms.

In VLDB, pages 1-24, New York, NY, USA, 1975. ACM.

