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Abstract. It is known recently that relational learning is Σ2 hard. This
level of complexity is due to the entanglement of two NP problems:
the covering test problem and the search problem in hytothesis space.
This paper explains the phase transition and the complexity of relational
learning by the superposition of two phase transitions associed to each of
these problems. The relational learning is particularly suited to applica-
tions where data are described in a database (most corporate data), but
it suffers from a problem of efficiency for the scaling-up. The objective
of this work is to take another step toward understanding the sources of
complexity of relational learning, drawing on work in combinatorics and
statistical physics analysis averaged the intrinsic complexity of problems
-rather than focusing only on the considered classical complexity in the
worst case in order to propose new algorithms supporting the scaling.

1 Introduction

Most available data are stored as computer databases. Thus, it is natural to
want to develop learning techniques with the same expressive level than manip-
ulated data in order to exploit all the information given by the relationships
between data. However, we note that most machine learning algorithms, using
numerical representation or symbolic one, deal with data represented as vector of
attributes. This representation has the advantage of having efficient algorithms.
Among the drawbacks, these languages capture only part of the information
provided by the data.

The relational learning (RL) or inductive logic programming is one of the
best candidates to exploit corporate data since most of them are described in
relational databases. However, RL has to face the well-known trade-off between
expressivity and efficiency. Indeed, the relational learning has many difficulties
when it addresses real-world applications [12, 31]. The benefits of expressiveness
is offset by the efficiency of the algorithms. Suggest new algorithms requires,
from our point of view, the understanding of the sources of complexity. The
classical analytical framework of algorithms focusing on worst-case bounds gives
interesting results, but they are minimally useful for the study of real cases.

The average complexity analytical framework [13, 8, 41, 30], despite the real
world simplifying assumptions, provides a more relevant results about the be-
havior of algorithms on real applications. This framework is the most used one
in combinatorics since twenty years [8, 23, 28, 15, 10, 42, 47] and it is behind the



best current algorithms [21, 7] which gave rise to type algorithms that can handle
problems with millions of variables.

The main conjecture about the average complexity in combinatorial analysis
and in machine learning is that the hypothesis space is structured by a control
parameter which separates the problems space into three distinct regions: under-
constrained region where almost all hypothesis are solutions, an over-constrained
region where almost hypothesis are not solution and a region in between -a phase
transition region- where almost all hard problems are concentrated (see Figure
1).

Fig. 1. This figure shows probability of a solution as a function of assignments to a
pair of variables in random CSP that are considered to be inconsistent(number of no-
goods)[26]. Dashed line shows the phase transition. The control parameter structure
the problem space into three parts: problems with a lot of solutions, problems with
few (or without) solutions and in between. Solid line shows median solution cost for
dynamic backtracking and shows that hard problems are concentrated arount the phase
transition.

In this paper, we continue the work arround the study of phase transition
(PT) in machine learning started in the early 90s. Early work deals with neu-
ral networks[11, 41, 30], where the main problem concerns the phase transition
of the generalisation error: the number of examples is shown to be a control
parameter of the phase transition [5]. Phase transition receives more attention
in machine learning since ten years but there are only few results. In symbolic
machine learning, the first work is due to [17]. The authors propose a phase
transition like approch to study the θ-subsumption test efficiency in inductive
logique programming. In 2002, [37] propose the first study of the phase transition
of a k-terms DNF learning problem. In 2006, using the CSP background of phase
transition studies, [1] study the covering test of relational learning within the
PT framework and propose the first problem generator to study this problem.
In 2009, [?] propose a generator (RLPG) to study the PT of relation learning
problems. Using this generator, they show that most of existing relational learn-
ing algorithms exhibite profiles far from the expected theoretical ones: most of
existing algorithms are NP even for easy learning problems. RLPG and exper-
imental results obtained using most existing relational learning algorithms give
a first key to understand the complexity landscape of the relational learning



problem. The work, presented in this paper, goes beyond this first analysis and
exhibits the phase transitions of the two independants NP problems concerned
with the RL. Within this study, it will be possible, for example, to exhibit an
easy to solve classes of problems for what the θ-subsumption test is NP-hard. In
the other hand, using the control parameter of the PT search problem, it will
be possible to find an easy problems to solve even in the plateau regions (when
the evaluation function used to prioritize nodes in refinement graph is constant).

We investigated in this paper, the double phase transition of relational learn-
ing problem: the phase transition of the covering test and the phase transition
of the search in the hypothesis space. We illustrate the outline of the complex-
ity generated by each of them and we show that the independence of these
two phase transitions can provide a simple control parameter characterizing the
phase transition of the entire learning task. This characterization allows a better
understanding of the source of learning difficulty and would guide the search for
better algorithms for solving the problem of relational learning adapted to real
applications.

The paper is organised as follow: section ?? presents background informa-
tion about relational learning and search strategies. Section 1.2 defines the phase
transition framework and shows its interest to study machine learning problems.
Section ?? presents the phase transition of the covering test problem and de-
scribes the random problem instance generator. Section ?? presents the phase
transition of the search problem. Section ?? shows the entanglement of two
phase transitions, discusses the landscape complexity of the learning problem
in relational languages and then propose the control parameter of the learning
problem. Finally, section 6 discusses the expected benefit of the development of
the phase transition framework in RL and conclude on future works.

1.1 Machine Learning Context

Without loss of generality, we consider, in our work, the machine learning prob-
lem as defined in [27] : given a learning set E = E+ ∪ E−, with positive and
negative examples of the unknown target concept, drawn from an example lan-
guage Le, a hypothesis language Lh, a generality relation named subsumption
test ≥ which relates Le and Lh and partially order the hypotheses. The learning
problem, defined as search in Lh, is to find a hypothesis h ∈ Lh such that h is
consistent with the data. A given hypothesis h is consistent if and only if it is:

– complete: ∀e+ ∈ E+, h ≥ e+ and
– correct: ∀e− ∈ E−, h 6≥ e−.

We are interested on relational learning for function-free Horn clauses [20].

Given Le, a language of function-free ground Horn clauses, Lh, a language of
(non-recursive) function-free Horn clauses and an integer l polynomial in
|E+ ∪ E−|,



Find h ∈ Lh with no more than l literals such that h logically implies each
element in E+ and none element in E−.

In this space, the logical implication is equivalent to θ-subsumption which is
NP-complete [19] and therefore the RL learning problem is NPNP -complete
[20]. Search strategies in symbolic learning follow the Mitchell definition [27].
There exists two main stategies: generate-and-test (GT) and data-driven (DD).
And in each strategy, algorithms use top-down approach, buttom-up one or any
combination of them.

But since twenty years, virtually all GT algorithms are top-down, as it ap-
peared early that a bottom-up approach would start with a too specific hypoth-
esis to be efficiently guided by a heuristic function (see [14] for details). In this
paradigm, the top-down refinement operator, noted ρ, is only based on the struc-
ture of the hypothesis space, independently of the learning data. Therefore, GT
algorithms have to deal with many refinements that are not relevant with respect
to the discrimination task. Formally, the refinement operator is defined as a bi-
nary operator: Let h ∈ Lh, e− ∈ E− : ρ(h, e−) = {h′ ∈ Lh|h ≥ h′ and h′ 6≥ e−}.

The Bottom-up Data Driven (BDD) strategy relies on positive examples to
guide its generalisation step. Its BDD refinement operator, noted δ is given as
follows: Let h ∈ Lh, e+ ∈ E+ : δ(h, e+) = {h′ ∈ Lh|h ≤ h′ and h′ ≥ e+}.
This strategy has been first formalised by [34], who made the link between
generalisation in learning and lowest-upper bound (lub) in lattice theory. Such
an operator, also known as least-general generalisation (lgg) has known several
theoretic developments [46, 22, 24] but has been seldom used in learning systems.

In all these strategies the search is NP-complete and it is guided by the
subsumption test which is NP-complete. What we try to do, in this work, is
to exhibit the phase transition of the search and the phase transition of the
subsumption test. Even, the RL learning is Σ2-complete, we will show that the
everage hardness of RL problems follows a unique control parameter computed
by the combination of the both control parameters. This interpretation gives a
new light on understanding the complexity of relational learning.

1.2 Phase transition

Phase transition is a term originally used in physics to describe the changes
of state of matter [33]. Even though originally referring to gas, liquid, or solid,
within the framework of thermodynamics, it is used, by extension, to describe
an abrupt and suddenly change in one of the parameters describing the state (in
thermodynamic sense) of an arbitrary system. Thus, the transition from ferro-
magnetic to paramagnetic state, the emergence of super-fluidity, changing the
type of crystal (with broken symmetry), or denaturation transition of DNA are
characterised as phase transitions.



Surprising as it may be, the emergence of a phase transition is not limited to
physical systems: it seems to be a rather ubiquitous phenomenon in biological
networks, genetics, neural networks and in combinatorial problems. As for the
latter, even a precise parallel can be established between them and physical sys-
tems composed of very large numbers of particles. In a combinatorial problem
the phase transition concerns the behavior of the algorithms used to solve it.
In particular, the phase transition acts as a border between regions (phases) in
which algorithms behave in drastically different ways; moreover, a large increase
in the algorithm’s computational complexity in correspondence to the transition
is usually observed.
Since two decades many works have been published on phase transitions in com-
puter science, but, as pointed out in [32], it seems that this area started with
the remarkable observation in [13] that thresholds in properties such as connec-
tivity emerge in large random graphs. However, even if several studies appeared,
concerning the link between statistical physics and graph partitioning [48], char-
acterisation of hard instances in CNF [35], finding optimal paths in trees [36],
graph colouring [45], the phase transition has empirically been discovered in com-
binatorial search problems only in the early 90s [8, 40]. The discovery of phase
transition in NP-complete satisfiability problems [25] has raised a lot of interest
in the artificial intelligence community. Constraint satisfaction problem (CSP)
and propositional satisfiability problem (SAT) communities are the communities
where the phase transition framework is probably the most studied [8, 40, 28, 43,
23, 15]
CSPs and k-SAT (k ≥ 3) are NP-complete problems, as well as many other
combinatorial ones. The notion of computational complexity, based on worst-
case analysis, used to build up the classical polynomial hierarchy, may not be
very useful in practice, In fact, many instances of NP-complete problems are
actually easy to solve [8]. The phase transition framework offers a way to study
problems in the “typical” complexity case, more representative of real-world ap-
plications, and it also contributes to the design of efficient algorithms. A key
notion, in the study of phase transitions, is that of problem ensemble, which
grounds the link between statistical physical systems and combinatorial prob-
lems. All the properties derived from the phase transition framework are valid
for sets of random problems, whose generative model is precisely specified. Then,
an important aspect to be discussed, inside the framework, is what model to use,
and how this model can possibly cover problems faced in the real world.
In Machine Learning, two directions of research are interested in phase transi-
tions: the first one investigates the emergence of phase transitions of the gen-
eralization error (essentially in multilayer neural networks) [41, 30, 39, 6]. Most
of these works are interested in the phase transition of the generalization error,
where the number of examples are shown as order parameters. For instance, [6],
using a model inspired from statistical physics of disordered systems, exhibited
a discontinuous dependence between the generalization error and the number of
examples. The second one, instead, involves discrete spaces (symbolic learning),
where learning is, in its essence, a combinatorial problem. In 2000, [18] studied



the phase transition like phenomena of the θ-subsumption test in ILP. This sub-
problem is known to be NP-complete and they showed that its phase transition
could be exhibited with relevant parameters for learning: the size of the hypoth-
esis and the number of constants in the example language. They proposed to
use a random problem generator inspired from model B, a well-known gener-
ator in CSP [43]. Ruckert et al. [38] proposed to study k-term DNF learning
in the phase transition framework in combinatorics. This NP-complete problem
exhibits a phase transition in its solubility depending on the number of vari-
ables. They also characterized this phase transition as a function of k and the
number of positive and negative examples. [4] studies the connection between the
phase transition of the covering test and occurrences of plateaus during heuristic
search. Specifically, they propose in [3] a consistency problem generator for rela-
tional learning, RLPG, that guarantees the existence of plateaus during search,
based on model RB proposed for CSP[47]. Using RB properties, it is proved that
the current hypothesis’ size evaluated during learning -the control parameter of
heuristic search in learning- is an order parameter of the phase transition of the
subsumption test. It is proposed as a benchmarking tool to evaluate learning
search strategies on plateaus. Finally, [?] propose an empiritical study of rela-
tional learning algorithms in the phase transition framework.

With the past decade, the use of phase transition framework in combinatorics
communities gives a real success to solve real-world applications up to millions of
variables. This phenomenon, viewed from the angle of learning complexity, both
in terms of generalization error and time complexity, may bring new perspectives
to learning algorithms. The interest of this framework, in this paper, is two-fold
as it gives a way to empirically assess the efficiency of algorithms on classes of
problems whose inherent complexity is controlled by order parameters, and as
finding ways to generate hard instances for a problem is important to understand
the complexity of the problem [47, 9].

2 Phase Transition of the Covering Test

[4] summarizes a decade of work an the covering test in machine learning using
phase transition framework and concludes that the localisation of the target
concept with the respect to this phase transition alone is not a reliable indication
of the learning difficulty as previously thought.



3 Random generator for Relational Learning problem

A learning problem instance in this model is denotedRLPG(k, n, α,N, Pos,Neg).
The parameters k, n, α, N are related to the definition of the hypothesis and
example spaces. Pos and Neg are the number of positive and negative exam-
ples respectively. The first four parameters are defined in order to ensure that a
subsumption test between a hypothesis and an example during search encode a
valid CSP problem following the model RB for random CSP [47]. We recall their
meaning and focus on the last two parameters, which were not studied before
and which will be shown to be order parameters of the phase transition of the
ILP consistency problem.

k ≥ 2 denotes the arity of each predicate present in the learning language,
n ≥ 2 the number of variables in the hypothesis space, α the domain size for
all variables as being equal to nα, and finally, N the number of literals in the
examples built on a given predicate symbol. Given k and n, the size of the bottom
clause of the hypothesis space Lh is (nk ), and encodes the largest constraint
network of the underlying CSP model. Each constraint between variables is
encoded by a literal built on a unique predicate symbol. Lh is then defined as
the power set of the bottom clause, which is isomorphic to a boolean lattice. Its
size is 2(

n
k ).

Learning examples are randomly drawn, independently and identically dis-
tributed, given k, n, α and N . Their size is N.(nk ). Each example defines N literals
for each predicate symbol. The N tuples of constants used to define those liter-
als are drawn uniformly and without replacement from the possible set of (n

α

k )
tuples.

As an illustration, table 1 shows a random RLPG(2, 3, α, 1, 1, 1) problem,
with α such that nα = 5. The first line shows the bottom-most element of
the hypothesis space, which encodes all binary constraints between 3 variables.
The next two lines show the positive and the negative example, respectively,
allowing only one matching of a given predicate symbol (as N = 1). The search
space is of size 23 and consists of all hypotheses built with the same head as
the bottom clause, and with a subset of its body as body. In such a space,
it is easy to see that there is no solution, given that no hypothesis subsumes
the positive example without subsuming the negative example. Whereas the

Table 1. Example of a random learning problem generated with RLPG, with no solu-
tion.

⊥ p0(A)← p1(A,B,C), p2(A,B,D), p3(A,C,D)

+ p0(e1)← p1(e1, b, c), p2(e1, c, d), p3(e1, e, f)
− p0(e2)← p1(e2, c, f), p2(e2, d, e), p3(e2, d, c)

problem illustrated in table 2 accepts the following clause as solution: p0(A)←
p2(A,B,D), p3(A,C,D)



Table 2. Example of a random learning problem generated with RLPG, with a solu-
tion.

⊥ p0(A)← p1(A,B,C), p2(A,B,D), p3(A,C,D)

+ p0(e1)← p1(e1, b, c), p2(e1, d, e), p3(e1, e, e)
− p0(e2)← p1(e2, b, b), p2(e2, e, e), p3(e2, e, c)

4 Number of positive and negative examples as order
parameters

In this section, we study the effect of the number of positive and negative ex-
amples on the solubility probability of the ILP consistency problem. If we refer
to the previous section, RLPG is parametrised with 6 parameters but we only
study the last two, Pos and Neg, as the effect of the other parameters have
already been studied in [3] for constant number of positive and negative exam-
ples. Here, we focus on few settings for these parameters, with k = 2, n = 5 and
n = 6, to study different problem sizes, α = 1.4 and N = 10. The choice of these
parameters ensures that we do not generate trivially insoluble problems (see [16]
for details), but also various experiments, not shown here, indicated that they
were representative of the phase transition behaviour of the ILP consistency
problem. In all experiments below, statistics were computed from a sample of
500 learning problems, solved with a complete learner.
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Fig. 2. Probability of satisfiability according to the number of learning examples (=
Pos = Neg), with n = 5 and n = 6

We start by varying both Pos and Neg. Figure 2 shows the solubility prob-
ability of the ILP consistency problem when Pos = Neg are varied from 1 to
15, for n = 5 and n = 6. As we can see, when the number of examples is small,
there is almost surely a consistent hypothesis, and when the number is large, it



is almost surely impossible to find a consistent hypothesis. The cross-over point,
where the probability of solubility is about 0.5, is around 4 for n = 5 and 5 with
n = 6. It is not surprising that it increases with bigger problems. For n = 5,
the hypothesis space size is 210 and 215 for n = 6. We could not conduct exper-
iments for larger values of n as the hypothesis space grows too fast in RLPG.
For instance, n = 7 sets a hypothesis space of size 221, which cannot be handled
by our complete solver. In the future, it would be interesting to modify RLPG
to specify the size of the bottom clause and then draw the number of variables
accordingly.
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ing to the number of positive examples with
n = 5, for Neg = 1, 2, 3, 4
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Fig. 4. Probability of satisfiability accord-
ing to the number of positive examples with
n = 6, for Neg = 1, 2, 3, 4

We study now the phase transition along the number of positive examples,
for constant values of Neg. Figures 3 and 4 show the phase transition when Pos
varies from 1 to 25, for n = 5 and n = 6 respectively. With no positive examples,
the bottom element of the search space is solution, but as Pos increases, complete
hypotheses get more general and eventually subsume a negative example. The
transition becomes sharper asNeg increases, which is not surprising as the subset
of correct hypotheses shrinks as Neg increases. The second order parameter is
the number of negative examples Neg but it is not shown here because of the
space requirements. The plots essentially exhibit the same profile.

5 Evaluating complete learners

We evaluate complete learners representative of the search strategies described
in section 1.1. As non-informed searches, we use the Breadth-First TGT search
(BF-TGT) and the Depth-First TGT search (DF-TGT). As informed searches,
we use the A TGT search (A-TGT) and the Best-First TGT search (BESTF-
TGT). Informed search makes use of an evaluation function to minimise, whose
general form is f = g + h. g is defined as the cost from the start to the current
hypothesis and h as an estimation of the distance from the current hypothesis



to the goal. We define A-TGT according to the Progol system: g is defined as
the length of the current hypothesis and h as the difference between the number
of negative examples and the number of positive examples. In our context, as
all positive examples must be subsumed, it simplifies to the number of negative
examples. BESTF-TGT is not biased towards shorter hypotheses and defines
g = 0. We refer to [44, 29] for details about their implementations.
The next learning strategy we study is the one used in the TDD learner Propal.
This is an incomplete learner as it performs a beam search guided by the Laplace
function. So we set Propal with a beam of unlimited size, which basically turns
down to a non-informed Breadth-First search (BF-TDD). The only difference
is that when the solution is reached at a level of the search, it will be the first
picked up at the next level. Note also that, as an incomplete learner, it does not
have an optimal refinement operator, like the other learners, and may evaluate
the same hypothesis several times.
The last learning strategy is Depth-First BDD (DF-BDD), based on Plotkin’s
lgg operator, and we refer to [24] for implementation details. Briefly, starting
from the bottom element, the algorithm generalises the current hypothesis to
subsume each positive example in turn, until it outputs a consistent hypothesis,
or until it proves that no correct hypothesis subsumes all positive examples.
Note that as the hypothesis space is not a lattice, which is the case here under
θ-subsumption as the hypothesis space is finite, the lgg operator outputs all
possible generalisations on subsequent backtracks.

We evaluate complete RL learners on random problem instances whose in-
herent complexity is controlled by the order parameter of the PT. We plot their
search cost as a function of the order parameter to compare their complexity
pattern to the standard “easy-hard-easy” pattern, as it is an indication of search
efficiency (see section 1.2). As the consistency problem in RL is Σp

2 -complete
(see section 1.1), the search cost measurement has to take into account both the
cost of the exploration of the hypothesis space and the cost of the consistency
check. We propose to measure both the number of backtracks of the subsump-
tion procedure and the time in milliseconds needed to solve a learning problem.
The former measure is relevant for GT approaches, as the cost of the refine-
ment operator is negligible compared to the subsumption cost, and it reflects
the number of evaluated hypotheses. This is also the case for DF-BDD, as the
lgg operator uses the subsumption test to find the common generalisations of
two given clauses. However, it is not appropriate for BF-TDD which is based
on the Propal system. Propal delegates the computation of refinements to a
Weighted CSP solver [2] whose cost does not translate into backtracks of the
subsumption test. It would be interesting to propose a relevant cost measure for
all RL learners, independently on the implementation but we leave it for future
research. Thus, we use the resolution time as cost measure for this strategy, and
although it does not allow a direct comparison with other approaches, it is still
relevant to study its expected cost pattern.

All experiments are done using instances from RLPG(k, n, α,N, Pos,Neg),
with k = 2, n = 5 and n = 6 to study different problem sizes, α = 1.4 and



N = 10. Additional experiments using different parameter values (not shown
here) have been conducted and result in similar findings. In the following figures
every plot is averaged over 500 randomly drawn learning problems.
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Fig. 5. Backtracking cost using A-TGT
strategy for various percentiles and proba-
bility of solubility, for n = 6.
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Fig. 6. Backtracking cost using BF-TGT
strategy for various percentiles, for n = 6.

Figure 5 shows the results obtained with A-TGT, for n = 6. We can see that
the easy problems resolution from the “yes” region follows the standard pattern.
The superposition of the solubility probability plot shows the PT region. The
cost sharply increases as soon as the solubility probability is no longer 1 (when
both the number of positive and negative examples are greater than 3). This
increase stops when the probability gets close to 0. However, the plot does not
reach a maximum right after the PT. This is indicative of a bad search algorithm,
as the backtracking cost keeps increasing, as the number of examples increases,
in the region theoretically easy, dominating then the cost in the PT.
We are going to see that this behaviour is typical of the top-down approaches:
interestingly, in the “no” region, extra examples do not help enough pruning the
hypothesis space to compensate the increase in subsumption cost of those extra
examples.

For various percentiles, figure 6 shows that BF-TGT, as a non-informed
search strategy, is costly very early in the “yes” region. However, after the PT,
A-TGT and BF-TGT are about equivalent: they cannot cope with an increasing
number of examples, and the cost in the “no” region dominates the cost in the
PT region.

In the “yes” region, DF-TGT behaves better than BF-TGT. This is partic-
ularly true in the “yes” region where there are a lot of solutions. In that case,
to keep specialising a complete hypothesis leads almost surely to a consistent
hypothesis. DF-TGT is as good as A-TGT in this region, but when they get
closer to the PT, A-TGT performs better. Its heuristic function prioritizes hy-
potheses which discriminate negative examples the most and this seems to lead



to consistent hypotheses faster. In the “no” region, we see again that DF-TGT
degenerates as A-TGT and BF-TGT.
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Fig. 7. Backtracking cost using DF-TGT
strategy for various percentiles, for n = 6.
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Fig. 8. Backtracking cost using DF-BDD
strategy for various percentiles for n = 5.

In figure 8, we show results for the data-driven search, DF-BDD, first on
problems of size n = 5. It gets close to the standard pattern for the “yes’ region
problems. We note however that for higher percentiles (e.g. the median) the
algorithm has a non negligible cost even for 1 positive and 1 negative example.
Moreover, the superposition of the solubility plot shows the cross-over point
of the PT between 4 and 5 examples and that the complexity peak is slightly
shifted to the right with respect to this point, which indicates that DF-BDD’s
cost pattern is close to the “easy-hard-easy” pattern. Also, we see that for all
percentiles, the cost slowly decreases after the PT. We can say that this algorithm
is a good search algorithm, although some improvements can be done.

Figure 9 shows results for the same algorithm, but on larger problems, with
n = 6. The cross-over point is now around 5, and DF-BDD’s behaviour gets
closer to the standard pattern in the “yes” region. Although there is a minimum
cost (6000 backtracks as median cost), certainly due to the naive implementation
of the lgg refinement operator, this cost does not vary much in the “yes” region.
Among all tested algorithms, it is the only one exhibiting the “easy-hard-easy”
pattern.

Figure 10 summarises the backtracking cost of the search algorithms dis-
cussed above, with the addition of BESTF-TGT. The results are clear: all GT
approaches are interesting for problems with many solutions but are partic-
ularly bad when there are few or no solutions. Moreover, either informed or
non-informed search strategies, they all have the same profile in this latter case,
which is an interesting point to detail in the future. Conversely, DF-BDD, al-
though penalised in the “yes” region, is more efficient in those problems with
few or no solutions, with a decrease in cost as the number of examples increases.
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Fig. 9. Backtracking cost using DF-BDD
strategy for various percentiles, for n = 6.
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The complexity analysis limited to the number of backtracks of the sub-
sumption test is not enough for this study because it does not take into account
the cost of the refinement operators for all approaches, such as for BF-TDD (see
above). We then complete it by plotting the resolution time of BF-TDD in figure
11. Although the search cost cannot be directly compared, we see that it behaves
similarly to the other top-down approaches. In the “yes” region, the TDD op-
erator cannot compensate the breadth-first search with its smaller branching
factor, and therefore behaves like BF-TGT. After the exponential increase in
cost on the inherent hard instances, the cost keeps increasing as the number of
examples grows in the “no” region. The penalty here is that the number of calls
to the Weighted CSP solver to compute a near-miss is proportional to the num-
ber of negative examples. This is clearly too costly and the trade-off between
the quality of the near-miss and the reduction of the search space has to be
evaluated.

6 Conclusion

Although Relational Learning has been cast, more than 25 years ago, as search,
it has known very few developments from the search strategy point of view and
most learners rely on general-purpose solvers. This is a strong limitation to its
applicability on many modern applications, as it prevents RL to scale-up well.
On the other hand, important progress has been made in other combinatorics
communities, such as SAT and CSP, in the development of efficient specialised
solvers, through the study of random NP-complete problem generators in the
phase transition framework. RL has a higher complexity, being Σ2-hard in the
general case. However, we argue that this framework will benefit RL, based on
the conjecture that the phase transition can be exhibited further up the polyno-
mial hierarchy. We show that this conjecture holds true with the bounded ILP
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Fig. 11. Time cost using BF-TDD strategy for various percentiles, for n = 6.

consistency problem, a Σ2-complete problem, representative of RL problems.
We propose a first simple random generator that exhibits a phase transition
in the problem’s solubility, with the number of positive and negative examples
as order parameters. We used this framework to generate benchmark datasets
with controlled complexity, based on conjectures linking the probability of prob-
lem solubility with inherent problem hardness. First, this study shows that all
well-known top-down relational algorithms, rooted either in the generate-and-
test or the data-driven paradigm, are bad as they fail to exhibit the standard
“easy-hard-easy” pattern. Their complexity tend to increase with the number
of examples, although the extra examples do not change the solubility of the
problem, and therefore they exhibit an “easy-hard-hard” pattern. This has to
be contrasted with DF-BDD, a lgg-based learner, which does not perform as well
on the easy problems in the “yes” region, but well on the easy problems of the
“no” region, as well as in the phase transition compared to the other algorithms.

This study shows that search strategies standard in RL lag behind what is
considered state of the art in other combinatorics communities. It is clear that
this study does not take into account all the dimensions of learning problems:
optimization instead of consistency, presence of noise, etc. However, the first idea
is to understand the complexity landscape of learning problems and to define
order parameters to control this complexity. The most important advantage of
the proposed approach to evaluate algorithm complexity is that contrary to re-
sults obtained directly on real-world applications, which hardly transpose when
the size of the problems change of scale, the phenomena observed with few vari-
ables are the same as those observed with thousands of variables. We hope that
it will enable RL and ILP to import and/or develop better search algorithms,
to eventually benefit to better scaling relational learners. For instance, we plan
to investigate lgg-based learning algorithms, which have been seldom used in
learning systems but seem to be efficient solvers.
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