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Abstract. This paper studies a new machine learning application with
possibly a challenging benchmark for relational learning systems. We
are interested in the automation of model-driven data warehouse using
machine learning techniques. The main goal is to automatically derive
the transformation rules to be applied in the model-driven process. This
aims to reduce the contribution of transformations designer and thereby
reducing the time and cost of development. We propose to express the
model transformation problem as an Inductive Logic Programming one:
existing project traces (or projects experiences) are used to define the
background knowledge and examples. The Aleph ILP engine is used to
learn best transformation rules. In our application, we need to deal with
several dependent-concepts. Taking into account the work in Predicate
Invention, Layered Learning, Cascade Learning and Context Learning, we
propose a new methodology that automatically updates the background
knowledge of concepts to be learned. Experimental results support the
conclusion that our approach is suitable to solve this kind of problem.

1 Overview

The model-driven engineering [2, 3] is an approach that organizes the development
of a system around the design of models (conform to metamodels) and the
definition of transformations to generate required components. The model-driven
data warehouse represents approaches [43, 21, 9] that apply the MDA1 standard
for the development of the data warehouse systems [41]. The approach presented
in [43] describes derivation of Online-Analytical-Processing (OLAP) schemas
from Entity-Relationship (ER) schemas. The source and target schemas are
respectively conform to ER and OLAP metamodels of the Common-Warehouse-
Metamodel. Authors describe how an ER schema is mapped to an OLAP schema
and provide, also, a set of Query-View-Transformation rules (e.g., EntityToCube,
AttributeToMeasure, RelationShipToDimension) to ensure this. The approach
presented in [21] extends the Unified-Modeling-Language and the Common-
Warehouse-Metamodel to multidimensional modeling with MDA. Authors focus

1 The Object Management Group (http://www.omg.org/mda) proposes the Model-
Driven Architecture as standard implementation of the model-driven engineering.
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on the transformation of the multidimensional conceptual model (i.e., conceptual
OLAP schema) to the multidimensional logical model (i.e., logical OLAP schema).
They provide, using the Query-View-Transformation language, transformations
(e.g., Fact2Table, Dimension2Table, etc.) to derive the logical schema from the
conceptual one.

We provide in [9] a unified model-driven data warehouse approach including
an integrated design framework and transformation process. We propose the
UML CORE metamodel to design the operational source-model and the CWM
OLAP metamodel to design the multidimensional target-model. However, model
transformations definition requires serious skills within metamodels and transfor-
mation languages. In this context, the model transformation by-example approach
[1, 35, 7, 14] proposes to create automatically model transformations from pairs
of source and target model examples. Then, in [10], we extend our proposal by
a conceptual transformation-by-example framework for the model-driven data
warehouse context. For example, the ClassToCube relation represents a map-
ping of Class, Property and RelationShip elements of the UML CORE into
Cube, Measure and CubeDimensionAssocition elements of the CWM OLAP.
The input-instances (i.e., a, p, rse) of Class, Property and Relationship define
elememts of a candidate source-model; this input-pattern gives the context in
the source-model when a class is transformed into cube. The output-instances
(i.e., c, m, cda) of Cube, Measure and CubeDimensionAssocition define the
generated elements of a target-model; this output-pattern states the context in
the target-model where a cube is generated from a class.

This work extends the proposed method (in previous works) by machine
learning in order to reduce expert contribution in the transformation process.
We propose to express the models transformation problem as an Inductive Logic
Programming [25, 20] one and to use existing projects trace to find the best
transformation rules. To the best of our knowledge, this work is the only one
effort that has been developed for automating model-driven data warehouse
with relational learning and it is the first effort that provides real experimental
results in this context. In the model-driven data warehouse application, we find
dependencies between transformations. We investigate a new machine learning
methodology stemming from the application needs: learning Dependent-Concept.
Following work about Layered Learning [34, 27, 16], Predicate Invention [26, 31,
32], Context Learning [38, 4, 39] and Cascade Learning [13, 37, 42], we propose
a Dependent-Concept Learning (DCL) approach where the objective is to build
a pre-order set of concepts on this dependency relationship: first learn non
dependent concepts, then at each step, the theories of learned concepts are added
as background knowledge to the future concepts to be learned with the respect
to this given pre-order, and so on. This DCL methodology is implemented and
applied to our transformation learning problem using Aleph2. The experimental
evaluation s that the DCL system gives significantly better results.

The remainder of the paper is structured as follows. Section 2 provides
background definitions and presents the application domain. Section 3 details

2 http://www.cs.ox.ac.uk/activities/machlearn/Aleph/
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the used machine learning algorithms and introduces the Dependent-Concept
Learning approach. Section 4 reports experimental results. Section 5 gives our
conclusions and future work.

2 Background Definitions

Definition 1 (Model). A model M = (G,MM,µ) is a tuple where: G =
(NG, EG, ΓG) is a directed multigraph 3, MM is itself a model called the
reference model of M (i.e., its metamodel) associated to a graph GMM =
(NMM , EMM , ΓMM ), and µ : NG ∪ EG → NMM is a function associating ele-
ments (nodes and edges) of G to nodes of GMM .

The relation between a model and its reference model (metamodel) is called
conformance and is noted conformsTo. Elements of MM are called meta-
elements (or meta-concepts). µ is neither injective (several model elements may be
associated to the same metaelement) nor surjective (not all metaelements need to
be associated to a model element) [18]. In the ILP framework (regarding the back-
ground knowledge and examples), a model Mi is characterized by its description
MDi, i.e., a set of predicates that correspond to the contained elements. The pred-
icates used to represent Mi as logic programs are extracted from its metamodel ωi.
For example, consider a data model used to manage customers and invoices. The
classes Customer and Invoice are defined respectively by class(customer) and
class(invoice). The one-to-many association that relate Customer to Invoice
is mainly defined by association(customer− invoice, customer, invoice) (others
predicates, presented next, are used to define multiplicitis of the association).
Then, the logic description of models from project’s traces constitutes the gener-
ated background knowledge program in ILP.

Definition 2 (Metamodel and Meta-Metamodel). A meta-metamodel is
a model that is its own reference model (i.e., it conforms to itself ). A metamodel is
a model such that its reference model is a meta-metamodel [18]. The metamodeling
architecture (part of the model-driven-architecture standard) is based on meta-
levels: M3, M2, M1 and M0. M3 is the meta-metamodel level and it forms the
foundation of the metamodeling hierarchy (the Meta-Object-Facility is an example
of meta-metamodel). M2 consists of the metamodel level and The Unified-
Modeling-Language and the Common-Warehouse-Metamodel are examples of
metamodels.M1 regroups all user-defined models andM0 reprensents the runtime
instances of models.

The basic idea is to specify the relations among source and target element
types using constraints. However, declarative constraints can be given executable
semantics, such as in logic programming. In fact, logic programming with its
unification-based matching, search, and backtracking seems a natural choice to
implement the relational approach, where predicates can be used to describe
the relations [5]. For example, in [15] authors explore the application of logic

3 A directed multigraph G = (NG, EG, ΓG) consists of a finite set of nodes NG, a finite
set of edges EG, and a function ΓG : EG → NG ×NG mapping edges to their source
and target nodes [18].
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programming. In particular Mercury, a typed dialect of Prolog, and F-logic, an
object-oriented logic paradigm, to implement transformations. In [30] authors
discuss a formalization of modeling and model transformation using a generic
formalism, the Diagrammatic Predicate Logic (DPL). The DPL [6, 29] is a graph-
based specification format that takes its main ideas from both categorical and
first-order logic, and adapts them to software engineering needs.

Definition 3 (Model Transformation). A model transformation consists
of a set of transformation rules which are defined by input and output patterns
(denoted by P) in M2 level. Formally, a model transformation is associated to
a relation R(MM,MN) ⊆ P(MM)× P(MN) defined between two metamodels
which allows to obtain a target model N conforming to MN from a source model
M that conforms to metamodel MM [33].

Definition 4 (Transformation Example). A transformation example
(or trace model) R(M,N) = {r1, . . . , rk} ⊆ P(M) × P(N) specifies how the
elements of M and N are consistently related by R. A base of examples is a set
of transformation examples. The transformation examples represents project’s
traces or they can be collected from different experts [19].

For instance, we are interested in the transformation of the Data-Source PIM
(denoted DSPIM) to the Multidimensional PIM (denoted MDPIM). The DSPIM
represents a conceptual view of a data-source repository and its conformsTo
the UML CORE metamodel (part of the Unified-Modeling-Language). The MD-
PIM represents a conceptual view of a target data warehouse repository and its
conformsTo the CWM OLAP metamodel (part of the Common-Warehouse-
Metamodel). The (i) definitions and examples of DSPIM/MDPIM, (ii) their
respective metamodels (UML CORE and CWM OLAP) and (iii) details about
the proposed transformation-by-example framework for Model-Driven Data Ware-
house are provided in our recent work [11]. The predicates extracted from the UML
CORE metamodel to translate source models into logic program are: type(name),
multiplicity(bound), class(name), property(name, type, lower, upper), associa-
tion(name, source, target), associationOwnedAttribute(class, property), and asso-
ciationMemberEnds(association, property). Then, According to the CWM OLAP
metamodel, the predicates defined to describe target models are: cube(Name),
measure(Name, Type, Cube), dimension(Name, isTime, isMeasure), cubeDi-
mensionAssociation(Cube, Dimension), level(Name), levelBasedHierarchy(Name,
Dimension), and hierarchyLevelAssociation(LevelBasedHierarchy, Level).

By analysing the source and target models, we observe that structural relation-
ships (like aggregation relation, composition relation, semantic dependency, etc.)
define a restrictive context for some transformations. For instance, let us consider
the concept PropertyToMeasure. For instance, we know there is a composition
relation between Class and Property and there is also a composition relation
between Cube and Measure in the metamodels. This implies that the concept
PropertyToMeasure must be considered only when the concept ClassToCube is
learned. Therefore, the ClassToCube concept must be added as background knowl-
edge in order to learn the PropertyToMeasure concept. This domain specificity
induces a pre-order on the concept to be learned and defines a dependent-concept
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learning problem. Therefore, in our approach, concepts are organized in order
to defined a structure called dependency graph. In [8], Esposito et al. use the
notion of dependency graph to deal with hierarchical theories. Authors define
the dependency graph as a directed acyclic graph of concepts, in which parent
nodes are assumed to be dependent on their offspring.

Definition 5 (Dependency Graph). A dependency graph is a directed
acyclic graph of predicate letters, where an edge (p, q) indicates that atoms with
predicate letter q are allowed to occur in the hypotheses defining the concept
denoted by p [8].

3 Relational Learning of Dependent-Concept

The data warehouse is a database used for reporting; therefore a candidate
language used to describe data is a relational database language. This language is
close to datalog language used in relational learning (or Inductive Logic Program-
ming). In addition, the conceptual models are defined in term of relations between
elements of different types (properties, classes and associations). Therefore, it is
natural to use supervised learning techniques handling concept languages with
the same expressive level as manipulated data in order to exploit all information
provided by the relationships between data. Even if there are quite a number of
efficient machine learning algorithms that deal with attribute-value representa-
tions, relational languages allows encoding structural information fundamental
for the transformation process. This is why ILP algorithms [25, 20] have been
selected to deal with this learning problem. As ILP suffers from a scaling-up
problem, the proposed architecture [9, 10] is designed in order to take into ac-
count this limitation. Thus, it’s organised as a set of elementary transformations
such that each one concerns a few number of predicates only, to reduce the
search space. This section reminder the relational learning theory, introduces the
Dependent-Concept Learning approach and compares it related concept-search
approaches.

3.1 Relational Learning Setting

We consider the machine learning problem as defined in [22]. A (single) concept
learning problem is defined as follows. Given i) a training set E = E+ ∪ E−

of positive and negative examples drawn from an example language Le ii) a
hypothesis language Lh, iii) optionally, some background knowledge B described
in a relational language Lb, iv) a generality relation ≥ relating formulas of Le and
Lh, learning is defined as search in Lh for a hypothesis h such that h is consistent
with E. A hypothesis h is consistent with a training set E if and only if it is
both complete (∀e+ ∈ E+, h,B ≥ e+) and correct (∀e− ∈ E−, h,B 6≥ e−). In an
ILP setting, Le, Lb and Lh are Datalog languages, and most often, examples
are ground facts or clauses, background knowledge is a set of ground facts or
clauses and the generality relation is a restriction of deduction. As explained
in [22], there are two main strategies for searching Lh: either generate-and-test
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or data-driven, and following any of those strategies, algorithms may proceed
either top-down or bottom-up, or any combination of those. We used in our
experiments the well known Aleph system, because of its ability to handle rich
background knowledge, made of both facts and rules. Aleph follows a top-down
generate-and-test approach.

It takes as input a set of examples, represented as a set of Prolog facts
and background knowledge as a Datalog program. It also enables the user to
express additional constraints C on the admissible hypotheses. Aleph tries to
find a hypothesis h ∈ Lh, such that h satisfying the constraints C and which is
complete and partially correct. We used Aleph default mode: in this mode, Aleph
uses a simple greedy set cover procedure and construct a theory H step by step,
one clause at a time. To add a clause to the current target concept, Aleph selects
an uncovered example as a seed, builds a most specific clause from this seed as
the lowest bound of its search space and then performs an admissible search over
the space of clauses that subsume this lower bound according the user clause
length bound. In the next section, we show the reduction of the source-model,
the target-model and the mapping between them as an ILP problem.

3.2 Dependent-Concept Learning Problem

Let {c1, c2, . . . , cn} be a set of concepts to be learned in our problem. If we
consider all the concepts independently, each concept ci defines an independent
ILP problem, i.e., all concepts have independent training sets Ei and share
the same hypothesis language Lh and the same background knowledge B. We
refer to this framework as the Independent-Concept Learning (ICL). The second
framework, Dependent-Concept Learning (DCL), takes into account a pre-order
relation4 � between concepts to be learned such that ci � cj if the concept cj
depends on the concept ci or in other term, if ci is used to define cj (Definition
5). More formally, a concept cj is called parent of the concept ci (or ci is the
child or offspring of cj) if and only if ci � cj and there exists no concept ck such
that ci � ck � cj . ci � cj denotes that cj depends on ci for its definition. A
concept ci is called root concept iff there exists no concept ck such that ck � ci
(in other words, a root concept ci does not depend on any concept ck, for k 6= i).
The DCL framework uses the idea of decomposing a complex learning problem
into a number of simpler ones. Then, it adapts this idea to the context of ILP
multi-predicate learning.

A dependent-concept ILP learning algorithm is an algorithm that accepts a
pre-ordered set of concepts, starts with learning root concepts, then child (or
offspring) concepts and propagates the learned rules to the background knowledge
of their parent concepts and continues recursively the learning process until all
dependent-concepts have been learned. Within this approach, we benchmark two
settings: (i) the background knowledge Bj of a dependent-concept (parent) cj
is extended with the child concept instances (as a set of facts – this framework
is refered to as DCLI) and (ii) Bj is extended with child concept intensional

4 A pre-order is a binary relationship reflexive and transitive.
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definitions: all child concepts are learned as sets of rules and are added to Bj –
this frameworks is refered to as DCLR in the following sections. In both cases,
DCLI or DCLR, all predicates representing child of cj can be used in the body of
cj ’s definition. Our claim here is that the quality of the cj ’s theory substantially
improves if all its child concepts are known in Bj , extensionnally or intensionnally.
Section 4 provides results concerning the impact of child concepts’ representation
(extensional vs. intensional) on the the quality of the cj . Finally, the task of
empirical Dependent-Concept Learning in ILP, which is concerned with learning
a set of concepts based on a dependency-graph and given a set of examples and
background knowledge, can be formulated as follows:

Given: A dependency graph Gd = (Cd, Ed) where Cd = {c1, c2, . . . , cn} the
set of concepts to learn such that ∀ci ∈ Cd:

– A set of transformation examples (i.e., examples) E = {E1, E2, . . . , En} is
given; and defined as (where |TM | is the number of training models):

Ei = {Rj
i (M

j , N j) | Rj(M j , N j) ⊆ P(M j)× P(N j), j ≤ |TM |}

– Background knowledge B which provide additional information about the
examples and defined as:

B = {P(M j) ∪ P(N j) | M j conformsTo MM, N j conformsTo MN)}

Find: ∀ci ∈ Cd, based on Ed and following a BFS strategy5, learn a trans-
formation rule Ri(MM,MN) ⊆ P(MM)× P(MN); where MM is the reference
source-metamodel and MN is the reference target-metamodel.

3.3 Comparison With Related Concept Search Problems

Stone et al. introduce in [34] the Layered Learning machine learning paradigm.
In [27] authors study the problem of constructing the approximation of higher level
concepts by composing the approximation of lower level concepts. Authors in [16,
17] present an alternative to standard genetic programming that applies layered
learning techniques to decompose a problem. The layered learning approach
presented by Muggleton in [24] aims at the construction of a large theory in
small pieces. Compared to layered learning, the DCL approach aims to find all
concepts theory using the theories of concepts on which they depend. Then,
while the layered learning approach exploits a bottom-up, hierarchical task
decomposition, the DCL algorithm exploits the dependency relationships between
specific concepts of the given dependency graph. The dependency structure in [34]
is a hierarchy, whereas our dependency structure is a directed acyclic graph. A
breadth-first search algorithm is used to explore the dependency graph.

Within the field of Inductive Logic Programming the term Predicate Invention
is introduced [23] and it involves the decomposition of predicates being learned

5 Start by an offspring and non-dependent concept (i.e., a root concept), then follow
its parents dependent-concepts
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into useful sub-concepts. Muggleton in [26] defines Predicate Invention as the
augmentation of a given theoretical vocabulary to allow finite axiomatisation
of the observational predicates. In [31, 32], Stahl study the utility of predicate
invention task in ILP and its capabilities as a bias shift operation. Rios et al.
investigate in [28] on specification language extension when no examples are
explicitly given of the invented predicate. The DCL and Predicate Invention
approaches share the fact they correspond to the process of introducing new
theoretical relationships. However, in the case of Predicate Invention, the approach
is usually based on decomposition of the theory to learn on simple sub-theories
and the DCL approach is based on the composition of a theory from the learned
theories.

In [13], authors introduces the Cascade Generalization method. This approach
is compared to other approaches that generate and combine different classifiers
like the Stacked Generalization approach [40, 36, 37]. In [42], Xie proposes sev-
eral speed-up variants of the original cascade generalization and show that the
proposed variants are much faster than the original one. As the Cascade Gener-
alization, the DCL approach extends the background knowledge at each level by
the information on concepts of the sub-level (according to the dependency graph).
But, within the proposed DCL, we use the same classifiers for all iterations. In our
experiments, we report the results of the extension of the background knowledge
by instances (first setting named DCLI) and the learned theory (second setting
named DCLR).

The model transformation by-example approach aims to find contextual
patterns in the source model that map contextual patterns in target model. This
task is defined as Context Analysis in [39]. The machine learning approaches
that exploit context to synthesize concepts are proposed in [38, 4]. In [38] author
provides a precise formal definition of context and list four general strategies
for exploiting contextual information. Authors in [4] introduce an enhanced
architecture that enables contextual learning in the Neurosolver (a problem
solving system). Nevertheless, the notion of context is different in DCL. In fact,
in the DCL, contextual information is the result of the learning process (which
will form the transformation rule); while within the Contextual Learning strategy
the context is part of input information’s that improve the performance of the
learner.

4 Empirical Results

This section describes the experimental setup and compares the results of the two
tested methods: The Independent-Concept Learning (ICL) and the Dependent-
Concept Learning (DCL).

4.1 Materials and Methods

For the experimentations presented in [11], we use a set of real-world data mod-
els provided by an industrial partner. Concerning the experimentations of this
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paper, we use the Microsoft AdventureWorks 2008R2 sample database family6

reference databases. The AdventureWorksOLTP is a sample operational database
used to define the source-model (i.e., the data-source schema – DSPIM). The
AdventureWorksDW is a sample data warehouse schema used as target-model
(i.e., the multidimensional schema – MDPIM). The AdventureWorksOLTP, Ad-
ventureWorksDW and the mapping between them (evaluated by the expert)
is considered as a reference project-trace. This will allow us to benchmark our
approach on a new extended schema (that generate more examples) and a
new dependency graph. The databases elements (i.e., classes, properties and
associations) are encoded as background knowledge (B) and the mapping in-
stances between their elements allows to define positive (E+) and negative
(E−) examples. Concerning the number of examples, we have ‖EClassToCube‖ =
71 denoting the number of example (positives and negatives) used to learn
ClassToCube concept, ‖EPropertyToMeasure‖ = 249, ‖EPropertyToDimension‖ =
245, ‖ERelationShipToDimension‖ = 93, ‖EElementToHierarchyPath‖ = 338, and
‖EElementToDimensionLevel‖ = 338.

ClassToCube 

PropertyToDimension RelationShipToDimension PropertyToMeasure 

ElementToHierarchyPath ElementToDimensionLevel 

Fig. 1. The Considered Dependency Graph.

We use Aleph ILP engine, to learn first-order rules. We run Aleph in the
default mode, except for the minpos and noise parameters: :- set(minpos, p)
establishes as p the minimum number of positive examples covered by each rule
in the theory (for all experiments we fix p = 2); and :- set(noise, n) is used
to reports learning performance by varying the number of negative examples
allowed to be covered by an acceptable clause (we use two setting n = 5 and
n = 10). Then, a Prolog compiler is needed to run Aleph. We use YAP (Yet
Another Prolog) 7, an optimized open-source Prolog platform. We propose to
compare the following approaches:

1. The Independent-Concept Learning (ICL) approach, which proposes to learn
the set of considered concepts independently.

2. The Dependent-Concept Learning (DCL) approach, which consider a depen-
dency graph to learn the concepts. Within this approach, we benchmark
two settings: (i) the background knowledge B of dependent-concepts (parent
concepts) is updated with their child instances (denoted DCLI) and (ii) with

6 http://msftdbprodsamples.codeplex.com/
7 http://www.dcc.fc.up.pt/~vsc/Yap/
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their chlid intensional definitions (denoted DCLR). We identify the concept
dependencies illustrated by the graph in figure 1:

– ClassToCube � PropertyToMeasure: The PropertyToMeasure concept de-
pends on the concept ClassToCube. In general, context of transforming
properties depends on contextual information of transforming classes and
the context of obtaining measures is part of context of obtaining cubes. In
fact, Properties that become Measures are numeric properties of classes that
become cubes. So, we need information about the context of ClassToCube
transformation in order to find the context of PropertyToMeasure.

– ClassToCube � PropertyToDimension: This define dependency between
classes transformed into cubes and their properties that can be transformed
into dimensions. Regarding the UML CORE metamodel, we find a structural
dependency between Class and Property elements (a Class includes attributes,
represented by the ownedAttribute role that defines a set of properties). Then
regarding the CWM OLAP metamodel, we have a structural dependency
between Cube and Dimension elements. Current experiments confirm that
structural dependencies in the metamodel act on the ways to perform learning.

– ClassToCube � RelationShipToDimension: Indeed, dimensions are, also, ob-
tained from relationships of the Class that is transformed into Cube. The
CubeDimensionAssociation meta-class relates a Cube to its defining dimen-
sions as showed by the CWM OLAP metamodel in [11]. These relationships
define the axes of analysis in the target multidimensional schema [41].

– (PropertyToDimension, RelationShipToDimension) � ElementToHierarchy-
Path: A Dimension has zero or more hierarchies. A Hierarchy is an organi-
zational structure that describes a traversal pattern through a Dimension,
based on parent/child relationships between members of a Dimension. Then,
elements that are transformed into dimensions (properties and relationships)
extend the background knowledge used to find hierarchy paths.

– (PropertyToDimension, RelationShipToDimension) � ElementToDimension-
Level : A LevelBasedHierarchy describes hierarchical relationships between
specific levels of a Dimension (e.g., Day, Month, Quarter and Year levels for
the Time dimension). So, rules of transforming elements into Dimension are
used to find rules of obtaining the levels.

4.2 Results and Discussion

The first goal of this benchmark is to examine how the number of training
models and examples influence the performances. Accuracy is commonly used for
comparing the performances in machine learning and it is defined as Accuracy =
TP+TN
P+N , where P (N) is the number of examples classified as positive (negative),

TP (TN) is the number of examples classified as positive (negative) that are
indeed positive (negative). In [11], we examine the accuracy of the learned rules to
show the impact of the number of training models and examples and we report the
obtained test accuracy curves for ClassToCube and PropertyToDimension. The
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Fig. 2. Learning PropertyToMeasure (n=5 for left) and (n=10 for right).

accuracy of current experiments based on the new dataset (of AdventureWorks)
confirm the results reported in [11].

The second goal of the analysis is to study the performances of the DCL
approach (with the two settings DCLI and DCLR) compared to the ICL approach.
The Receiver-Operating-Characteristics (ROC) graphs are a useful technique for
visualizing, organizing and selecting classifiers based on their performance [12].
We report in this section the ROC curves of the tested approaches (ICL, DCLI and
DCLR) based on the new dataset and the new enhanced dependency graph. The
following metrics are used to report the ROC graphs: The true− positive− rate
(also called hit rate and recall = sensitivity) is estimated as tp rate = TP

P and the
false−positive−rate (also called false alarm rate = 1 - specificity) as fp rate =
FP
N . ROC graphs are two-dimensional graphs in which tprate(sensitivity) is

plotted on the Y axis and fprate(1 − specificity) is plotted on the X axis.
In order to assess the impact of a child concept rules quality on the learning
performances of a parent concept, we experiment the case where the child concept
is noisy. This experiment is made within the DCL approach, we add noise to the
non-dependent concept (i.e., ClassToCube) and we observe results of learning
dependent-concepts with different acceptable noise setting (n = 5 and n = 10). We
report the cases where 10% (denoted N-DCLI and N-DCLR) and 20% (denoted
N2-DCLI and N2-DCLR) of the examples are noisy (to add noise, we swap
positives and negatives examples).

The area under the ROC curve, abbreviated AUC, is the common measure to
compare the tested methods. The AUC represents, also, a measure of accuracy
(results are reported by figures 2, 3, 4, 5 and 6). Figures show that n = 10
setting (right part of each figure) gives best performances compared to n = 5.
This confirms that the choice of this parameter is important to deal with noisy
information of database models in general. Comparing ICL, DCLI and DCLR
approaches: results show that the DCLI has greater AUC than other tested
methods. The DCLI curves follow almost the upper-left border of the ROC space.
Therefore, it has better average performance compared to the DCLR and ICL
(AUCDCLI > AUCDCLR > AUCICL). The ICL curves almost follow to the
45-degree diagonal of the ROC space, which represents a random classifier. The
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Fig. 3. Learning PropertyToDimension (n=5 for left) and (n=10 for right).

DCLR setting exhibits good results with respect to the ICL approach, which are
nevertheless slightly worse than results of the DCLI setting.
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Fig. 4. Learning RelationshipToDimension (n=5 for left) and (n=10 for right).

The AUCDCLI > AUCDCLR > AUCICL result is expected, because the
DCLI configuration, when learning a parent concept, uses in its background
knowledge offspring concepts as set of facts (extensional definition), as opposed to
DCLR, which previously learns as sets of rules definition for offspring concepts. In
case lower level concepts (i.e., offspring concepts) are not perfectly identified, the
errors for offspring concepts propagate to parent concepts. We assume here that
examples are noise-free, which explains why DCLI has a better behaviour than
DCLR. Thus, for PropertyToMeasure, PropertyToDimension and Relationship-
ToDimension, results integrate the error rate from ClassToCube learned rules.
For the parent concepts ElementToHierarchyPath and ElementToDimensionLevel
that depend on (PropertyToDimension and RelationshipToDimension), results
are influenced by the error rate propagation from learning ClassToCube and then
PropertyToDimension and RelationshipToDimension.

Then, considering the N-DCLI/N2-DCLI and N-DCLR/N2-DCLR, we have
mainly: AUCN−DCLI > AUCN2−DCLI and AUCN−DCLR > AUCN2−DCLR.
Curves show that the obtained performances depend on the concept to learn and
its degree-of-dependence on ClassToCube (the noisy non-dependent concept of
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Fig. 5. Learning ElementToHierarchyPath (n=5 for left) and (n=10 for right).

this configuration). For instance, in figures 3 and ??, PropertyToDimension and
RelationshipToDimension are most impacted than PropertyToMeasure (in figure
2). The PropertyToDimension and RelationshiptoDimension concepts are highly
dependent on ClassToCube. This can be observed on most schemas (remarks
provided in [11]) and its confirmed by the expert point-of-view. For example,
in the case of RelationshipToDimension, the N2-DCLI curve seems to reach
the 45-degree diagonal. This gives us an idea on the noise that we can accept
when learning specific dependency relationships. The ElementToHierarchyPath
and ElementToDimensionLevel concepts are impacted by the noisy data of
ClassToCube, but less than PropertyToDimension and RelationshipToDimension.
We observe that ElementToHierarchyPath and ElementToDimensionLevel are
not in direct dependence with ClassToCube.
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Fig. 6. Learning ElementToDimensionLevel (n=5 for left) and (n=10 for right).

5 Conclusion

This paper studies a real complex machine learning application: model-driven
data warehouse automation using machine learning techniques. It includes the use
of standard algorithms and a design of architecture to limit the impact of machine
learning to the regions where learning from experience is needed. In addition, from
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our application needs, we found an interesting machine learning problem: learning
dependent-concept. Experimental results show that the proposed Dependent-
Concept Learning approach to derive transformation rules in context of model-
driven data warehouse gives significant performances improvement compared to
the standard approach. From the business point-of-view, the learned theories
are, in general, close to the ones given by human experts. Our future work
will experiments the case when a business goals model is considered during
transformations. For example, the derivation of the MDPIM from the pair
(DSPIM, MDCIM), where MDCIM defines the organisation requirements/goals.
We plan also to extend the approach to new application domains that provide a
large dependency-graph (as example, the Extraction, Transformation and Loading
process in the data warehousing architecture).
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2. J. Bézivin. On the unification power of models. Software and System Modeling,
4(2):171–188, 2005.

3. J. Bézivin. Model driven engineering: An emerging technical space. In GTTSE,
pages 36–64. Springer, 2006.

4. A. Bieszczad and K. Bieszczad. Contextual learning in the neurosolver. In ICANN,
pages 474–484. Springer, 2006.

5. K. Czarnecki and S. Helsen. Feature-based survey of model transformation ap-
proaches. IBM Syst. J., 45:621–645, July 2006.

6. Z. Diskin and U. Wolter. A diagrammatic logic for object-oriented visual modeling.
Electr. Notes Theor. Comput. Sci., 203(6):19–41, 2008.

7. X. Dolques, M. Huchard, and C. Nebut. From transformation traces to transfor-
mation rules: Assisting model driven engineering approach with formal concept
analysis. In ICCS, pages 093–106, Moscow, Russia, 2009.

8. F. Esposito, G. Semeraro, N. Fanizzi, and S. Ferilli. Multistrategy theory revision:
Induction and abduction in inthelex. Machine Learning, 38(1-2):133–156, 2000.

9. M. Essaidi and A. Osmani. Model driven data warehouse using MDA and 2TUP.
Journal of Computational Methods in Sciences and Engineering, 10:119–134, 2010.

10. M. Essaidi and A. Osmani. Towards Model-driven Data Warehouse Automation
using Machine Learning. In IJCCI (ICEC), pages 380–383, Valencia, Spain, 2010.
SciTePress.

11. M. Essaidi, A. Osmani, and C. Rouveirol. Transformations learning in context of
model-driven data warehouse: An experimental design based on inductive logic
programming (accepted – to appear). In ICTAI. IEEE Computer Society, 2011.

12. T. Fawcett. Roc graphs: Notes and practical considerations for researchers. Technical
report, HP Laboratories, 2004.

13. J. a. Gama and P. Brazdil. Cascade Generalization. Mach. Learn., 41:315–343,
December 2000.
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