
Learning Patterns in Multidimensional Space Using
Interval Algebra

A. Osmani

LIPN-CNRS UMR 7030,
99, Avenue J.-B. Clément 93430 Villetaneuse- FRANCE

ao@lipn.univ-paris13.fr

Abstract. In this paper we propose a machine learning formalism based on gen-
eralized intervals. This formalism may be used to diagnose breakdown situations
in telecommunication networks. The main task is to discover significant tempo-
ral patterns in the large databases generated by the monitoring system. In this
kind of applications, time duration is relevant to the alarms identification process.
The shapes of the decision boundaries are usually axis-parallel with constraints.
The representation of examples in our formalism is similar to the representa-
tion described in the Nested Generalized Exemplar theory [Sal91]. This theory of
generalization produces an excellent generalization with interpretable hypotheses
[WD95] in domains where the decision boundaries are axis-parallel.
Using Allen qualitative relations between intervals, firstly we will give an adapted
organization of the set of relations, then we will define an operator of generaliza-
tion and we will give a table of qualitative generalization. Finally we suggest two
learning algorithms. The second one uses a topologic lattice between relations to
optimize the first one.

1 Introduction

One interesting solution to predict or to explain the behavior of a system is to build
a general model able to imitate the system. It is typically the case in model-based
diagnosis approaches where the problem is to detect, to localize and to identify failures
in the system. In several approaches, breakdown situations are simulated in the model
[Osm99b], and a set of observations is treated, and then archived. These observations are
ordered in time. Sometimes, durations are required: the alarm CT1(technique center) is
happened 5 minutes 3 seconds before the alarm CM2(switch). In other situations only
the order is required: the alarm SCS is observed after CT1. In this paper, we propose a
machine learning approach based on generalized intervals[BCdCO98,Lig91,Lad86] to
treat the observations in order to simplify the identification process.

In 1991, Salzberg [Sal91] proposed a learning theory, using hyperrectangles, and
showed the relevance of this theory in three cases. In the model of representation NGE
(Nested Generalized Exemplar), Salzberg proposed a new way to describe concepts by
using hyperrectangles. He associates a weight parameter for each hyperrectangle He
considers that the function of distance between hyperrectangles can change dynamically
and he takes into account the generalization with exception by using the Thornton
[Tho87] results. The work proposed in [WD95] analyses the performance of the NGE
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approach compared to the k−nearest neighbors (knn) approach in 11 domains. He
shows that the performance of the hyperrectangle approach is poor, except when the
application is adapted; in which case the approach presents good performances with
some appreciates advantages like the level of abstraction and the quantity of information
necessary to describe the examples.

It is especially the case with the applications related to the learning of alarm
sequences for the faults discrimination in a telecommunication network. In order to
model the behavior of the telecommunication network when an abnormal operation
occurs, we use the simulator proposed in [Osm99a]. This simulator of breakdown
situations in telecommunication networks can reproduce components behavior and
messages propagation between components in the network. This simulator builds
generalized intervals (see example 2), each generalized interval became a learning
example of an abnormal situation. This application is an excellent example for the use
of the learning approach based on generalized intervals.

In this paper, we introduce a learning approach based on generalized intervals
and which uses both quantitative and qualitative relations between intervals. Our goal
is to implement a global solution of learning using generalized intervals with constraints.

In section 1, we give a real example that justifies our interest in the machine learning
approach using this kind of representation. Section 2 gives some definitions and shows
our relations between intervals extracted from Allen’s relations. Section 3 defines the
operator of generalization and introduces the table of generalization using our relations
between intervals. Section 4 presents two learning algorithms; the first one uses naively
the operator of generalization, the second one uses the property of the relation’s lattice
between interval relations defining a conceptual neighborhood structure to organize
examples in order to optimize the first learning algorithm. Section 5 concludes this
paper.

RelatedWork

Several works focus on machine learning using intervals and/or rectangles. Methods
that induce logical conjunctions are a good example of orthogonal rectangle bias.
The induction of logical conjunctions is one the early machine learning approaches.
The original idea was presented by Bruner and al. [BA56], while the first popular
implemented IGS (Incremental general-to-specific) algorithm was proposed by Winston
[Win75]. This framework has been extended by Mitchell [Mit77] by combining ISG
and IGS approaches. Langley’s Book [Lan96] gives some complements about this
learning approach.
PAC learning of rectangles, have been also studied because they have been experimen-
tally showed to yield excellent hypotheses for several applied problems [ALS97,WD95,
WK91].
Nested generalized exemplar theory accomplishes the learning task by storing objects
in Euclidian space as hyperrectangle [Sal91]. The hyperrectangles may be nested inside
another to arbitrary depth. Some applications results are presented in [WD95].
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Other works deal with intervals to learn and to classify patterns in Euclidian space:
In Koc[Koc95] an algorithm (COFI) for classification with overlapping feature intervals
is proposed. COFI algorithm is an exemplar-based concept-learning algorithm where
learning concepts are represented as intervals on the class dimensions for each feature.
The knowledge representation is similar to the NGE method, no domain theory is used.
In COFI algorithm, learning task is performed in a dynamic environment. The prediction
step is based on a majority voting taken among individual predictions based on the votes
of the features. The nearest work to the one presented in this paper is the paper presented
by Hoppner[Hop01]. Hoppner uses interval algebra to discover temporal rules behavior
of multivariate time series.

2 Application Example

This section gives some "generalized examples" from the learning database generated
by AutModSim tool1 describing breakdown situations in telecommunication network.
The interpretation of the first line of the matrix is done as follow: if the supervisor of
the telecommunication network receives the alarms a1 in the interval [2,7], a2 in the
interval [2,4] and a3 in the interval [0,1], probably the network center Pct is in breakdown
situation.
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Fig. 1. Illustration.

More generally, the learning database can contain simple examples or generalized
examples2 in the form (breakdown situation, alarm sequence). Initially, we have
m known breakdown situations (m is a subset of possible breakdown situations):
{P1, . . . , Pm} and n types of alarms: {a1, . . . , an}. These alarms define the dimension

1 AutModSim simulates breakdown situations in telecommunication networks and generates
alarm sequences with time intervals [OL].

2 A simple example is represented with point in multidimensional space. A generalized interval
is represented by generalized interval.
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of our Euclidian space. For each breakdown situation Pi, we associate a set of
generalized example: the example j of the breakdown situation Pi is the sequence
(a1, X

j
i1, . . . , X

j
in) where Xij is an interval. In this paper we consider the generalized

interval Xj
i = (Xj

i1, . . . , X
j
in) as the representative of the example j of Pi.

The learning database will be in the following form:
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This example gives one possible application of our formalism. In this paper, we will
present the operator of generalization and the training algorithm.

3 Definitions

An interval x can be identified by these two ends [x−, x+]. In this case, it is called:
instantiated interval.
Definition 1. A generalized intervalX is defined by a sequence of instantiated intervals
or by a sequence of intervals and a constraints network between these intervals.

The constraints are expressed by disjunctions of relations representing a subset of
Allen’s thirteen relations [All83]. These relations are {precedes(p), meets(m), over-
laps(o), finish(f), stard(s), during(d) }, their opposites and the relation of equality.
Example 1. Each of the two following examples illustrates the definition of a generalized
interval defined by a sequence of instantiated intervals and a generalized interval defined
by a sequence of intervals and a constraints network.

X = ([1, 2], [3, 5], [2, 6]), X = {(x1, x2, x3), RX}, RX = {x1 px2, x1 mx3, x2 dx3}

Definition 2. A generalized example is a set of examples describing the same concept.
If a point represents a training example of a concept in a given space, an interval, a
rectangle, and a cube that describe the same concept are generalized examples3.
Allen’s relations between intervals [All83] are not necessary used for our learning prob-
lem. The figure 2 presents considered relationships between intervals. We consider four
groups of relations: the relation disconnect (disc) which correspond to the relation pre-
cedes, the relation intersect (inter) which corresponds to the Allen’s relations meets
and overlaps, the relation contain (cont) which groups together the relations finish,

3 A simple example is a particular case of a generalized interval. In the rest of the paper, example
will indicate both simple and generalized example.
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start and during and the relation of equality eq. We note the opposite relations of the re-
lations disc, inter and cont by disc−1, inter−1 and cont−1, respectively. The relations
DISC, CONT and INTER indicate the relations (disc ∨ disc−1), (cont ∨ cont−1),
(inter ∨ inter−1), respectively. The properties of this cutting will be detailed in the
next section.

Relations                   Topological description

disc

Inter

cont

eq

Fig. 2. disc, cont and inter relations between simple intervals.

Definition 3. A minimal covering set of parts of the attributes space for a given concept
is a space described by a set of generalized intervals E(X), such that any example
describing the concept is member, at least, a generalized interval and the intersection of
each side of each element of E(X) with one of the examples which it contains is nonempty.
The operator of generalization presented in the next section respect this property.

4 The Operator of Generalization ψ

This section introduces the operator of generalization ψ. This operator allows making
a minimal recovery of the space of the attributes by minimizing the number of gener-
alized intervals characterizing each concept and also by minimizing the recoveries of
counterexamples during generalization.

Notation 1 Let us consider X = (x1..., xn). We note Gxi an unspecified inter-
val which generalizes xi. We note x(i) the generalized interval defined as follow:
X(i) = (x1...xi−1, Gxi, xi+1...xn), and we note X(i1...,ik) the generalized interval
X for which the components xi1 , xik are generalized before.

Let us consider X = (x1, ..., xn) and Y = (y1, ..., yn) two generalized intervals
with the same dimension and defined in the same space.

4.1 ψ(X, Y ) Operator

The operator of generalization ψi(x, y) defines the generalization of the example X
compared to the example Y as follows: ψi(x, y) = x(i) such as:
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– Gxi = [min(x−
i , y−

i ), max(x+
i , y+

i )] if X and Y are instantiated and
– cont(Gxi, xi) ∧ cont(Gxi, yi) ∧ (∀zi(¬ cont(Gxi , zi) ∨ ¬disc(xi, zi) ∨

¬disc(zi, yi)) ∧(∀zi(¬cont(Gxi , zi) ∨ ¬disc(yi, zi) ∨ ¬disc(xi, yi))).

The application of the operator ψi on X and Y makes possible to replace X in the
database by the generalized example ψi(x, y).

According to the same principle,ψi1...,ik(x, y) defines the operator of generalization
of X compared to Y for the sequence of attributes xi1 ..., xik .

ψi1...,ik = ψi1 ◦ ... ◦ ...ψik = ◦ik
l=i1

ψl

Example 2. Let us consider two generalized examples X = ([2, 3], [5, 6]) and Y =
([5, 7], [1, 3]). Figure 3 illustrates the application of the operators ψ1 and ψ1,2.

Y Y

X

1

2

Y

X

(a) initial representation of X et de Y

1

2

X
ψ1(X,Y)

1

2

ψ1,2(Y,X)

(c)     1,2 (Y,X)ψψ representation(b)     1(X,Y) representation   

Fig. 3. Illustration of the operators ψi et ψi1,...,ik .

The operator ψ(X, Y ) generalizes the two generalized examples X and Y and pro-
duces only one example Z as follows:

ψ(X, Y ) = Z = ([min(x−
1 , y−

1 ), max(x+
1 , y+

1 )]..., [min(x−
n , y−

n ), max(x+
n , y+

n )])

Proposition 1. ψ(X, Y ) = GX such that GX = ◦i=n
i=1ψi(X, Y )

Property 1 The operators ψi and ψi1...,ik are not commutative. The operator ψ is com-
mutative.

Example 3. The figure 3(c) gives an example of generalization of Y with X on two
attributes. If the description space of the examples contains only two attributes then
ψ(x, y) = ψ1,2(y, x).
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4.2 ψ(X, Y, Z) Operator

Generalization process operates in a universe of examples and counterexamples. The
operator ψ(x, y, z) defines the concept of generalization of two examples X and Y of
the same concept, knowing that Z is a counterexample for this same concept.

Before defining this operator, I will start with the definition of the operatorψi(x, y, z).
This operator defines the generalization of the example X compared to the example Y
describing the same concept by knowing the counterexample Z.

– dimension 1: it indicates the behavior of ψi(x, y, z) = ψ(x, y, z) in an one-
dimensional space(i=1). Generalization is done as follows: (∀X)(∀Z)(∀Y )

1. (cont(X, Y ) ∨ cont(Y, X) ∨ inter(Y, X) ∨ inter(X, Y )) ⇒ (ψi(X, Y, Z) =
ψi(X, Y ))

2. (∀Z)((disc(X, Z) ∧ disc(Y, Z)) ∨ (disc(Z, X) ∧ disc(Z, Y ))) ⇒ (ψi(X, Y, Z) =
ψi(X, Y ))

If none of the two premises is valid, generalization fails.
– high dimensions The definition of ψi(X, Y, Z) i ∈ {1, .., n} is done as follow:
ψi(X, Y, Z) = ψi(X, Y ) if, and only if, one of the following expressions is checked:
1. (∃j)(j (= i)DISC(xj , zj) or
2. (R(xi, zi) ∧ R(yi, zi) ∧ R(xi, yi))) = ok in the table 1.

Otherwise generalization fails.

As for the operator ψi1,..,ik(X, Y ):

ψi1,...,ik(X, Y, Z) = ◦m=ik
m=i1

ψm(X, Y, Z)

Table 1 gives the list of the possible situations which can occur between the examples
X, Y and Z, knowing that X and Y describe the same concept and Z a different concept.
The table 1 indicates when generalization is possible, i.e. ψi(x, y, z) = ψi(x, y), by the
word: ok, when generalization is not possible, i.e. no modification is brought to the
base of the examples, by the word ¬ok and when the relation between X , Y and Z is
inconsistency by the word 0.
The first column indicates relations R(X, Z) and R(Y, Z), respectively. The first line
indicates the relation R(X, Y ). The relations cont and eq are not represented in the first
line because the generalization process make no modification for X .
Proposition 2. (∀i)(R(xi, zi)R(yi, zi)R(xi, yi) = ok) → ψ(X, Y, Z) = ψ(X, Y )

Proposition 3. ψ(X, Y, Z) = GX such that:

1. GX = ◦i=n
i=1ψi(X, Y )

2. (∀i) ψi(◦j=i−1
j=1 ψj(X, Y ), Y, Z) = ψi(◦j=i−1

j=1 ψj(X, Y ), Y )

Let us consider S = (Z1, . . . Zl) the ordered set of the counterexamples for the concept
described by the examples X and Y .

ψ(X, Y, S) = ◦i=l
i=1ψ(X, Y, Zi)
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Table 1. Generalization of an example X compared to Y knowing the counterexample Z.

disc inter cont−1 inter−1 disc−1

disc disc ok ok ok ok ok
disc int ok ok ok 0 0
disc cont ok ok ok 0 0
disc eq ok 0 0 0 0
disc cont−1 ¬ok 0 0 0 0
disc inter−1 ¬ok 0 0 0 0
disc disc−1 ¬ok 0 0 0 0
inter disc 0 0 0 ok ok
inter int 0 ok ok ok 0
inter cont 0 ok ok 0 0
inter eq 0 ok 0 0 0
inter cont−1 ¬ok 0 0 0 0
inter inter−1 ¬ok ok 0 0 0
inter disc−1 ¬ok 0 0 0 0
cont disc 0 0 0 ok ok
cont int 0 0 0 ok 0
cont cont 0 ok ok ok 0
cont eq 0 0 0 0 0
cont cont−1 0 0 0 0 0
cont inter−1 0 ok 0 0 0
cont disc−1 ok ok 0 0 0

disc inter cont−1 inter−1 disc−1

cont−1 disc 0 0 0 0 ¬ok
cont−1 int 0 0 ok ok ¬ok
cont−1 cont 0 0 ok 0 0
cont−1 eq 0 0 ok 0 0
cont−1 cont−1 ¬ok ok ok ok ¬ok
cont−1 inter−1 ¬ok ok ok 0 0
cont−1 disc−1 ¬ok ok 0 0 0
inter−1 disc 0 0 0 0 ¬ok
inter−1 int 0 0 0 ok ¬ok
inter−1 cont 0 0 ok ok 0
inter−1 eq 0 0 0 ok 0
inter−1 cont−1 0 0 0 ok ¬ok
inter−1 inter−1 0 ok ok ok 0
inter−1 disc−1 ok ok 0 0 0
disc−1 disc 0 0 0 0 ¬ok
disc−1 int 0 0 0 0 ¬ok
disc−1 cont 0 0 ok ok ok
disc−1 eq 0 0 0 0 ok
disc−1 cont−1 0 0 0 0 ¬ok
disc−1 inter−1 0 0 ok ok ok
disc−1 disc−1 ok ok ok ok ok

5 Learning Algorithms

This section presents two training algorithms: a naive learning algorithm (NLAGI) and
an optimized learning algorithm (OLAGI) which reduce the training time.

Algorithm OLAGI exploits the lattice structure between interval relations [Lig96]
to define a partial order * between the training base of examples. In fact, examples
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are ordered sequentially in the database. To obtain this total ordering starting from the
partial ordering, we take into account the fact that the operator ψ is noncommutative.

Figure 4(a) shows the lattice between interval relations. Figure 4(b) uses this result to
define a lattice between our defined relations. We call the obtained lattice: an increased
lattice. The dotted lines extract a total order between the relations by using ψ previous
defining properties. In the increased lattice, X * Y if there is a path from X to Y .

instable relation
stable relation

fi

di

o

p

m

s d

f

oisi

eq

mi
    pi

−1

−1

eq

disc

inter

inter

cont cont

disc

Fig. 4. (a) Simplified lattice (b) Lattice of interval relations

The extension of this relation lattice between intervals to a relation lattice between
generalized intervals uses a simplified version of the generalized lattice defined in
[BCdCO98].

The contribution of this property is to make the training local. Indeed, by ordering
the examples of training (cost O(n2), N is the number of examples in the database), we
obtain the following result:
Let us consider X1, . . . , Xm the sequence of training examples of training such that:

(∀i)(( ∃j)/(i < j) and Xj * Xi

Property 2 (∀i)(∀j > i) such that Xi, Xi+1, . . . , Xj describe the same concept, for
all Z in the sequence of learning examples describing another concept than Xi,

ψt,1≤t≤n(Xk,i≤k≤j , Xl,i≤l≤j , Z) = ψt(Xk, Xl)

and more generally : ψ(Xk,i≤k≤j , Xl,i≤l≤j , Z) = ψ(Xk, Xl)

The OLAGI learning algorithm uses this propriety to reduce learning time.

6 Conclusion

In our considered application sequences of alarms are generated by the telecommunica-
tion network. Each sequence describes a particular state of the system.We have proposed
a technique to represent these sequences by generalized intervals each one describing a
generalized example of a breakdown situation. This technique uses temporal CSP and



40 A. Osmani

translates some known results to propose an interesting generalization algorithm. In this
paper we describe our contribution but the developed framework include a large part
of related work (see section 2). The learning techniques are used more and more for
the telecommunication management network. This article presents a formalism to learn
temporal patterns with interval.
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