Hierarchical Learning of Dependent Concepts for Human Activity Recognition

Aomar Osmani ¹, **Massinissa Hamidi** ¹, and Pegah Alizadeh ²

¹ LIPN-UMR CNRS 7030, Univ. Sorbonne Paris Nord

² DeVinci Research Center, Pôle Universitaire De Vinci

Concepts Dependency in Real Applications

Concepts Dependency in Real Applications

... ..

- 8 660.032
- 9 12.818.912
- 10 282.137.824

• • •	•••
8	660.032
9	12.818.912
10	282.137.824

Concepts Structuring Based on Transfer Affinity

Transfer Affinity-Based Concepts Structuring

(3) Hierarchy refinement

$$\underset{\theta,\theta'}{\operatorname{argmin}} \mathbb{E}_{x,c \sim X,C|c=c_i} \mathcal{L}(g_{\theta'}^{c_i}(f_{\theta}^{c_i}(x)),x)$$

$$\underset{\theta,\theta'}{\operatorname{argmin}} \mathbb{E}_{x,c \sim X,C|c=c_i} \mathcal{L}(g_{\theta'}^{c_i}(f_{\theta}^{c_i}(x)),x)$$

$$\underset{\theta,\theta'}{\operatorname{argmin}} \, \mathbb{E}_{x,c \sim X,C|c=c_j} \mathcal{L}(g_{\theta'}^{c_j} (f_{\theta}^{c_i}(x)), x)$$

$$\underset{\theta,\theta'}{\operatorname{argmin}} \mathbb{E}_{x,c \sim X,C|c=c_i} \mathcal{L}(g_{\theta'}^{c_i}(f_{\theta}^{c_i}(x)),x)$$

$$\underset{\theta,\theta'}{\operatorname{argmin}} \, \mathbb{E}_{x,c \sim X,C|c=c_j} \mathcal{L} \left(g_{\theta'}^{c_j} \left(f_{\theta}^{c_i}(x) \right), x \right)$$

The final affinity score
$$\frac{\alpha \cdot p_{c_i} {\to} c_j + \beta \cdot b}{\alpha + \beta}$$

b the supervision budget during fine-tuning

$$d_{k(ij)} = \alpha_i d_{ki} + \alpha_j d_{kj} + \beta d_{ij} + \gamma |d_{ki} - d_{kj}|$$

$$d_{k(ij)} = \alpha_i d_{ki} + \alpha_j d_{kj} + \beta d_{ij} + \gamma |d_{ki} - d_{kj}|$$

$$d_{k(ij)} = \alpha_i d_{ki} + \alpha_j d_{kj} + \beta d_{ij} + \gamma |d_{ki} - d_{kj}|$$

$$d_{k(ij)} = \alpha_i d_{ki} + \alpha_j d_{kj} + \beta d_{ij} + \gamma |d_{ki} - d_{kj}|$$

Hierarchy Refinement

Experiments

Experimental Setup

- Dataset
 - SHL dataset;
 - Multimodal and multilocation data;
- Training details
 - Stacking of Conv1d/ReLU/MaxPool blocks (Tensorflow);
 - SVMs are associated to the non-leaf nodes;
 - Hyperparameter optimization (scikit-optimize/Microsoft NNI);

Topology of the wearable sensors deployment in a real-world application

Experimental Evaluation

(i) Evaluation of the hierarchical classification performances

(ii) Evaluation of the affinity analysis stage

(iii) Universality and Stability of the derived hierarchies

Method	Agree.	perf. avg. \pm std.
Expertise	-	72.32 ± 0.17
Random	0.32	$48.17{\pm}5.76$
Proposed	0.77	75.92 ± 1.13

Experimental Evaluation

(i) Evaluation of the hierarchical classification performances

(ii) Evaluation of the affinity analysis stage

(iii) Universality and Stability of the derived hierarchies

Method	Agree.	perf. avg. \pm std.
Expertise	-	72.32 ± 0.17
Random	0.32	48.17 ± 5.76
Proposed	0.77	75.92 ± 1.13

Per-node performances

Per-node performances

Concepts: still vs. rest Perf. gains: 8.13±0.5% Appear. freq.: >60

Per-node performances

concepts: bike, car, bus Perf. gains: 5.09±0.3% Appear. freq.: 80

Per-concept performances

Per-concept performances

Concept: still

Classification rate: 72.32±3.45%

Per-concept performances

Concept: *train*

Classification rate: 64.43±4.45%

Experimental Evaluation

(i) Evaluation of the hierarchical classification performances

(ii) Evaluation of the affinity analysis stage

(iii) Universality and Stability of the derived hierarchies

Method	Agree.	perf. avg. \pm std.
Expertise		72.32 ± 0.17
Random	0.32	48.17 ± 5.76
Proposed	0.77	75.92 ± 1.13

Separability of the Grouped Concepts

Separability of the Grouped Concepts

Separability of the Grouped Concepts

Impact of the Supervision Budget

Impact of the Supervision Budget

Summary

- We proposed an approach based on transfer affinity to determine an optimal organization of the concepts;
- We get a substantial improvement of recognition performances over a baseline which uses a flat classification setting;
- Comparative analysis raises interesting questions about concept dependencies and the required amount of supervision

Aomar Osmani ¹, **Massinissa Hamidi** ¹, and Pegah Alizadeh ²

¹ LIPN-UMR CNRS 7030, Univ. Sorbonne Paris Nord

² DeVinci Research Center, Pôle Universitaire De Vinci

Aomar Osmani ¹, **Massinissa Hamidi** ¹, and Pegah Alizadeh ² ¹ LIPN-UMR CNRS 7030, Univ. Sorbonne Paris Nord ² DeVinci Research Center, Pôle Universitaire De Vinci

