

Improving Human Activity Recognition with Data Sources Integration

Massinissa Hamidi and Aomar Osmani

Laboratoire LIPN-UMR CNRS 7030, Sorbonne Paris Cité, France

Context & Motivation

- How does the data generation step impact learning processes?
- How to deal with sensors deployments, Internet of Things environments, etc.?
- How to incorporate sensors deployment topology to improve data sources integration?
- How to come-up with similar insights as in [Foerster & al., Mantyjarvi & al., Reddy & al.] (without human expertise and heavy experimentation)?

Features learning and fusion strategies

- Convolutional modes + hyperparameters instantiations define a neural architectures space;
- But, Exploration of the whole neural architectures space is unfeasible.

Optimal Exploration of the Neural Architectures Space

- Bayesian optimization based on Gaussian process surrogate model and expected improvement;
- Good trade-off between exploration and exploitation;

Data sources interactions & importances

- We seek the global influence of the hyperparameters;
- Functional analysis of variance (fANOVA) [Hutter & al. 2014];
- Decomposition of high-dimensional black-box functions into the contribution of their marginal components;
- In our case, the black-box function is the exploration strategy and the marginal components are the hyperparameters;

Proposed approach: recap

Experimental setting

- Sussex-Huawei Locomotion Dataset;
- Meta-segmented CV [Hammerla & al.];
- Averaged f1-score;
- Tensorflow, scikit-optimize, fANOVA;

Hyperparam. (sym.)	low	high	prior
Kernel size 1^{st} layer $(ks_{1,mod})$	9	15	-
Kernel size 2^{nd} layer $(ks_{2,mod})$	9	15	-
Kernel size 3^{rd} layer $(ks_{3,mod})$	9	12	-
Number of filters (nf_{mod})	16	28	100
Stride (s_{mod})	0.5	0.6	log
Learning rate (lr)	0.001	0.1	log
Dropout probability (p_d)	0.1	0.5	log
Number of units dense layer (n_u)	64	2048	-

Topology of the sensors deployment

NY Hammerla, T Plötz, in UbiComp, 2015

Qualitative evaluation of the interactions model (1)

Obtained model exhibits agreement with empirical results in the HAR literature, e.g. Foerster & al. and Mantyjarvi & al.

Qualitative evaluation of the interactions model (2)

Hyperparam.	Pairwise marginal $(\times 10^{-4})$
$(ks_{gyr,2}, ks_{gra,2})$	9.2778
$(ks_{mag,1}, ks_{ori,2})$	7.0166
$(ks_{qyr,2}, ks_{ori,2})$	5.5122
$(ks_{acc,1}, ks_{mag,1})$	4.0382
$(ks_{pre,1}, ks_{qyr,3})$	2.3154
$(ks_{gyr,3}, ks_{mag,1})$	2.2472
$(ks_{mag,1}, ks_{ori,1})$	2.1216
$(ks_{pre,3}, ks_{qyr,2})$	1.76305

Most important pairwise marginals of the kernel size hyperparameter

Individual marginal importance of the kernel size hyperparameter

Conclusion & future work

- An original technique for making explicit the interactions among data sources;
- We leverage neural networks capabilities and recent advances in neural architecture search;
- Obtained models exhibits agreement with empirical results in the HAR literature;

- Data augmentation by replacing sensor measurements by random noise;
- Dropping connections that are not important according to the model;
- Adding a sensitivity-based regularization term: a modified term from [Tartaglione & al. 2018] that include, in addition to *parameter-output* sensitivity, an *input-parameter* sensitivity;