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Context & Motivation

- How does the data generation step impact learning processes?

- How to deal with sensors deployments, Internet of Things environments, etc.?

- How to incorporate sensors deployment topology to improve data sources
integration?

- How to come-up with similar insights as in [Foerster & al., Mantyjarvi & al.,
Reddy & al.] (without human expertise and heavy experimentation)?

F Foerster, M Smeja, J Fahrenberg - Computers in Human Behavior, 1999
Mantyjarvi, Jani, & al. IEEE International Conference on Systems, Man and Cybernetics. Vol. 2. IEEE, 2001
Reddy, S., Mun, M., Burke, J., Estrin, D., Hansen, M., Srivastava, M. ACM Transactions on Sensor Networks (TOSN) 6(2), 13, 2010 2



Features learning and fusion strategies
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- Convolutional modes + hyperparameters instantiations define a neural
architectures space;

- But, Exploration of the whole neural architectures space is unfeasible.



Optimal Exploration
of the Neural Architectures Space

- Bayesian optimization based on Gaussian process surrogate model and
expected improvement;
- Good trade-off between exploration and exploitation;
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Source: E Brochu, VM Cora, N De Freitas - arXiv preprint arXiv:1012.2599, 20110




Data sources
Interactions & importances

- We seek the global influence of the hyperparameters;

- Functional analysis of variance (fANOVA) [Hutter & al. 2014];

- Decomposition of high-dimensional black-box functions into the contribution of
their marginal components;

- In our case, the black-box function is the exploration strategy and the
marginal components are the hyperparameters;

Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. In: ICML’14. 5



Proposed approach: recap
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Experimental setting

Sussex-Huawei Locomotion Dataset;
Meta-segmented CV [Hammerla & al.];

Averaged f1-score;

Tensorflow, scikit-optimize, fANOVA;

Hyperparam. (sym.) low high  prior
Kernel size 1°* layer (ks1,mod) 9 15 -
Kernel size 2" layer (k52 mod) 9 15 2
Kernel size 3" layer (ks3.mod) 9 12 -
Number of filters (n.f04) 16 28 .
Stride (Sym0d) 0.5 0.6 log
Learning rate (Ir) 0.001 0.1 log
Dropout probability (pg) 0.1 0.5 log

Number of units dense layer (n,,) 64 2048
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NY Hammerla, T Plotz, in UbiComp, 2015



Qualitative evaluation of the interactions model (1)

Performance comparison among positions for each class
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Obtained model exhibits agreement with empirical results in the HAR literature, e.g. Foerster & al. and
Mantyjarvi & al.

F Foerster, M Smeja, J Fahrenberg - Computers in Human Behavior, 1999
Mantyjarvi, Jani, & al. IEEE International Conference on Systems, Man and Cybernetics. Vol. 2. IEEE, 2001.



Qualitative evaluation of the interactions model (2)

Pairwise marginal

Hyperparam. (x107%
(k8 yyr2sKSgraa) 9.2778
(ksmuy.h ksor‘i,z) 7.0166
(ksgy,g, kSm.lj'Q) 5.5122
(k‘guz?::,ls ksmag,l) 4.0382
(kspre,1, kSgyr,3) 2.3154
(ksgyr,3, kSmag,1) 2.2472
(kSmag,1, kSori 1) 2.1216
(kspre,3, ksgyr,2) 1.76305
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Conclusion & future work

e An original technique for making explicit the interactions among data sources;

e We leverage neural networks capabilities and recent advances in neural
architecture search;

e Obtained models exhibits agreement with empirical results in the HAR literature;

e Data augmentation by replacing sensor measurements by random noise;

e Dropping connections that are not important according to the model;

e Adding a sensitivity-based regularization term: a modified term from [Tartaglione &
al. 2018] that include, in addition to parameter-output sensitivity, an
input-parameter sensitivity;

E Tartaglione, S Lepsgay, A Fiandrotti, G Francini - Advances in NeurlPS, 2018 10



