Growing binary trees

Antoine Genitrini and Khaydar Nurligareev LIP6, Sorbonne University

Workshop PAnDAG 2025

May 16, 2025

Vertex types

- internal node
- anchor (active leaf)
- leaf (dead leaf)

Vertex types

- internal node
- anchor (active leaf)
- □ leaf (dead leaf)

Growing process

■ At the beginning (t = 0), our tree is an anchor \circ

$$t = 0$$

С

Growing process

Vertex types

- internal node
- anchor (active leaf)
- leaf (dead leaf)

Growing process

- At the beginning (t = 0), our tree is an anchor o
- At any moment $t \ge 1$, replace each anchor o by
 - a leaf □

Vertex types

- internal node
- anchor (active leaf)
- leaf (dead leaf)

Growing process

- At the beginning (t = 0), our tree is an anchor o
- At any moment $t \geqslant 1$, replace each anchor o by
 - a leaf □

Vertex types

- internal node
- anchor (active leaf)
- leaf (dead leaf)

Growing process

- At the beginning (t = 0), our tree is an anchor o
- At any moment $t \geqslant 1$, replace each anchor o by
 - a leaf □

Vertex types

- internal node
- anchor (active leaf)
- leaf (dead leaf)

Growing process

- At the beginning (t = 0), our tree is an anchor o
- At any moment $t \geqslant 1$, replace each anchor o by
 - a leaf □

Vertex types

- internal node
- anchor (active leaf)
- □ leaf (dead leaf)

Growing process

- At the beginning (t = 0), our tree is an anchor \circ
- At any moment $t \ge 1$, replace each anchor \circ by
 - a leaf □
 - or a subtree

Vertex types

- internal node
- anchor (active leaf)
- □ leaf (dead leaf)

Growing process

- At the beginning (t = 0), our tree is an anchor \circ
- At any moment $t \geqslant 1$, replace each anchor \circ by
 - a leaf □
 - or a subtree

Studied objects: active trees (i.e. trees that have anchors)

Some examples

Growing process

$$t_{n,m} = \{ \text{active trees with } n \text{ internal nodes } m \text{ anchors} \}$$

$$t_{0.1} = 1$$

$$t_{0,1} = 1,$$
 $t_{1,2} = 1,$ $t_{2,2} = 2,$ $t_{3,4} = 1$

$$t_{2,2} = 2$$

$$t_{3,4}=1$$

 $x^{4} - x^{3}$

Some examples

X 0

 x^{2} ²

 x^{2} z^{2}

 $t_{n,m} = \{ \text{active trees with } n \text{ internal nodes } m \text{ anchors} \}$

$$t_{0.1} = 1$$

$$t_{0,1} = 1,$$
 $t_{1,2} = 1,$ $t_{2,2} = 2,$ $t_{3,4} = 1$

$$t_{2,2} = 2$$

$$t_{3,4} = 1$$

Marking variables:

- x marks anchors
- z marks internal nodes

Some examples

X

0

$$t_{n,m} = \{ \text{active trees with } n \text{ internal nodes } m \text{ anchors} \}$$

$$t_{0,1} = 1$$

$$t_{0,1} = 1,$$
 $t_{1,2} = 1,$ $t_{2,2} = 2,$ $t_{3,4} = 1$

$$t_{2,2} = 2$$

$$t_{3,4} = 1$$

Marking variables:

- x marks anchors
- z marks internal nodes

$$T(x,z) = \sum_{n=0}^{\infty} \sum_{m=1}^{\infty} t_{n,m} x^m z^n$$

$$T(x,z) = x + x^2z + 2x^2z^2 + \dots$$

Generating function

- $t_{n,m} = \{\text{active trees with } n \text{ internal nodes } m \text{ anchors}\}$
- Generation function:

$$T(x,z) = \sum_{n=0}^{\infty} \sum_{m=1}^{\infty} t_{n,m} x^m z^n$$

Growing process replacement:

$$\circ \mapsto \Box \qquad \circ \mapsto \bigwedge^{\bullet}$$
$$x \mapsto 1 \qquad x \mapsto zx^2$$

Equation:

$$T(x,z) = x + T(1 + zx^2, z) - T(1, z)$$

Some relations

Equation (once again):

$$T(x,z) = x + T(1 + zx^2, z) - T(1, z)$$

Anchor distributions

Boundary conditions:

$$T(1,z) = C(z)$$
 \Leftrightarrow $\sum_{m=1}^{\infty} t_{n,m} = C_n$

- C_n are Catalan numbers
- $C(z) = 1 + zC^2(z)$
- Recurrent relation (n, k > 0):

$$t_{n,2k-1} = 0$$
 and $t_{n,2k} = \sum_{m=k}^{\infty} {m \choose k} t_{n-k,m}$

Small values of $t_{n,2k}$

t	n,2	1	2	4	12	32	104	328	10	080	3 648	12 544	
$t_{n,4}$		0	0	1	2	10	24	92	30	80	1 028	3 584	
$t_{n,6}$		0	0	0	0	0	4	8	4	0	176	584	
$t_{n,8}$		0	0	0	0	0	0	1	2	2 10		84	
t,	1,10	0	0	0	0	0	0	0	()	0	0	
n	1 11 12			13		14			15	16			
$t_{n,2}$	43	600	1	535	04	546 272		1 960 3	368	70	85 456	25 773 296	 5
$t_{n,4}$	12	736	4	ŀ5 16	60	161	152	5816	32	2 211450		7727656	j
$t_{n,6}$	2 144			8 192		30 720		112 496		416 528		1553776	,
$t_{n,8}$	282 1 048		-8	4 368		18 224		69 676		265 220			
$t_{n,10}$			1	352		1616		8 208		34 704			

Anchor distributions

 $t_{n,12}$

 $t_{n,14}$

 $t_{n,16}$

Anchor distributions

n	1	2	3	4	5	6	7	8	9	10	11
$t_{n,2}$	1	2	4	12	32	104	328	1 080	3 648	12 544	43 600
$t_{n,4}$	0	0	1	2	10	24	92	308	1 028	3 584	12736
$t_{n,6}$	0	0	0	0	0	4	8	40	176	584	2 144
$t_{n,8}$	0	0	0	0	0	0	1	2	10	84	282
$t_{n,10}$	0	0	0	0	0	0	0	0	0	0	24
$t_{n,12}$	0	0	0	0	0	0	0	0	0	0	0
C_n	1	2	5	14	42	132	429	1 430	4 862	16 796	58 786

It looks like

$$\frac{t_{n,2}}{C_n}$$
 is decreasing,

and there are some limits.

Proportions of the first three lines

 $\frac{t_{200,4}}{C_{200}} > \frac{2}{9}$ and Note that

Note that $\frac{t_{200,4}}{C_{200}} > \frac{2}{9}$ and $\frac{t_{200,6}}{C_{200}} > \frac{1}{18}$

Proposition

$$\liminf_{n\to\infty}\frac{t_{n,2}}{C_n}\geqslant\frac{1}{2}$$

Proposition

$$\liminf_{n\to\infty}\frac{t_{n,2}}{C_n}\geqslant\frac{1}{2}$$

$$t_{n,2} = 2t_{n-1,2} + 4t_{n-1,4} + 6t_{n-1,6} + 8t_{n-1,8} + \dots$$

Proposition

$$\liminf_{n\to\infty}\frac{t_{n,2}}{C_n}\geqslant\frac{1}{2}$$

$$\begin{array}{rcl} t_{n,2} & = & 2t_{n-1,2} + 4t_{n-1,4} + 6t_{n-1,6} + 8t_{n-1,8} + \dots \\ & > & 2t_{n-1,2} + 2t_{n-1,4} + 2t_{n-1,6} + 2t_{n-1,8} + \dots \end{array}$$

Proposition

$$\liminf_{n\to\infty}\frac{t_{n,2}}{C_n}\geqslant\frac{1}{2}$$

$$\begin{array}{rcl} t_{n,2} & = & 2t_{n-1,2} + 4t_{n-1,4} + 6t_{n-1,6} + 8t_{n-1,8} + \dots \\ & > & 2t_{n-1,2} + 2t_{n-1,4} + 2t_{n-1,6} + 2t_{n-1,8} + \dots \\ & = & 2C_{n-1} \end{array}$$

Proposition

$$\liminf_{n\to\infty}\frac{t_{n,2}}{C_n}\geqslant\frac{1}{2}$$

$$t_{n,2} = 2t_{n-1,2} + 4t_{n-1,4} + 6t_{n-1,6} + 8t_{n-1,8} + \dots$$

$$> 2t_{n-1,2} + 2t_{n-1,4} + 2t_{n-1,6} + 2t_{n-1,8} + \dots$$

$$= 2C_{n-1}$$

$$C_n \sim \frac{4^n}{n^{3/2}\sqrt{\pi}} \qquad \Rightarrow \qquad \frac{t_{n,2}}{C_n} > \frac{2C_{n-1}}{C_n} \sim \frac{1}{2}$$

Proposition

$$\liminf_{n\to\infty}\frac{t_{n,2}}{C_n}\geqslant\frac{5}{8}$$

Elaborated lower bound

Proposition

$$\liminf_{n\to\infty}\frac{t_{n,2}}{C_n}\geqslant\frac{5}{8}$$

$$t_{n+1,2} = 3C_n + (-t_{n,2} + t_{n,4} + 3t_{n,6} + 5t_{n,8} + \dots)$$

Elaborated lower bound

Proposition

$$\liminf_{n\to\infty}\frac{t_{n,2}}{C_n}\geqslant\frac{5}{8}$$

$$t_{n+1,2} = 3C_n + (-t_{n,2} + t_{n,4} + 3t_{n,6} + 5t_{n,8} + \dots)$$

$$t_{n,2} = 2C_{n-1} + (2t_{n-1,4} + 4t_{n-1,6} + 6t_{n-1,8} + \dots)$$

Elaborated lower bound

Proposition

$$\liminf_{n\to\infty}\frac{t_{n,2}}{C_n}\geqslant\frac{5}{8}$$

$$t_{n+1,2} = 3C_n + \left(-t_{n,2} + t_{n,4} + 3t_{n,6} + 5t_{n,8} + \dots\right)$$

$$t_{n,2} = 2C_{n-1} + \left(2t_{n-1,4} + 4t_{n-1,6} + 6t_{n-1,8} + \dots\right)$$

$$t_{n+1,2k} \geqslant 2t_{n,2k} \qquad \Rightarrow \qquad \frac{t_{n+1,2}}{C_{n+1}} > \frac{3C_n - 2C_{n-1}}{C_{n+1}} \sim \frac{5}{8}$$

Column nonzero values

n	1	2	3	4	5	6	7	8	9	10	11
$t_{n,2}$	1	2	4	12	32	104	328	1 080	3 648	12 544	43 600
$t_{n,4}$	0	0	1	2	10	24	92	308	1 028	3 584	12736
$t_{n,6}$	0	0	0	0	0	4	8	40	176	584 84	2 144
$t_{n,8}$	0	0	0	0	0	0	1	2	10	84	282
$t_{n,10}$	0	0	0	0	0	0	0	0	0	0	24
$t_{n,12}$	0	0	0	0	0	0	0	0	0	0	0

Define

$$a_n = \max\{k \colon t_{n,2k} > 0\}$$

n	1	2	3	4	5	6	7	8	9	10
a _n	1	1	2	2	2	3	4	4	4	4
a_n a_{n+10} a_{n+20} a_{n+30}	5	6	6	7	8	8	8	8	8	9
a_{n+20}	10	10	11	12	12	12	13	14	14	15
a_{n+30}	16	16	16	16	16	16	17	18	18	19

One property of (a_n)

Proposition

The sequence (a_n) satisfies

$$a_n = \max\{k \colon k \leqslant 2a_{n-k}\}, \qquad a_1 = 1$$

One property of (a_n)

Proposition

The sequence (a_n) satisfies

$$a_n = \max\{k \colon k \leqslant 2a_{n-k}\}, \qquad a_1 = 1$$

Anchor distributions

We have

$$t_{n,2k} = \sum_{m=\lceil k/2 \rceil}^{a_{n-k}} {2m \choose k} t_{n-k,2m}$$

and

$$t_{n,2k} \neq 0$$
 \Rightarrow $\exists m: k \leq 2m \leq 2a_{n-k}$

Hence.

$$k \leq 2a_{n-k}$$

n										
a _n	1	1	2	2	2	3	4	4	4	4
a_{n+10}	5	6	6	7	8	8	8	8	8	9
a_{n+20}	10	10	11	12	12	12	13	14	14	15
$ \begin{array}{c} a_n \\ a_{n+10} \\ a_{n+20} \\ a_{n+30} \end{array} $	16	16	16	16	16	16	17	18	18	19

Define

$$\ell_n = \#\{k \colon a_k = n\}$$

Sequence of repeating elements of (a_n)

n	1	2	3	4	5	6	7	8	9	10
a _n	1	1	2	2	2	3	4	4	4	4
a_{n+10}	5	6	6	7	8	8	8	8	8	9
a_{n+20}	10	10	11	12	12	12	13	14	14	15
a_n a_{n+10} a_{n+20} a_{n+30}	16	16	16	16	16	16	17	18	18	19

Define

$$\ell_n = \#\{k \colon a_k = n\}$$

We have

$$(\ell_n) = 2, 3, 1, 4, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 6, 1, 2, 1, \dots$$

Anchor distributions

Description of (ℓ_n)

Proposition

The sequence (ℓ_n) satisfies

$$\ell_n = \left\{ \begin{array}{ll} p+2 & \text{if } n=2^p, \\ p+1 & \text{if } n=2^pa, \text{ a is odd, } a>1. \end{array} \right.$$

In particular,

- $\ell_{2n} = \ell_n + 1$ for even indices,
- $\ell_{2n+1} = 1$ for odd indices greater than 1,
- $\ell_1 = 2$.

Induction based on $a_n = \max\{k : k \leq 2a_{n-k}\}$

Description of (a_n)

Proposition

The sequence (a_n) satisfies

Generating function

$$a_n = a_{n-1-a_{n-1}} + a_{n-2-a_{n-2}}, \qquad a_0 = a_1 = a_2 = 1$$

Question. How to explain this recurrence combinatorially?

Description of (a_n)

Proposition

The sequence (a_n) satisfies

$$a_n = a_{n-1-a_{n-1}} + a_{n-2-a_{n-2}}, \qquad a_0 = a_1 = a_2 = 1$$

Question. How to explain this recurrence combinatorially?

Corollary

$$\lim_{n\to\infty} \frac{a_n}{n} = \frac{1}{2}$$

$$\sum_{n=0}^{\infty} a_n z^n = z \sum_{n=0}^{\infty} \prod_{i=1}^{n} (z + z^{2^i})$$