Khaydar Nurligareev (with Antoine Genitrini)
LIP6, Sorbonne University

Journées Graphes et Algorithmes 2025 IPGP. Paris

November 18, 2025

Generating functions Anchor distributions Column nonzero values Limit forms Conclusion

Settings

Growing process

Vertex types

- internal node
- o anchor (active leaf)
- □ leaf (dead leaf)

Growing process

Vertex types

internal node

t = 0

- anchor (active leaf)
- leaf (dead leaf)

Growing process

• At the beginning (t = 0), our tree is an anchor o

Growing process

Vertex types

- internal node
- anchor (active leaf)
- □ leaf (dead leaf)

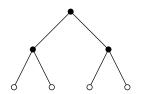
- At the beginning (t = 0), our tree is an anchor \circ
- At any moment $t \ge 1$, replace each anchor \circ by
 - a leaf □
 - or a subtree

Growing process

Vertex types

- internal node
- anchor (active leaf)
- □ leaf (dead leaf)

- At the beginning (t = 0), our tree is an anchor \circ
- At any moment $t \ge 1$, replace each anchor \circ by
 - a leaf □
 - or a subtree

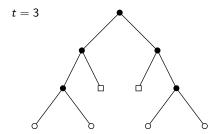


Growing process

Vertex types

- internal node
- anchor (active leaf)
- □ leaf (dead leaf)

- At the beginning (t = 0), our tree is an anchor \circ
- At any moment $t \ge 1$, replace each anchor \circ by
 - a leaf □
 - or a subtree

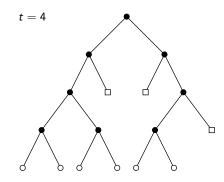


Growing process

Vertex types

- internal node
- anchor (active leaf)
- □ leaf (dead leaf)

- At the beginning (t = 0), our tree is an anchor \circ
- At any moment $t \ge 1$, replace each anchor \circ by
 - a leaf □
 - or a subtree

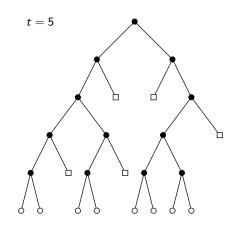


Growing process

Vertex types

- internal node
- anchor (active leaf)
- □ leaf (dead leaf)

- At the beginning (t = 0), our tree is an anchor \circ
- At any moment $t \ge 1$, replace each anchor \circ by
 - a leaf □
 - or a subtree



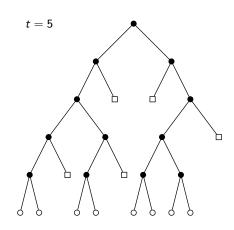
Growing process

Vertex types

- internal node
- anchor (active leaf)
- □ leaf (dead leaf)

Growing process

- At the beginning (t = 0), our tree is an anchor \circ
- At any moment $t \geqslant 1$, replace each anchor \circ by
 - a leaf □
 - or a subtree



Studied objects: active trees (i.e. trees that have anchors)

Counting

Growing process

 $t_{n,m} = \{ \text{active trees with } n \text{ internal nodes } m \text{ anchors} \}$

0

$$t_{0,1} = 1$$

$$t_{1,2} = 1$$

$$t_{2,2} = 2$$

$$t_{3,4} = 1$$

Counting

 $t_{n,m} = \{ \text{active trees with } n \text{ internal nodes } m \text{ anchors} \}$

0

$$x^2z^2$$

$$x^{4}z^{3}$$

$$t_{0,1} = 1$$
 $t_{1,2} = 1$

$$t_{1,2} = 1$$

$$t_{2,2} = 2$$

$$t_{3,4} = 1$$

Marking variables:

- x marks anchors
- z marks internal nodes

$$T(x,z) = \sum_{n=0}^{\infty} \sum_{m=1}^{\infty} t_{n,m} x^m z^n$$

$$T(x, z) = x + x^2z + 2x^2z^2 + \dots$$

Relations

Growing process

Growing process replacement:

$$\circ \mapsto \Box \qquad \circ \mapsto \bigwedge^{\bullet}$$
$$x \mapsto 1 \qquad x \mapsto zx^2$$

Equation:

$$T(x,z) = x + T(1 + zx^2, z) - T(1,z)$$

Relations

Growing process

Growing process replacement:

$$\circ \mapsto \Box \qquad \circ \mapsto \bigwedge^{\bullet}$$
$$x \mapsto 1 \qquad x \mapsto zx^2$$

Equation:

$$T(x,z) = x + T(1 + zx^2, z) - C(z)$$

- $C(z) = 1 + zC^2(z)$

$$\sum_{n=1}^{\infty} t_{n,m} = C_n$$

Relations

Growing process

Growing process replacement:

$$\circ \mapsto \Box \qquad \circ \mapsto \bigwedge^{\bullet}$$
$$x \mapsto 1 \qquad x \mapsto zx^2$$

Equation:

$$T(x,z) = x + T(1 + zx^2, z) - C(z)$$

- lacksquare C_n are Catalan numbers
- $C(z) = 1 + zC^2(z)$

$$\sum_{m=1}^{\infty} t_{n,m} = C_r$$

■ Recurrent relation (n, k > 0):

$$t_{n,2k-1}=0$$
 and $t_{n,2k}=\sum_{m=k}^{\infty} {m\choose k} t_{n-k,m}$

Define

$$p_0(x,z) = x,$$
 $p_{n+1}(x,z) = 1 + zp_n^2(x,z)$

Define

$$p_0(x,z) = x,$$
 $p_{n+1}(x,z) = 1 + zp_n^2(x,z)$

- $p_n(x,z)$ counts binary trees:
 - of height at most n,
 - anchors are at level n.
 - leaves are at levels k < n

0

Growing process

Column nonzero values

$$p_2(x,z) = 1 + z + 2x^2z^2 + x^4z^3$$

Define

Growing process

$$p_0(x,z) = x,$$
 $p_{n+1}(x,z) = 1 + zp_n^2(x,z)$

- $p_n(x,z)$ counts binary trees:
 - of height at most n,
 - anchors are at level n,
 - \blacksquare leaves are at levels k < n

for k > n: $[z^k]p_n(x, z) = C_k$

0

$$p_2(x,z) = 1 + z + 2x^2z^2 + x^4z^3$$

Define

Growing process

$$p_0(x,z) = x,$$
 $p_{n+1}(x,z) = 1 + zp_n^2(x,z)$

- $p_n(x,z)$ counts binary trees:
 - of height at most n,
 - anchors are at level n.
 - \blacksquare leaves are at levels k < n

for k > n: $[z^k]p_n(x,z) = C_k$

$$[z^k]p_n(x,z)=C_k$$

Define

$$q_n(x,z) = zp_n(x,z)$$

 $q_n(1,z)$ are known as Mandelbrot Polynomials

Define

Growing process

$$p_0(x,z) = x,$$
 $p_{n+1}(x,z) = 1 + zp_n^2(x,z)$

- $p_n(x,z)$ counts binary trees:
 - of height at most n,
 - anchors are at level n.
 - \blacksquare leaves are at levels k < n

for
$$k > n$$
:

$$[z^k]p_n(x,z)=C_k$$

Define

$$q_n(x,z) = zp_n(x,z)$$

- $q_n(1,z)$ are known as Mandelbrot Polynomials
- Corollary: for k < n, $[z^{k+1}]q_n(1,z) = C_k$

Cumulative value of anchors

Denote

Growing process

$$\widetilde{T}(x,z) = \frac{\partial T}{\partial x}(x,z)$$

Equation:

$$\widetilde{T}(x,z) = 1 + 2xz\,\widetilde{T}(1+zx^2,z)$$

Cumulative value of anchors

Denote

Growing process

$$\widetilde{T}(x,z) = \frac{\partial T}{\partial x}(x,z)$$

Equation:

$$\widetilde{T}(x,z) = 1 + 2xz\,\widetilde{T}(1+zx^2,z)$$

Relation:

$$\widetilde{T}(x,z) = 1 + \sum_{k=1}^{\infty} (2z)^k \prod_{\ell=0}^{k-1} p_{\ell}(x,z)$$

Cumulative value of anchors

Denote

Growing process

$$\widetilde{T}(x,z) = \frac{\partial T}{\partial x}(x,z)$$

Equation:

$$\widetilde{T}(x,z) = 1 + 2xz\widetilde{T}(1+zx^2,z)$$

Relation:

$$\widetilde{T}(x,z) = 1 + \sum_{k=1}^{\infty} (2z)^k \prod_{\ell=0}^{k-1} p_{\ell}(x,z)$$

■ In terms of Mandelbrot polynomials:

$$\sum_{n=0}^{\infty} \sum_{m=1}^{\infty} m t_{m,n} z^n = 1 + \sum_{k=1}^{\infty} 2^k \prod_{\ell=0}^{k-1} q_{\ell}(1,z)$$

Anchor distributions

Growing process

n	1	2	3	4	5	6	7	8	9	10	11
$t_{n,2}$	1	2	4			104	328	1 080	3 648	12 544	43 600
$t_{n,4}$	0	0	1	2	10	24	92	308	1 028	3 584	12736
$t_{n,6}$	0	0	0	0	0	4	8	40	176	584	2144
$t_{n,8}$	0	0	0	0	0	0	1	2	10	84	282
$t_{n,10}$	0	0	0	0	0	0	0	0	0	0	24
$t_{n,12}$	0	0	0	0	0	0	0	0	0	0	0
C_n	1	2	5	14	42	132	429	1 430	4 862	16 796	58 786

It looks like eventually

$$\frac{t_{n,2}}{C_n}$$
 is decreasing,

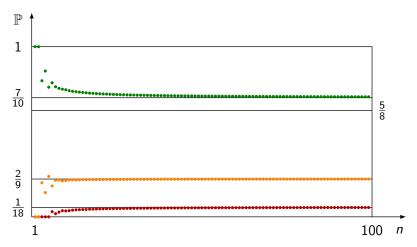
and there are some limits.

Proportions of the first three lines



and Note that

Proportions of the first three lines



Proposition:

$$\liminf_{n\to\infty}\frac{t_{n,2}}{C_n}\geqslant\frac{5}{8}$$

Generating functions Anchor distributions Column nonzero values Limit forms Conclusion

Column nonzero values

										10	
$t_{n,2}$	1	2	4	12	32	104	328	1 080	3 648	12 544	43 600
$t_{n,4}$	0	0	1	2	10	24	92	308	1 028	3 584	12736
$t_{n,6}$	0	0	0	0	0	4	8	40	176	584	2 144
$t_{n,8}$	0	0	0	0	0	0	1	2	10	84	282
$t_{n,10}$	0	0	0	0	0	0	0	0	0	12 544 3 584 584 84 0	24

Limit forms

Conclusion

Column nonzero values

n	1	2	3	4	5	6	7	8	9	10	11
$t_{n,2}$	1	2	4	12	32	104	328	1 080	3 648	12 544	43 600
$t_{n,4}$	0	0	1	2	10	24	92	308	1 028	12 544 3 584 584 84	12736
$t_{n,6}$	0	0	0	0	0	4	8	40	176	584	2 144
$t_{n,8}$	0	0	0	0	0	0	1	2	10	84	282
$t_{n,10}$	0	0	0	0	0	0	0	0	0	0	24

Define

$$a_n = \max\{k \colon t_{n,2k} > 0\}$$

n	1	2	3	4	5	6	7	8	9	10
a _n	1	1	2	2	2	3	4	4	4	4
a_{n+10}	5	6	6	7	8	8	8	8	8	9
a_{n+20}	10	10	11	12	12	12	13	14	14	15
a_n a_{n+10} a_{n+20} a_{n+30}	16	16	16	16	16	16	17	18	18	19

Column nonzero values

n	1	2	3	4	5	6	7	8	9	10	11
$t_{n,2}$	1	2	4	12	32	104	328	1 080	3 648	12 544	43 600
$t_{n,4}$	0	0	1	2	10	24	92	308	1 028	3 584	12736
$t_{n,6}$	0	0	0	0	0	4	8	40	176	584	2 144
$t_{n,8}$	0	0	0	0	0	0	1	2	10	84	282
$t_{n,10}$	0	0	0	0	0	0	0	0	0	12 544 3 584 584 84 0	24

Define

$$a_n=\max\{k\colon t_{n,2k}>0\}$$

n	1	2	3	4	5	6	7	8	9	10
a _n	1	1	2	2	2	3	4	4	4	4
a_{n+10}	5	6	6	7	8	8	8	8	8	9
a_{n+20}	10	10	11	12	12	12	13	14	14	15
a_n a_{n+10} a_{n+20} a_{n+30}	16	16	16	16	16	16	17	18	18	19

■ Lemma: The sequence (a_n) satisfies

$$a_1 = 1, \qquad a_n = \max\{k \colon k \leqslant 2a_{n-k}\}$$

Sequence of repeating elements of (a_n)

n	1	2	3	4	5	6	7	8	9	10
a _n	1	1	2	2	2	3	4	4	4	4
a_{n+10}	5	6	6	7	8	8	8	8	8	9
a_{n+20}	10	10	11	12	12	12	13	14	14	15
a_n a_{n+10} a_{n+20} a_{n+30}	16	16	16	16	16	16	17	18	18	19

Define

$$\ell_n = \#\{k \colon a_k = n\}$$

n	1	2	3	4	5	6	7	8	9	10
-a _n	1	1	2	2	2	3	4	4	4	4
a_{n+10}	5	6	6	7	8	8	8	8	8	9
a_{n+20}	10	10	11	12	12	12	13	14	14	15
a_n a_{n+10} a_{n+20} a_{n+30}	16	16	16	16	16	16	17	18	18	19

Define

$$\ell_n = \#\{k \colon a_k = n\}$$

We have

$$(\ell_n) = 2, 3, 1, 4, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 6, 1, 2, 1, \dots$$

Description of (ℓ_n)

Proposition

Growing process

The sequence (ℓ_n) satisfies

$$\ell_n = \left\{ \begin{array}{ll} p+2 & \text{if } n=2^p, \\ p+1 & \text{if } n=2^pa, \text{ a is odd, } a>1. \end{array} \right.$$

In particular,

- $\ell_{2n} = \ell_n + 1$ for even indices,
- $\ell_{2n+1} = 1$ for odd indices greater than 1,
- $\ell_1 = 2$.

Induction based on $a_n = \max\{k : k \leq 2a_{n-k}\}$

Proposition

Growing process

The sequence (a_n) satisfies

$$a_n = a_{n-1-a_{n-1}} + a_{n-2-a_{n-2}}, \qquad a_0 = a_1 = a_2 = 1$$

Question. How to explain this recurrence combinatorially?

Description of (a_n)

Proposition

Growing process

The sequence (a_n) satisfies

$$a_n = a_{n-1-a_{n-1}} + a_{n-2-a_{n-2}}, \qquad a_0 = a_1 = a_2 = 1$$

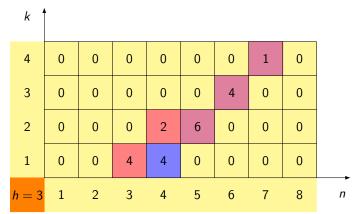
- Question. How to explain this recurrence combinatorially?
- \bullet (a_n) is known as a meta-Fibonacci sequence

Corollary (Tanny, 1992)

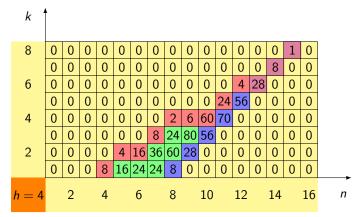
$$\lim_{n\to\infty}\frac{a_n}{n}=\frac{1}{2}$$

$$\sum_{n=0}^{\infty} a_n z^n = z \sum_{n=0}^{\infty} \prod_{i=1}^{n} (z + z^{2^i})$$

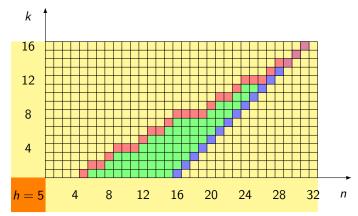
Growing process



Growing process



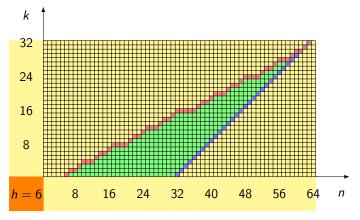
Growing process



$$S_h = \{(n, k): t_{n, 2k, h} \neq 0\},\$$

$$|S_h| = 2^{h-2}(2^{h-1} - h + 2)$$

Growing process

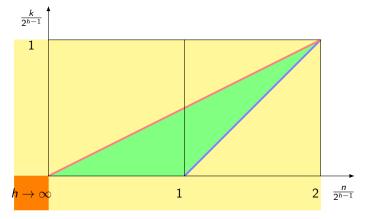


$$S_h = \{(n, k): t_{n,2k,h} \neq 0\},\$$

$$|S_h| = 2^{h-2}(2^{h-1} - h + 2)$$

Growing process

 $t_{n,2k,h} = \#\{\text{active trees with } n \text{ internal nodes } 2k \text{ anchors of height } h\}$



$$S_h = \{(n, k): t_{n,2k,h} \neq 0\},\$$

$$|S_h| = 2^{h-2}(2^{h-1} - h + 2)$$

Khaydar Nurligareev (with Antoine Genitrini)

Growing process

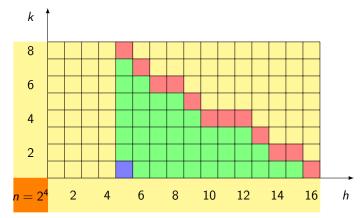


$$\widehat{S}_n = \{(h, k) : t_{n,2k,h} \neq 0\},\$$

$$|\widehat{S}_{2^m}| = 2^{m-2}(2^m - m + 1)$$

Trees of fixed size

Growing process



$$\widehat{S}_n = \{(h, k) : t_{n,2k,h} \neq 0\},\$$

$$|\widehat{S}_{2^m}| = 2^{m-2}(2^m - m + 1)$$

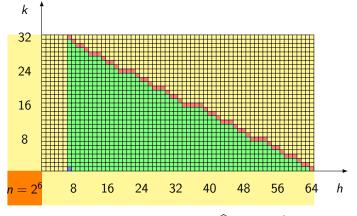
Trees of fixed size

Growing process

$$\widehat{S}_n = \{(h,k) \colon t_{n,2k,h} \neq 0\},\,$$

$$|\widehat{S}_{2^m}| = 2^{m-2}(2^m - m + 1)$$

 $t_{n,2k,h} = \#\{\text{active trees with } n \text{ internal nodes } 2k \text{ anchors of height } h\}$



$$\widehat{S}_n = \{(h, k) : t_{n, 2k, h} \neq 0\},\$$

$$|\widehat{S}_{2^m}| = 2^{m-2}(2^m - m + 1)$$

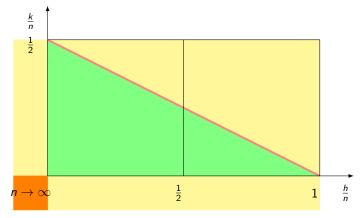
Khaydar Nurligareev (with Antoine Genitrini)

Trees of fixed size

Generating functions

Growing process

 $t_{n,2k,h} = \#\{\text{active trees with } n \text{ internal nodes } 2k \text{ anchors of height } h\}$



$$\widehat{S}_n = \{(h, k) : t_{n,2k,h} \neq 0\},\$$

$$|\widehat{S}_{2^m}| = 2^{m-2}(2^m - m + 1)$$

Khaydar Nurligareev (with Antoine Genitrini)

Generating functions Anchor distributions Column nonzero values Limit forms Conclusion

Conclusion

Growing process

- Studied objects:
 - growing binary trees.
- 2 Related objects:
 - Mandelbrot polynomials,
 - meta-Fibonacci sequences.
- 3 Results:
 - relations for generating functions,
 - bounds for anchor distributions,
 - behavior of the maximal number of anchors,
 - limit forms of nonzero domains.

Thank you for your attention!

Growing process

Neil J. Calkin, Eunice Y. S. Chan, Robert M. Corless Some Facts and Conjectures about Mandelbrot Polynomials *Maple Transactions*, 2021.

Stephen M. Tanny A well-behaved cousin of the Hofstadter sequence Discrete Mathematics, 105 (1-3), 1992, pp. 227–239.