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Settings

Vertex types

• internal node

◦ anchor (active leaf)

� leaf (dead leaf)

Growing process

At the beginning (t = 0),
our tree is an anchor ◦
At any moment t > 1,
replace each anchor ◦ by

a leaf �

or a subtree

t = 5

Studied objects: active trees (i.e. trees that have anchors)
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• internal node

◦ anchor (active leaf)

� leaf (dead leaf)

Growing process

At the beginning (t = 0),
our tree is an anchor ◦
At any moment t > 1,
replace each anchor ◦ by

a leaf �

or a subtree

t = 2

t = 5

Studied objects: active trees (i.e. trees that have anchors)
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Settings

Vertex types

• internal node

◦ anchor (active leaf)

� leaf (dead leaf)

Growing process

At the beginning (t = 0),
our tree is an anchor ◦
At any moment t > 1,
replace each anchor ◦ by

a leaf �

or a subtree

t = 3

t = 5

Studied objects: active trees (i.e. trees that have anchors)
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Settings

Vertex types

• internal node

◦ anchor (active leaf)

� leaf (dead leaf)

Growing process

At the beginning (t = 0),
our tree is an anchor ◦
At any moment t > 1,
replace each anchor ◦ by

a leaf �

or a subtree

t = 4

t = 5

Studied objects: active trees (i.e. trees that have anchors)
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Counting

tn,m = {active trees with n internal nodes m anchors}

x

t0,1 = 1

x2z

t1,2 = 1

x2z2

t2,2 = 2

x2z2 x4z3

t3,4 = 1

Marking variables:

x marks anchors

z marks internal nodes

T (x , z) =
∞∑
n=0

∞∑
m=1

tn,m xmzn

T (x , z) = x + x2z + 2x2z2 + . . .
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Relations

Growing process replacement:

7→

x 7→ 1

7→

x 7→ zx2

Equation:

T (x , z) = x + T (1 + zx2, z)− T (1, z)C (z)

Cn are Catalan numbers

C (z) = 1 + zC 2(z)

∞∑
m=1

tn,m = Cn

Recurrent relation (n, k > 0):

tn,2k−1 = 0 and tn,2k =
∞∑

m=k

(
m

k

)
tn−k,m
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Mandelbrot Polynomials

Define

p0(x , z) = x , pn+1(x , z) = 1 + zp2n(x , z)

pn(x , z) counts binary trees:

of height at most n,

for k > n:

anchors are at level n,

[zk ]pn(x , z) = Ck

leaves are at levels k < n

Define

qn(x , z) = zpn(x , z)

qn(1, z) are known as Mandelbrot Polynomials

Corollary: for k < n, [zk+1]qn(1, z) = Ck
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Cumulative value of anchors

Denote

T̃ (x , z) =
∂T

∂x
(x , z)

Equation:
T̃ (x , z) = 1 + 2xzT̃ (1 + zx2, z)

Relation:

T̃ (x , z) = 1 +
∞∑
k=1

(2z)k
k−1∏
`=0

p`(x , z)

In terms of Mandelbrot polynomials:

∞∑
n=0

∞∑
m=1

mtm,nz
n = 1 +

∞∑
k=1

2k
k−1∏
`=0

q`(1, z)
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Anchor distributions

n 1 2 3 4 5 6 7 8 9 10 11
tn,2 1 2 4 12 32 104 328 1 080 3 648 12 544 43 600
tn,4 0 0 1 2 10 24 92 308 1 028 3 584 12 736
tn,6 0 0 0 0 0 4 8 40 176 584 2 144
tn,8 0 0 0 0 0 0 1 2 10 84 282
tn,10 0 0 0 0 0 0 0 0 0 0 24
tn,12 0 0 0 0 0 0 0 0 0 0 0
Cn 1 2 5 14 42 132 429 1 430 4 862 16 796 58 786

It looks like eventually

tn,2
Cn

is decreasing,
tn,2k
Cn

is increasing for k > 1,

and there are some limits.
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Proportions of the first three lines

1
18

2
9

7
10

1

P

1 100 n

5
8

Note that
t200,4
C200

>
2

9
and

t200,6
C200

>
1

18
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Proportions of the first three lines

1
18

2
9

7
10

1

P

1 100 n

5
8

Proposition: lim inf
n→∞

tn,2
Cn

>
5

8
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Column nonzero values

n 1 2 3 4 5 6 7 8 9 10 11
tn,2 1 2 4 12 32 104 328 1 080 3 648 12 544 43 600
tn,4 0 0 1 2 10 24 92 308 1 028 3 584 12 736
tn,6 0 0 0 0 0 4 8 40 176 584 2 144
tn,8 0 0 0 0 0 0 1 2 10 84 282
tn,10 0 0 0 0 0 0 0 0 0 0 24

Define an = max{k : tn,2k > 0}
n 1 2 3 4 5 6 7 8 9 10
an 1 1 2 2 2 3 4 4 4 4

an+10 5 6 6 7 8 8 8 8 8 9
an+20 10 10 11 12 12 12 13 14 14 15
an+30 16 16 16 16 16 16 17 18 18 19

Lemma: The sequence (an) satisfies

a1 = 1, an = max{k : k 6 2an−k}
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Sequence of repeating elements of (an)

n 1 2 3 4 5 6 7 8 9 10

an 1 1 2 2 2 3 4 4 4 4
an+10 5 6 6 7 8 8 8 8 8 9
an+20 10 10 11 12 12 12 13 14 14 15
an+30 16 16 16 16 16 16 17 18 18 19

Define
`n = #{k : ak = n}

We have

(`n) = 2, 3, 1, 4, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 6, 1, 2, 1, . . .
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Description of (`n)

Proposition

The sequence (`n) satisfies

`n =

{
p + 2 if n = 2p,
p + 1 if n = 2pa, a is odd, a > 1 .

In particular,

`2n = `n + 1 for even indices,

`2n+1 = 1 for odd indices greater than 1,

`1 = 2.

Induction based on an = max{k : k 6 2an−k}
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Description of (an)

Proposition

The sequence (an) satisfies

an = an−1−an−1 + an−2−an−2 , a0 = a1 = a2 = 1

Question. How to explain this recurrence combinatorially?

(an) is known as a meta-Fibonacci sequence

Corollary (Tanny, 1992)

lim
n→∞

an
n

=
1

2

∞∑
n=0

anz
n = z

∞∑
n=0

n∏
i=1

(z + z2
i
)
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Trees of fixed height

tn,2k,h = #{active trees with n internal nodes 2k anchors of height h}

n

k

1 2 3 4 5 6 7 8

1

2

3

4

h = 3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

4

2

4

6

4

1

Sh = {(n, k) : tn,2k,h 6= 0}, |Sh| = 2h−2(2h−1 − h + 2)
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Trees of fixed height

tn,2k,h = #{active trees with n internal nodes 2k anchors of height h}
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0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
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0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

8

4

16

16

8

2

24

36

24

6

24

60

80

60

24

4

8

28

56

70

56

28

8

1

Sh = {(n, k) : tn,2k,h 6= 0}, |Sh| = 2h−2(2h−1 − h + 2)
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Trees of fixed height

tn,2k,h = #{active trees with n internal nodes 2k anchors of height h}

n

k

4 8 12 16 20 24 28 32

4

8

12

16

h = 5

Sh = {(n, k) : tn,2k,h 6= 0}, |Sh| = 2h−2(2h−1 − h + 2)
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Trees of fixed height

tn,2k,h = #{active trees with n internal nodes 2k anchors of height h}

n

k

8 16 24 32 40 48 56 64

8

16

24

32

h = 6

Sh = {(n, k) : tn,2k,h 6= 0}, |Sh| = 2h−2(2h−1 − h + 2)
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Trees of fixed height

tn,2k,h = #{active trees with n internal nodes 2k anchors of height h}

n
2h−1

k
2h−1

1 2

1

0h→∞

Sh = {(n, k) : tn,2k,h 6= 0}, |Sh| = 2h−2(2h−1 − h + 2)
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Trees of fixed size

tn,2k,h = #{active trees with n internal nodes 2k anchors of height h}
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Ŝn = {(h, k) : tn,2k,h 6= 0}, |Ŝ2m | = 2m−2(2m −m + 1)
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Trees of fixed size
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Conclusion

1 Studied objects:

growing binary trees.

2 Related objects:

Mandelbrot polynomials,
meta-Fibonacci sequences.

3 Results:

relations for generating functions,
bounds for anchor distributions,
behavior of the maximal number of anchors,
limit forms of nonzero domains.

Thank you for your attention!
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