Asymptotics of endhered patterns in perfect matchings

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov)

LIB, Université de Bourgogne

ALEA 2024, CIRM, Luminy

March 14, 2024

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov)

IB, Université de Bourgogne

Perfect matchings

• A (perfect) matching is an involution without fixed points.

A matching of size *n* consists of 2*n* points and *n* arcs:

• There are (2n-1)!! matchings of size *n*.

Endhered patterns

Endhered pattern in a matching:

- starting points form an interval,
- ending points form an interval.

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov)

3/16

Endhered patterns

Endhered pattern in a matching:

- starting points form an interval,
- ending points form an interval.

Endhered patterns are encoded by permutations:

 $\leftrightarrow \tau =$

 $\tau = 132$

• $a_{n,k}(\tau) = \#\{\text{matchings of size } n \text{ with } k \text{ patterns } \tau\}.$

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) Asymptotics of endhered patterns in perfect matchings

Endhered twists

Left endhered twist: reverse all runs of consecutive left points.

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) Asymptotics of endhered patterns in perfect matchings

Endhered twists

Right endhered twist: reverse all runs of consecutive right points.

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) Asymptotics of endhered patterns in perfect matchings

(Wilf) equivalent patterns

• Left twist: relabeling $1, \ldots, p \rightarrow p, \ldots, 1$ in a pattern.

Right twist: reversing a pattern.

$$a_{n,k}(\tau) = a_{n,k}(\operatorname{letw}(\tau)) = a_{n,k}(\operatorname{retw}(\tau)).$$

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) Asymptotics of endhered patterns in perfect matchings

• Generating: $a_{n+1,k} =$

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) Asymptotics of endhered patterns in perfect matchings 6/16

B. Université de Bourgogne

• Generating: $a_{n+1,k} =$

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) Asymptotics of endhered patterns in perfect matchings

IB. Université de Bourgogne

Generating:
$$a_{n+1,k} = a_{n,k-1} + a_{n,k-1}$$

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) Asymptotics of endhered patterns in perfect matchings

IB. Université de Bourgogne

Generating: $a_{n+1,k} = a_{n,k-1} + \frac{2(k+1)a_{n,k+1}}{2(k+1)a_{n,k+1}}$

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) Asymptotics of endhered patterns in perfect matchings

• Generating: $a_{n+1,k} = a_{n,k-1} + 2(n-k)a_{n,k} + 2(k+1)a_{n,k+1}$

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) Asymptotics of endhered patterns in perfect matchings

• Generating:
$$a_{n+1,k} = a_{n,k-1} + 2(n-k)a_{n,k} + 2(k+1)a_{n,k+1}$$

Insertion:

$$a_{n+1,k} = \binom{n}{k} a_{n-k+1,0}$$

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov)

.IB, Université de Bourgogne

6/16

• Generating:
$$a_{n+1,k} = a_{n,k-1} + 2(n-k)a_{n,k} + 2(k+1)a_{n,k+1}$$

$$a_{n+1,k} = \binom{n}{k} a_{n-k+1,0}$$

Inclusion-exclusion:

$$a_{n+1,0} = \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} (2k+1)!!$$

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov)

Asymptotics of endhered patterns in perfect matchings

Pattern $\tau = 21$, generating function and asymptotics

Generating function:

$$A(z,u) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} a_{n,k} \frac{z^n}{n!} u^k$$

Exact form:

$$\frac{\partial A}{\partial z}(z,u) = \frac{e^{z(u-1)}}{\sqrt{(1-2z)^3}}$$

Asymptotics:

$$a_{n,k} \sim \frac{1}{2^k k!} \left(\frac{2}{e}\right)^{n+1/2} n^n$$

as $n \to \infty$.

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov)

Autocorrelation polynomial of a pattern τ is $A_{\tau}(z) = \sum_{j=0}^{|\tau|-1} c_j z^j$,

where $c_j = 1$ iff the pattern matchs itself after shifting right by *j* positions (otherwise, $c_j = 0$).

Autocorrelation polynomial of a pattern τ is $A_{\tau}(z) = \sum_{j=0}^{|\tau|-1} c_j z^j$, where $c_i = 1$ iff the pattern matchs itself after shifting right

by j positions (otherwise, $c_j = 0$).

$$A_{123}(z) = 1 + z + z$$

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) Asymptotics of endhered patterns in perfect matchings

Autocorrelation polynomial of a pattern τ is $A_{\tau}(z) = \sum_{j=0}^{|\tau|-1} c_j z^j$, where $c_j = 1$ iff the pattern matchs itself after shifting right

by j positions (otherwise, $c_j = 0$).

$$A_{123}(z) = 1 + z + z^2$$

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) Asymptotics of endhered patterns in perfect matchings

Autocorrelation polynomial of a pattern τ is $A_{\tau}(z) = \sum_{j=0}^{|\tau|-1} c_j z^j$, where $c_j = 1$ iff the pattern matchs itself after shifting right by j positions (otherwise, $c_j = 0$).

 $A_{123}(z) = 1 + z + z^2$

$$A_{213}(z) = 1 +$$

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov)

IB. Université de Bourgogne

8/16

Autocorrelation polynomial of a pattern τ is $A_{\tau}(z) = \sum_{i=0}^{|\tau|-1} c_j z^j$, where $c_i = 1$ iff the pattern matchs itself after shifting right

by *j* positions (otherwise, $c_i = 0$).

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov)

8/16

Autocorrelation polynomial of a pattern τ is $A_{\tau}(z) = \sum_{j=0}^{|\tau|-1} c_j z^j$, where $c_j = 1$ iff the pattern matchs itself after shifting right

by j positions (otherwise, $c_j = 0$).

$$A_{123}(z) = 1 + z + z^2$$

$$A_{213}(z) = 1 +$$

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov)

Asymptotics of endhered patterns in perfect matchings

IB. Université de Bourgogne

Autocorrelation polynomial of a pattern τ is $A_{\tau}(z) = \sum_{j=0}^{|\tau|-1} c_j z^j$, where $c_j = 1$ iff the pattern matchs itself after shifting right

by j positions (otherwise, $c_j = 0$).

 $A_{123}(z) = 1 + z + z^2$

 $A_{213}(z)=1$

 $A_{2143}(z) = 1 + z^2$

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) Asymptotics of endhered patterns in perfect matchings

Self-overlapping permutations

Permutation $\sigma \in S_n$ is **self-overlapping** if there is k < n:

1
$$\{1, \ldots, k\}$$
 is invariant under σ ,

2 $\{n-k+1,\ldots,n\}$ is invariant under σ ,

3 $\sigma(1) \dots \sigma(k)$ and $\sigma(n-k+1) \dots \sigma(n)$ are isomorphic.

It is always possible to choose $k \leq n/2$.

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) Asymptotics of endhered patterns in perfect matchings

Structure of self-overlapping permutations

• Let $\sigma \in S_n$ and $\sigma(1) < \sigma(n)$.

Then σ is non-self-overlapping iff $A_{\sigma}(z) = 1$.

• Every permutation $\sigma \in S_n$ can be decomposed as

$$\sigma = \sigma_1 \oplus \ldots \oplus \sigma_m \oplus \tau \oplus \sigma_m \oplus \ldots \oplus \sigma_1$$

where

 σ_i are non-self-overlapping,
 τ is empty or non-self-overlapping.

Asymptotics of non-self-overlapping permutations

Generating functions:

$$P(z) = rac{1 + N(z)}{1 - N(z^2)},$$

where

- P(z) is the OGF of permutations,
- N(z) is the OGF of non-self-overlapping permutations.

Asymptotics of non-self-overlapping permutations

Generating functions:

$$P(z) = rac{1 + N(z)}{1 - N(z^2)},$$

where

- P(z) is the OGF of permutations,
- N(z) is the OGF of non-self-overlapping permutations.

Asymptotics:

$$\mathbb{P}(\sigma \text{ is non-self-overlapping}) = 1 - \sum_{k=1}^{r-1} \frac{\mathfrak{no}_k}{(n)_{2k}} + O\left(\frac{1}{n^{2r}}\right) \,,$$

where

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) Asymptotics of endhered patterns in perfect matchings

Asymptotics for $a_{n,k}(\tau)$ with $A_{\tau}(z) = 1$

- Let au be a non-self-overlapping pattern, i.e. $A_{ au}(z) = 1$.
- Generating function of matchings:

$$S(z) = \sum_{n=0}^{\infty} (2n-1)!! z^n$$

Generating function with respect to *τ*:

$$\sum_{n,k\geq 0}a_{n,k}(\tau)\,z^n u^k=S\Big(z+(u-1)z^{|\tau|}\Big)$$

Asymptotics:

$$a_{n,k}(\tau) \sim rac{2^{1/2}}{k! \, 2^{k(|\tau|-1)}} \left(rac{2}{e}
ight)^n n^{n-k(|\tau|-2)}$$

as $n \to \infty$.

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov)

Asymptotics of endhered patterns in perfect matchings

12/16

.IB. Université de Bourgogne

Asymptotics for $a_{n,k}(\tau)$ with $A_{\tau}(z) \neq 1$

- Let au be a self-overlapping permutation, $A_{ au}(z) = 1 + z^m + \dots$
- Generating function with respect to τ :

$$\sum_{n,k\geq 0} a_{n,k}(\tau) z^n u^k = S\left(\frac{z+(u-1)z^{|\tau|}}{1-(u-1)(A_{\tau}(z)-1)}\right)$$

• Asymptotics: as $n \to \infty$,

$$a_{n,k}(\tau) \sim \begin{cases} \frac{2^{1/2}}{k! \, 2^{km}} \left(\frac{2}{e}\right)^n n^{n-k(m-1)} & \text{if } m = |\tau| - 1\\ \frac{(2n)^{n-km} 2^{1/2}}{e^n} \sum_{s=1}^k \frac{1}{s! \, 2^s} {k-1 \choose s-1} & \text{if } m = |\tau| - 2\\ \frac{(2n)^{n-km-(|\tau|-2-m)}}{e^n 2^{1/2}} & \text{if } m < |\tau| - 2 \end{cases}$$

13/16

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov)

Asymptotics of endhered patterns in perfect matchings

IB, Université de Bourgogne

Asymptotics of factorially divergent series (Borinsky)

$$a_n = \alpha^{n+\beta} \Gamma(n+\beta) \left(c_0 + \frac{c_1}{\alpha(n+\beta-1)} + \frac{c_2}{\alpha^2(n+\beta-1)(n+\beta-2)} + \ldots \right)$$

Properties:

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov)

IB. Université de Bourgogne

.

14/16

Extracting asymptotics

•
$$S(z) = \sum_{n=0}^{\infty} (2n-1)!! z^n \qquad \Rightarrow \qquad (\mathcal{A}_{1/2}^2 S)(z) = \frac{1}{\sqrt{2\pi}}$$

•
$$G(z) = \frac{z + (u-1)z^{|\tau|}}{1 - (u-1)(A_{\tau}(z) - 1)} \Rightarrow (A_{1/2}^2 G)(z) = 0$$

Composition:

$$egin{split} egin{split} &(\mathcal{A}_{1/2}^2(S\circ G)egin{array}{c} (z)=rac{1}{\sqrt{2\pi}}\left(1+rac{(u-1)z^{| au|-1}}{1-(u-1)(\mathcal{A}_{ au}(z)-1)}
ight)^{-1/2}\ & imes \exp\left(rac{(u-1)z^{| au|-2}}{2ig(1-(u-1)(\mathcal{A}_{ au}(z)-1-z^{| au|-1})ig)}
ight) \end{split}$$

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov)

IB, Université de Bourgogne

15/16

Conclusion

Studied objects:

- endhered patterns in perfect matchings,
- self-overlapping permutations.
- 2 Tools:
 - the symbolic method,
 - singularity analysis,
 - Goulden-Jackson cluster method,
 - Borinsky's approach.
- 3 Results:
 - direct enumeration for endhered patterns of size 2,
 - enumeration and asymptotics for any endhered pattern,
 - enumeration and asymptotics of non-self-overlapping permutations.

Thank you for your attention!

Khaydar Nurligareev (joint with Célia Biane and Sergey Kirgizov) Asymptotics of endhered patterns in perfect matchings