Irreducibility of combinatorial objects: asymptotic probability and interpretation

Khaydar Nurligareev (joint with Thierry Monteil)

LIPN, University Paris 13

SSAAEC 2023, Będlewo, Poland

August 1, 2023

Simple labeled graphs

- \mathfrak{g}_{n} : the number of labeled graphs with n vertices,

■ $\mathfrak{c g}_{n}$: the number of connected labeled graphs with n vertices.

$$
\mathfrak{g}_{n}=2^{\binom{n}{2}}
$$

$$
\left(\mathfrak{c g}_{n}\right)=1,1,4,38,728,26704,1866256, \ldots
$$

Probability of a graph to be connected

Question. What is the probability $p_{n}=\frac{\mathfrak{c g}_{n}}{\mathfrak{g}_{n}}$ that a random graph with n vertices is connected, as $n \rightarrow \infty$?

Probability of a graph to be connected

Question. What is the probability $p_{n}=\frac{\mathfrak{c g}_{n}}{\mathfrak{g}_{n}}$ that a random graph with n vertices is connected, as $n \rightarrow \infty$?
1 folklore:

$$
p_{n}=1+o(1)
$$

Probability of a graph to be connected

Question. What is the probability $p_{n}=\frac{\mathfrak{c g}_{n}}{\mathfrak{g}_{n}}$ that a random graph with n vertices is connected, as $n \rightarrow \infty$?
1 folklore:

$$
p_{n}=1+o(1)
$$

\int Gilbert, 1959:

$$
p_{n}=1-\frac{2 n}{2^{n}}+O\left(\frac{n^{2}}{2^{3 n / 2}}\right)
$$

Probability of a graph to be connected

Question. What is the probability $p_{n}=\frac{\mathfrak{c g}_{n}}{\mathfrak{g}_{n}}$ that a random graph with n vertices is connected, as $n \rightarrow \infty$?
1 folklore:

$$
p_{n}=1+o(1)
$$

2 Gilbert, 1959: $p_{n}=1-\frac{2 n}{2^{n}}+O\left(\frac{n^{2}}{2^{3 n / 2}}\right)$
3 Wright, 1970:

$$
p_{n}=1-\binom{n}{1} \frac{2}{2^{n}}-2\binom{n}{3} \frac{2^{6}}{2^{3 n}}-24\binom{n}{4} \frac{2^{10}}{2^{4 n}}+O\left(\frac{n^{5}}{2^{5 n}}\right)
$$

Probability of a graph to be connected

Question. What is the probability $p_{n}=\frac{\mathfrak{c g}_{n}}{\mathfrak{g}_{n}}$ that a random graph with n vertices is connected, as $n \rightarrow \infty$?
1 folklore:

$$
p_{n}=1+o(1)
$$

2 Gilbert, 1959: $p_{n}=1-\frac{2 n}{2^{n}}+O\left(\frac{n^{2}}{2^{3 n / 2}}\right)$
3 Wright, 1970:

$$
p_{n}=1-\binom{n}{1} \frac{2}{2^{n}}-2\binom{n}{3} \frac{2^{6}}{2^{3 n}}-24\binom{n}{4} \frac{2^{10}}{2^{4 n}}+O\left(\frac{n^{5}}{2^{5 n}}\right)
$$

4 Can we see the structure? What is the interpretation?

Asymptotics for p_{n}

Theorem

For every $r \geqslant 1$, the probability p_{n} that a random labeled graph of size n is connected satisfies

$$
p_{n}=1-\sum_{k=1}^{r-1} i t_{k} \cdot\binom{n}{k} \cdot \frac{2^{k(k+1) / 2}}{2^{n k}}+O\left(\frac{n^{r}}{2^{n r}}\right),
$$

where $i t_{k}$ is the number of irreducible labeled tournaments of size k.

$$
\left(\mathfrak{i t}_{k}\right)=1,0,2,24,544,22320,1677488, \ldots
$$

Tournaments

A tournament is a complete directed graph.

The number of labeled tournaments with n vertices is

$$
\mathfrak{t}_{n}=2\binom{n}{2}
$$

Irreducible tournaments

A tournament is irreducible, if
$V=\{1,2,3,4,5,6\}$ for every partition of vertices $V=A \sqcup B$

1 there exist an edge from A to B,
2 there exist an edge from B to A.

$$
\begin{gathered}
A=\{4,5\} \\
B=\{1,2,3,6\}
\end{gathered}
$$

Irreducible tournaments

A tournament is irreducible, if

$$
V=\{1,2,3,4,5,6\}
$$ for every partition of vertices $V=A \sqcup B$

1 there exist an edge from A to B,
2 there exist an edge from B to A.

Equivalently, a tournament is strongly connected: for each two vertices u and v

1 there is a path from u to v,
2 there is a path from v to u.

$$
\begin{aligned}
& u=4 \\
& v=6
\end{aligned}
$$

Exponential generating functions and Bender's theorem

EGF: $\quad G(z)=\sum_{n=0}^{\infty} \mathfrak{g}_{n} \frac{z^{n}}{n!}$

Exponential generating functions and Bender's theorem

$$
\begin{aligned}
& \text { EGF: } G(z)=\sum_{n=0}^{\infty} \mathfrak{g}_{n} \frac{z^{n}}{n!} \\
& C G(z)=\log G(z)
\end{aligned}
$$

Exponential generating functions and Bender's theorem

EGF: $\quad G(z)=\sum_{n=0}^{\infty} \mathfrak{g}_{n} \frac{z^{n}}{n!}$
$C G(z)=\log G(z)$

Bender, 1975:
1 1 $A(z)=\sum_{n=1}^{\infty} a_{n} z^{n}, \quad a_{n} \neq 0$
$2 F(x, y)$ is analytic in $U(0 ; 0)$
$3 B(z)=\sum_{n=0}^{\infty} b_{n} z^{n}=F(z, A(z))$
$4 C(z)=\sum_{n=0}^{\infty} c_{n} z^{n}=\left[\frac{\partial F}{\partial y}(z, y)\right]_{y=A(z)}$
$5 \frac{a_{n-1}}{a_{n}} \rightarrow 0$, as $n \rightarrow \infty$
$6 \exists r \geqslant 1: \sum_{k=r}^{n-r}\left|a_{k} a_{n-k}\right|=O\left(a_{n-r}\right)$
Then $\quad b_{n}=\sum_{k=0}^{r-1} c_{k} a_{n-k}+O\left(a_{n-r}\right)$.

Exponential generating functions and Bender's theorem

EGF: $\quad G(z)=\sum_{n=0}^{\infty} \mathfrak{g}_{n} \frac{z^{n}}{n!}$
$C G(z)=\log G(z)$

Bender, 1975:
$1 A(z)=\sum_{n=1}^{\infty} a_{n} z^{n}, \quad a_{n} \neq 0$
$2 F(x, y)$ is analytic in $U(0 ; 0)$
$3 B(z)=\sum_{n=0}^{\infty} b_{n} z^{n}=F(z, A(z))$
$4 C(z)=\sum_{n=0}^{\infty} c_{n} z^{n}=\left[\frac{\partial F}{\partial y}(z, y)\right]_{y=A(z)}$

5 the sequence $\left(a_{n}\right)$ is gargantuan

Then $\quad b_{n}=\sum_{k=0}^{r-1} c_{k} a_{n-k}+O\left(a_{n-r}\right)$.

Exponential generating functions and Bender's theorem

EGF: $\quad G(z)=\sum_{n=0}^{\infty} \mathfrak{g}_{n} \frac{z^{n}}{n!}$
$C G(z)=\log G(z)$

Bender, 1975:
1 1 $A(z)=\sum_{n=1}^{\infty} a_{n} z^{n}, \quad a_{n} \neq 0$
$2 F(x, y)$ is analytic in $U(0 ; 0)$
$3 B(z)=\sum_{n=0}^{\infty} b_{n} z^{n}=F(z, A(z))$
$4 C(z)=\sum_{n=0}^{\infty} c_{n} z^{n}=\left[\frac{\partial F}{\partial y}(z, y)\right]_{y=A(z)}$

5 the sequence $\left(a_{n}\right)$ is gargantuan

Then $\quad b_{n} \approx \sum_{k \geqslant 0} c_{k} \boldsymbol{a}_{n-k}$.

Exponential generating functions and Bender's theorem

EGF: $\quad G(z)=\sum_{n=0}^{\infty} \mathfrak{g}_{n} \frac{z^{n}}{n!}$
$C G(z)=\log G(z)$
$F(y)=\log (y)$
$\frac{\partial F}{\partial y}=\frac{1}{y}$

Bender, 1975:
$11 A(z)=\sum_{n=1}^{\infty} a_{n} z^{n}, \quad a_{n} \neq 0$
$2 F(x, y)$ is analytic in $U(0 ; 0)$
$3 B(z)=\sum_{n=0}^{\infty} b_{n} z^{n}=F(z, A(z))$
$4 C(z)=\sum_{n=0}^{\infty} c_{n} z^{n}=\left[\frac{\partial F}{\partial y}(z, y)\right]_{y=A(z)}$

5 the sequence $\left(a_{n}\right)$ is gargantuan

Then $\quad b_{n} \approx \sum_{k \geqslant 0} c_{k} \boldsymbol{a}_{n-k}$.

Exponential generating functions and Bender's theorem

$$
\begin{aligned}
& \text { EGF: } G(z)=\sum_{n=0}^{\infty} \mathfrak{g}_{n} \frac{z^{n}}{n!} \\
& C G(z)=\log G(z) \\
& F(y)=\log (y) \\
& \frac{\partial F}{\partial y}=\frac{1}{y} \\
& \frac{1}{1-y}=1+y+y^{2}+\ldots
\end{aligned}
$$

Bender, 1975:
$11 A(z)=\sum_{n=1}^{\infty} a_{n} z^{n}, \quad a_{n} \neq 0$
$2 F(x, y)$ is analytic in $U(0 ; 0)$
$3 B(z)=\sum_{n=0}^{\infty} b_{n} z^{n}=F(z, A(z))$
$4 C(z)=\sum_{n=0}^{\infty} c_{n} z^{n}=\left[\frac{\partial F}{\partial y}(z, y)\right]_{y=A(z)}$

5 the sequence $\left(a_{n}\right)$ is gargantuan

$$
\frac{\mathfrak{c g}_{n}}{\mathfrak{g}_{n}} \approx 1-\sum_{k \geqslant 1} \mathfrak{i t}_{k}\binom{n}{k} \frac{\mathfrak{g}_{n-k}}{\mathfrak{g}_{n}}
$$

Then $\quad b_{n} \approx \sum_{k \geqslant 0} c_{k} \boldsymbol{a}_{n-k}$.

Exponential generating functions and Bender's theorem

EGF: $\quad G(z)=\sum_{n=0}^{\infty} \mathfrak{g}_{n} \frac{z^{n}}{n!}$
$C G(z)=\log G(z)$
$F(y)=\log (y)$
$\frac{\partial F}{\partial y}=\frac{1}{y}$

$$
\frac{1}{1-y}=1+y+y^{2}+\ldots
$$

$$
G(z)=T(z)=\frac{1}{1-I T(z)}
$$

$$
\frac{\mathfrak{c g}_{n}}{\mathfrak{g}_{n}} \approx 1-\sum_{k \geqslant 1} \mathfrak{i t}_{k}\binom{n}{k} \frac{\mathfrak{g}_{n-k}}{\mathfrak{g}_{n}}
$$

Bender, 1975:
$11 A(z)=\sum_{n=1}^{\infty} a_{n} z^{n}, \quad a_{n} \neq 0$
$2 F(x, y)$ is analytic in $U(0 ; 0)$
$3 B(z)=\sum_{n=0}^{\infty} b_{n} z^{n}=F(z, A(z))$
$4 C(z)=\sum_{n=0}^{\infty} c_{n} z^{n}=\left[\frac{\partial F}{\partial y}(z, y)\right]_{y=A(z)}$

5 the sequence $\left(a_{n}\right)$ is gargantuan

Then $\quad b_{n} \approx \sum_{k \geqslant 0} c_{k} \boldsymbol{a}_{n-k}$.

Exponential generating functions and Bender's theorem

$1 C G(z)=\log G(z)$
$2 A(z)=G(z)-1$
$3 F(x, y)=\log (1+y)$
$4 \frac{\partial F}{\partial y}=\frac{1}{1+y}$
$5 C(z)=\frac{1}{G(z)}=\frac{1}{T(z)}$
(6) $\frac{1}{T(z)}=1-I T(z)$
$7 \frac{\mathfrak{c g}_{n}}{\mathfrak{g}_{n}} \approx 1-\sum_{k \geqslant 1} \mathfrak{i t}_{k}\binom{n}{k} \frac{\mathfrak{g}_{n-k}}{\mathfrak{g}_{n}}$

Bender, 1975:
$1 A(z)=\sum_{n=1}^{\infty} a_{n} z^{n}, \quad a_{n} \neq 0$
$2 F(x, y)$ is analytic in $U(0 ; 0)$
$3 B(z)=\sum_{n=0}^{\infty} b_{n} z^{n}=F(z, A(z))$
$4 C(z)=\sum_{n=0}^{\infty} c_{n} z^{n}=\left[\frac{\partial F}{\partial y}(z, y)\right]_{y=A(z)}$

5 the sequence $\left(a_{n}\right)$ is gargantuan

Then $\quad b_{n} \approx \sum_{k \geqslant 0} c_{k} a_{n-k}$.

Tournament as a sequence

Folklore: Every labeled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labeled tournaments.

Tournament as a sequence

Folklore: Every labeled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labeled tournaments.

Tournament as a sequence

Folklore: Every labeled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labeled tournaments.

SET and SEQ decompositions

SET asymptotics

Theorem

If \mathcal{U}, \mathcal{V} and \mathcal{W} are such combinatorial classes that
$1 \mathcal{U}$ is gargantuan with positive counting sequence,
2 $\mathcal{U}=\operatorname{SET}(\mathcal{V})$ and $\mathcal{U}=\operatorname{SEQ}(\mathcal{W})$,
then

$$
p_{n}:=\frac{\mathfrak{v}_{n}}{\mathfrak{u}_{n}} \approx 1-\sum_{k \geqslant 1} \mathfrak{w}_{k} \cdot\binom{n}{k} \cdot \frac{\mathfrak{u}_{n-k}}{\mathfrak{u}_{n}} .
$$

Square-tiled surfaces

To obtain a square-tiled surface (determined by $(h, v) \in S_{n}^{2}$):
1 take n labeled squares,

Square-tiled surfaces

To obtain a square-tiled surface (determined by $(h, v) \in S_{n}^{2}$):
1 take n labeled squares,
2 identify horizontal sides (corresponds to $h \in S_{n}$),

$$
h=(13)(2)
$$

Square-tiled surfaces

To obtain a square-tiled surface (determined by $(h, v) \in S_{n}^{2}$):
1 take n labeled squares,
2 identify horizontal sides (corresponds to $h \in S_{n}$),
3 identify vertical sides (corresponds to $v \in S_{n}$),

$$
\begin{aligned}
& h=(13)(2) \\
& v=(1)(23)
\end{aligned}
$$

Square-tiled surfaces

To obtain a square-tiled surface (determined by $(h, v) \in S_{n}^{2}$):
1 take n labeled squares,
2 identify horizontal sides (corresponds to $h \in S_{n}$),
3 identify vertical sides (corresponds to $v \in S_{n}$),
4 glue together identified sides.

$$
\begin{aligned}
& h=(13)(2) \\
& v=(1)(23)
\end{aligned}
$$

Square-tiled surfaces

To obtain a square-tiled surface (determined by $(h, v) \in S_{n}^{2}$):
1 take n labeled squares,
2 identify horizontal sides (corresponds to $h \in S_{n}$),
3 identify vertical sides (corresponds to $v \in S_{n}$),
4 glue together identified sides.
Transitive action \leftrightarrow connectedness of the square-tiled surface.

$$
\begin{aligned}
& h=(13)(2) \\
& v=(1)(23)
\end{aligned}
$$

Asymptotics for connected square-tiled surfaces

Theorem (reformulation of the results of Dixon and Cori)

The probability p_{n} that a random square-tiled surface of size n is connected satisfies

$$
p_{n} \approx 1-\sum_{k=1} \frac{i p_{k}}{n^{k}},
$$

where $n^{\underline{k}}=n(n-1) \ldots(n-k+1)$ are the falling factorials and $\left(\mathrm{ip}_{k}\right)$ counts indecomposable permutations.

$$
\left(\mathfrak{i p}_{k}\right)=1,1,3,13,71,461,3447,29093, \ldots
$$

Indecomposable permutations

A permutation $\sigma \in S_{n}$ is
1 decomposable, if there is an index $p<n$
such that $\sigma(\{1, \ldots, p\})=\{1, \ldots, p\}$.
2 indecomposable otherwise.

$$
\begin{array}{ll}
\left(\begin{array}{lll|ll}
1 & 2 & 3 & 4 & 5 \\
3 & 1 & 2 & 5 & 4
\end{array}\right) & \left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
3 & 5 & 4 & 1 & 2
\end{array}\right) \\
\text { decomposable }(p=3) & \text { indecomposable }
\end{array}
$$

Observation. Every permutation can be uniquely decomposed into a sequence of indecomposable permutations.

Combinatorial maps

- Take several labeled polygons of total perimeter $N=2 n$ (1-gons and 2-gons are allowed).
■ Identify their sides randomly to obtain a surface.
- Each surface is determined by a pair $(\phi, \alpha) \in S_{N}^{2}$, where α is a perfect matching.

$$
\phi=(12345)(678)(910), \quad \alpha=(13)(26)(410)(59)(78)
$$

Asymptotics for combinatorial maps

Theorem

The probability p_{n} that a random combinatorial map is connected satisfies

$$
p_{n} \approx 1-\sum_{k \geqslant 1} \mathrm{im}_{2 k} \cdot \frac{(2(n-k)-1)!!}{(2 n-1)!!},
$$

where ($\mathrm{im}_{2 k}$) counts indecomposable perfect matchings.

$$
\left(\mathfrak{i m}_{2 k}\right)=1,2,10,74,706,8162,110410,1708394, \ldots
$$

SEQ asymptotics

Theorem

If \mathcal{U}, \mathcal{W} and $\mathcal{W}^{(2)}$ are such combinatorial classes that
■ \mathcal{U} is gargantuan with positive counting sequence,
$\square \mathcal{U}=\operatorname{SEQ}(\mathcal{W})$ and $\mathcal{W}^{(2)}=\mathcal{W} \star \mathcal{W}=\operatorname{SEQ}_{2}(\mathcal{W})$,
then

$$
q_{n}:=\frac{\mathfrak{w}_{n}}{\mathfrak{u}_{n}} \approx 1-\sum_{k \geqslant 1}\left(2 \mathfrak{w}_{k}-\mathfrak{w}_{k}^{(2)}\right) \cdot\binom{n}{k} \cdot \frac{\mathfrak{u}_{n-k}}{\mathfrak{u}_{n}} .
$$

$\underline{\text { Reasoning: }} \frac{1}{y} \xrightarrow{\partial}-\frac{1}{y^{2}}, \quad(1-W(z))^{2}=1-2 W(z)+(W(z))^{2}$.

Example: asymptotics for irreducible tournaments

Theorem

The probability q_{n} that a random labeled tournament of size n is irreducible, satisfies

$$
q_{n} \approx 1-\sum_{k \geqslant 1}\left(2 i t_{k}-i t_{k}^{(2)}\right) \cdot\binom{n}{k} \cdot \frac{2^{k(k+1) / 2}}{2^{n k}}
$$

where (it ${ }_{k}^{(2)}$) counts labeled tournaments with two irreducible components.

$$
\begin{aligned}
\left(\mathfrak{i t}_{k}\right) & =1,
\end{aligned} \quad 0, \quad 2, \quad 24, \quad 544, \quad 22320, \quad \ldots
$$

Probability of a permutation to be indecomposable

Theorem

The probability q_{n} that a random permutation of size n is indecomposable, satisfies

$$
q_{n} \approx 1-\sum_{k \geqslant 1} \frac{2 i p_{k}-i p_{k}^{(2)}}{n^{k}}
$$

where ($\mathrm{ip}_{k}^{(2)}$) counts permutations with two indecomposable parts.

$$
\begin{aligned}
&\left(\mathfrak{i p}_{k}\right)= \\
& 1, 1, \\
& \hline
\end{aligned}
$$

Asymptotics in terms of species

Theorem

If $\mathcal{A}, \mathcal{B}, \mathcal{C}$ and $\mathcal{B}(m), m \in \mathbb{N}$, are such (weighted) species that $1 \mathcal{A}$ is gargantuan with positive total weights on $[n], n \in \mathbb{N}$,
2 one of the following conditions holds:

(a)	$\mathcal{A}=\mathcal{E} \circ \mathcal{B}$	$\mathcal{B}(m)=\mathcal{E}_{m} \circ \mathcal{B}$	$\mathcal{C}=\mathcal{B}(m-1)\left(\mathcal{E}^{-1} \circ \mathcal{B}\right)$
(b)	$\mathcal{A}=\mathcal{L} \circ \mathcal{B}$	$\mathcal{B}(m)=\mathcal{L}_{m} \circ \mathcal{B}$	$\mathcal{C}=m \mathcal{B}^{m-1}(1-\mathcal{B})^{2}$
(c)	$\mathcal{A}=\mathcal{C P} \circ \mathcal{B}$	$\mathcal{B}(m)=\mathcal{C} \mathcal{P}_{m} \circ \mathcal{B}$	$\mathcal{C}=\mathcal{B}^{m-1}(1-\mathcal{B})$

then

$$
p_{n}(m):=\frac{\mathfrak{b}_{n}(m)}{\mathfrak{a}_{n}} \approx \sum_{k \geqslant m-1} \mathfrak{c}_{k} \cdot\binom{n}{k} \cdot \frac{\mathfrak{a}_{n-k}}{\mathfrak{a}_{n}} .
$$

Erdős-Rényi model $G(n, p)$

Consider a random labeled graph G :
$1 p \in(0,1)$ is the probability of edge presence;
$2 q=1-p$ is the probability of edge absence.

Weight of a graph:

$$
w(G)=\rho^{|E(G)|}
$$

where $\rho=p / q$.
Reason: if G_{1} and G_{2} are disjoint, then

$$
w\left(G_{1} \sqcup G_{2}\right)=w\left(G_{1}\right) \cdot w\left(G_{2}\right)
$$

$w=\rho^{7}$

Asymptotics of the Erdős-Rényi model

Theorem

The probability p_{n} that a random graph with n vertices is connected satisfies

$$
p_{n} \approx 1-\sum_{k \geqslant 1} P_{k}(\rho) \cdot\binom{n}{k} \cdot \frac{q^{n k}}{q^{k(k+1) / 2}},
$$

where

$$
P_{k}(\rho)=\sum_{|V(G)|=k}(-1)^{\pi_{0}(G)-1} w(G)
$$

and $\pi_{0}(G)$ is the number of connected components of G.

Meaning of the coefficients

$$
\begin{gathered}
w=1 \\
P_{1}(\rho)=1
\end{gathered}
$$

$\stackrel{\bullet}{\omega}=\rho$
$w=1$

$$
P_{2}(\rho)=\rho-1
$$

$w=\rho^{2}$
$w=\rho^{1}$
$w=1$

$$
P_{3}(\rho)=\rho^{3}+3 \rho^{2}-3 \rho+1
$$

Meaning of the coefficients

$$
\begin{array}{cc}
\begin{array}{c}
w=1 \\
P_{1}(\rho)=1 \\
P_{1}(1)=1=i t_{1}
\end{array} & \begin{array}{c}
w=\rho \\
P_{2}(\rho)=\rho-1 \\
P_{2}(1)=0=i t_{2}
\end{array} \\
w=\rho^{3} & w=\rho^{2} \\
P_{3}(\rho)=\rho^{3}+3 \rho^{2}-3 \rho+1 \\
P_{3}(1)=2=i t_{3}
\end{array}
$$

Asymptotics of the Erdős-Rényi model, continued

Theorem

The probability $p_{n}(m)$ that a random graph with n vertices has exactly m connected components satisfies

$$
p_{n}(m) \approx \sum_{k \geqslant 0} P_{k}^{\{m\}}(\rho) \cdot\binom{n}{k} \cdot \frac{q^{n k}}{q^{k(k+1) / 2}}
$$

where

$$
P_{k}^{\{m\}}(\rho)=\sum_{|V(G)|=k}(-1)^{\pi_{0}(G)-m}\binom{\pi_{0}(G)}{m-1} w(G) .
$$

Conclusion

1 General method for combinatorial interpretation of coefficients in asymptotic expansions of irreducibles:

■ in terms of combinatorial classes (SET, SEQ, CYC),

- in terms of species $(\mathcal{E}, \mathcal{L}, \mathcal{C P})$.

2 Applications:

- connected graphs and irreducible tournaments,
- square-tiled surfaces and indecomposable permutations,
- combinatorial maps and indecomposable perfect matchings,
- the Erdős-Rényi model,

Thank you for your attention!

Literature I

葍 Bender E．A．
An asymptotic expansion for some coefficients of some formal power series
J．Lond．Math．Soc．，Ser． 9 （1975），pp．451－458．
圊 Gilbert E．N．
Random graphs
Ann．Math．Stat．，Vol．30，N． 4 （1959），pp．1141－1144．
圊 Monteil T．，Nurligareev K．
Asymptotics for connected graphs and irreducible tournaments Extended Abstracts EuroComb 2021，pp．823－828．Springer， 2021.

Literature II

圊 Nurligareev K.
Irreducibility of combinatorial objects: asymptotic probability and interpretation
Theses, Université Sorbonne Paris Nord, Oct. 2022.Wright E.M.
Asymptotic relations between enumerative functions in graph theory
Proc. Lond. Math. Soc., Vol. s3-20, Issue 3 (1970), pp. 558-572.

CYC asymptotics

Theorem

If \mathcal{V} and \mathcal{W} are such combinatorial classes that

- \mathcal{V} is gargantuan with positive counting sequence,
- $\mathcal{V}=\operatorname{CYC}(\mathcal{W})$,
then

$$
r_{n}:=\frac{\mathfrak{w}_{n}}{\mathfrak{v}_{n}} \approx 1-\sum_{k \geqslant 1} \mathfrak{w}_{k} \cdot\binom{n}{k} \cdot \frac{\mathfrak{v}_{n-k}}{\mathfrak{v}_{n}}
$$

Reasoning: $e^{-y} \xrightarrow{\partial}-e^{-y}$.

