Irreducibility of combinatorial objects: asymptotic probability and interpretation

Khaydar Nurligareev (joint with Thierry Monteil)

LIPN, University Paris 13

Séminaire LIB
February 23, 2023

Simple labeled graphs

- \mathfrak{g}_{n} : the number of labeled graphs with n vertices,
- $\mathfrak{c g}_{n}$: the number of connected labeled graphs with n vertices.
2
${ }_{3}-1$

$\mathfrak{g}_{n}=2\binom{n}{2}$

$$
\left(\mathfrak{c g}_{n}\right)=1,1,4,38,728,26704,1866256, \ldots
$$

Probability of a graph to be connected

Question. What is the probability $p_{n}=\frac{\mathfrak{c g}_{n}}{\mathfrak{g}_{n}}$ that a random graph with n vertices is connected, as $n \rightarrow \infty$?

Probability of a graph to be connected

Question. What is the probability $p_{n}=\frac{\mathfrak{g g}_{n}}{\mathfrak{g}_{n}}$ that a random graph with n vertices is connected, as $n \rightarrow \infty$?
1 folklore:

$$
p_{n}=1+o(1)
$$

Probability of a graph to be connected

Question. What is the probability $p_{n}=\frac{\mathfrak{g g}_{n}}{\mathfrak{g}_{n}}$ that a random graph with n vertices is connected, as $n \rightarrow \infty$?

1 folklore:

$$
p_{n}=1+o(1)
$$

$\boxed{2}$ Gilbert, 1959:

$$
p_{n}=1-\frac{2 n}{2^{n}}+O\left(\frac{n^{2}}{2^{3 n / 2}}\right)
$$

Probability of a graph to be connected

Question. What is the probability $p_{n}=\frac{\mathfrak{c g}_{n}}{\mathfrak{g}_{n}}$ that a random graph with n vertices is connected, as $n \rightarrow \infty$?
1 folklore:

$$
p_{n}=1+o(1)
$$

(2 Gilbert, 1959:

$$
p_{n}=1-\frac{2 n}{2^{n}}+O\left(\frac{n^{2}}{2^{3 n / 2}}\right)
$$

3 Wright, 1970:

$$
p_{n}=1-\binom{n}{1} \frac{2}{2^{n}}-2\binom{n}{3} \frac{2}{}_{2^{3 n}}^{2^{3 n}}-24\binom{n}{4} \frac{2^{10}}{2^{4 n}}+O\left(\frac{n^{5}}{2^{5 n}}\right)
$$

Probability of a graph to be connected

Question. What is the probability $p_{n}=\frac{\mathfrak{c g}_{n}}{\mathfrak{g}_{n}}$ that a random graph with n vertices is connected, as $n \rightarrow \infty$?
1 folklore:

$$
p_{n}=1+o(1)
$$

2 Gilbert, 1959: $\quad p_{n}=1-\frac{2 n}{2^{n}}+O\left(\frac{n^{2}}{2^{3 n / 2}}\right)$
3 Wright, 1970:

$$
p_{n}=1-\binom{n}{1} \frac{2}{2^{n}}-2\binom{n}{3} \frac{2}{}_{2^{3 n}}^{2^{3 n}}-24\binom{n}{4} \frac{2^{10}}{2^{4 n}}+O\left(\frac{n^{5}}{2^{5 n}}\right)
$$

4 Can we see the structure? What is the interpretation?

Asymptotics for p_{n}

Theorem

For every $r \geqslant 1$, the probability p_{n} that a random labeled graph of size n is connected satisfies

$$
p_{n}=1-\sum_{k=1}^{r-1} i t_{k} \cdot\binom{n}{k} \cdot \frac{2^{k(k+1) / 2}}{2^{n k}}+O\left(\frac{n^{r}}{2^{n r}}\right),
$$

where it $_{k}$ is the number of irreducible labeled tournaments of size k.

$$
\left(\mathfrak{i t}_{k}\right)=1,0,2,24,544,22320,1677488, \ldots
$$

Tournaments

A tournament is a complete directed graph.

The number of labeled tournaments with n vertices is

$$
\mathfrak{t}_{n}=2\binom{n}{2}
$$

Irreducible tournaments

A tournament is irreducible, if
$V=\{1,2,3,4,5,6\}$ for every partition of vertices $V=A \sqcup B$

11 there exist an edge from A to B,
2 there exist an edge from B to A.

$$
\begin{gathered}
A=\{1,2,3,6\} \\
B=\{4,5\}
\end{gathered}
$$

Irreducible tournaments

A tournament is irreducible, if
$V=\{1,2,3,4,5,6\}$
for every partition of vertices $V=A \sqcup B$
11 there exist an edge from A to B,
2 there exist an edge from B to A.

Equivalently, a tournament is strongly connected: for each two vertices u and v

1 there is a path from u to v,
2 there is a path from v to u.

$$
\begin{aligned}
u & =4 \\
v & =6
\end{aligned}
$$

Exponential generating functions and Bender's theorem

EGF: $\quad G(z)=\sum_{n=0}^{\infty} \mathfrak{g}_{n} \frac{z^{n}}{n!}$

Exponential generating functions and Bender's theorem

$$
\begin{aligned}
& \text { EGF: } G(z)=\sum_{n=0}^{\infty} \mathfrak{g}_{n} \frac{z^{n}}{n!} \\
& C G(z)=\log G(z)
\end{aligned}
$$

Exponential generating functions and Bender's theorem

EGF: $\quad G(z)=\sum_{n=0}^{\infty} \mathfrak{g}_{n} \frac{z^{n}}{n!}$
$C G(z)=\log G(z)$

Bender, 1975:
$1 A(z)=\sum_{n=1}^{\infty} a_{n} z^{n}, \quad a_{n} \neq 0$
$2 F(x, y)$ is analytic in $U(0 ; 0)$
$3 B(z)=\sum_{n=0}^{\infty} b_{n} z^{n}=F(z, A(z))$
$4 C(z)=\sum_{n=0}^{\infty} c_{n} z^{n}=\left[\frac{\partial F}{\partial y}(z, y)\right]_{y=A(z)}$
$5 \frac{a_{n-1}}{a_{n}} \rightarrow 0$, as $n \rightarrow \infty$
$6 \exists r \geqslant 1: \sum_{k=r}^{n-r}\left|a_{k} a_{n-k}\right|=O\left(a_{n-r}\right)$
Then $\quad b_{n}=\sum_{k=0}^{r-1} c_{k} \boldsymbol{a}_{n-k}+O\left(a_{n-r}\right)$.

Exponential generating functions and Bender's theorem

$$
\begin{aligned}
& \text { EGF: } G(z)=\sum_{n=0}^{\infty} \mathfrak{g}_{n} \frac{z^{n}}{n!} \\
& C G(z)=\log G(z)
\end{aligned}
$$

Bender, 1975:
1 . $A(z)=\sum_{n=1}^{\infty} a_{n} z^{n}, \quad a_{n} \neq 0$
$2 F(x, y)$ is analytic in $U(0 ; 0)$
$3 B(z)=\sum_{n=0}^{\infty} b_{n} z^{n}=F(z, A(z))$
$4 C(z)=\sum_{n=0}^{\infty} c_{n} z^{n}=\left[\frac{\partial F}{\partial y}(z, y)\right]_{y=A(z)}$

5 the sequence $\left(a_{n}\right)$ is gargantuan

Then $\quad b_{n}=\sum_{k=0}^{r-1} c_{k} \boldsymbol{a}_{n-k}+O\left(a_{n-r}\right)$.

Exponential generating functions and Bender's theorem

$$
\begin{aligned}
& \text { EGF: } G(z)=\sum_{n=0}^{\infty} \mathfrak{g}_{n} \frac{z^{n}}{n!} \\
& C G(z)=\log G(z)
\end{aligned}
$$

Bender, 1975:
$1 \quad A(z)=\sum_{n=1}^{\infty} a_{n} z^{n}, \quad a_{n} \neq 0$
$2 F(x, y)$ is analytic in $U(0 ; 0)$
$3 B(z)=\sum_{n=0}^{\infty} b_{n} z^{n}=F(z, A(z))$
$4 C(z)=\sum_{n=0}^{\infty} c_{n} z^{n}=\left[\frac{\partial F}{\partial y}(z, y)\right]_{y=A(z)}$

5 the sequence $\left(a_{n}\right)$ is gargantuan

Then $\quad b_{n} \approx \sum_{k \geqslant 0} c_{k} \boldsymbol{a}_{n-k}$.

Exponential generating functions and Bender's theorem

$$
\begin{aligned}
& \text { EGF: } G(z)=\sum_{n=0}^{\infty} \mathfrak{g}_{n} \frac{z^{n}}{n!} \\
& C G(z)=\log G(z) \\
& F(y)=\log (y) \\
& \frac{\partial F}{\partial y}=\frac{1}{y}
\end{aligned}
$$

Bender, 1975:
$1 A(z)=\sum_{n=1}^{\infty} a_{n} z^{n}, \quad a_{n} \neq 0$
$2 F(x, y)$ is analytic in $U(0 ; 0)$
$3 B(z)=\sum_{n=0}^{\infty} b_{n} z^{n}=F(z, A(z))$
$4 C(z)=\sum_{n=0}^{\infty} c_{n} z^{n}=\left[\frac{\partial F}{\partial y}(z, y)\right]_{y=A(z)}$

5 the sequence $\left(a_{n}\right)$ is gargantuan

Then $\quad b_{n} \approx \sum_{k \geqslant 0} c_{k} \boldsymbol{a}_{n-k}$.

Exponential generating functions and Bender's theorem

$$
\begin{aligned}
& \text { EGF: } G(z)=\sum_{n=0}^{\infty} \mathfrak{g}_{n} \frac{z^{n}}{n!} \\
& C G(z)=\log G(z) \\
& F(y)=\log (y) \\
& \frac{\partial F}{\partial y}=\frac{1}{y} \\
& \frac{1}{1-y}=1+y+y^{2}+\ldots
\end{aligned}
$$

Bender, 1975:
1 . $A(z)=\sum_{n=1}^{\infty} a_{n} z^{n}, \quad a_{n} \neq 0$
$2 F(x, y)$ is analytic in $U(0 ; 0)$
$3 B(z)=\sum_{n=0}^{\infty} b_{n} z^{n}=F(z, A(z))$
$4 C(z)=\sum_{n=0}^{\infty} c_{n} z^{n}=\left[\frac{\partial F}{\partial y}(z, y)\right]_{y=A(z)}$

5 the sequence $\left(a_{n}\right)$ is gargantuan

$$
\frac{\mathfrak{c g}_{n}}{\mathfrak{g}_{n}} \approx 1-\sum_{k \geqslant 0} \mathfrak{i t}_{k}\binom{n}{k} \frac{\mathfrak{g}_{n-k}}{\mathfrak{g}_{n}}
$$

Then $\quad b_{n} \approx \sum_{k \geqslant 0} c_{k} \boldsymbol{a}_{n-k}$.

Exponential generating functions and Bender's theorem

$$
\begin{aligned}
& \text { EGF: } G(z)=\sum_{n=0}^{\infty} \mathfrak{g}_{n} \frac{z^{n}}{n!} \\
& C G(z)=\log G(z) \\
& F(y)=\log (y) \\
& \frac{\partial F}{\partial y}=\frac{1}{y} \\
& \frac{1}{1-y}=1+y+y^{2}+\ldots \\
& G(z)=T(z)=\frac{1}{1-I T(z)} \\
& \frac{\mathfrak{c g}_{n}}{\mathfrak{g}_{n}} \approx 1-\sum_{k \geqslant 0} \mathfrak{i t}_{k}\binom{n}{k} \frac{\mathfrak{g}_{n-k}}{\mathfrak{g}_{n}}
\end{aligned}
$$

Bender, 1975:
1 . $A(z)=\sum_{n=1}^{\infty} a_{n} z^{n}, \quad a_{n} \neq 0$
$2 F(x, y)$ is analytic in $U(0 ; 0)$
$3 B(z)=\sum_{n=0}^{\infty} b_{n} z^{n}=F(z, A(z))$
$4 C(z)=\sum_{n=0}^{\infty} c_{n} z^{n}=\left[\frac{\partial F}{\partial y}(z, y)\right]_{y=A(z)}$

5 the sequence $\left(a_{n}\right)$ is gargantuan

Then $\quad b_{n} \approx \sum_{k \geqslant 0} c_{k} \boldsymbol{a}_{n-k}$.

Exponential generating functions and Bender's theorem

$1 C G(z)=\log G(z)$
$2 A(z)=G(z)-1$
$3 F(x, y)=\log (1+y)$
$4 \frac{\partial F}{\partial y}=\frac{1}{1+y}$
5 $C(z)=\frac{1}{G(z)}=\frac{1}{T(z)}$
6 $\frac{1}{T(z)}=1-I T(z)$
$7 \frac{\mathfrak{c g}_{n}}{\mathfrak{g}_{n}} \approx 1-\sum_{k \geqslant 0} \mathfrak{i t}_{k}\binom{n}{k} \frac{\mathfrak{g}_{n-k}}{\mathfrak{g}_{n}}$

Bender, 1975:
$1 A(z)=\sum_{n=1}^{\infty} a_{n} z^{n}, \quad a_{n} \neq 0$
$2 F(x, y)$ is analytic in $U(0 ; 0)$
$3 B(z)=\sum_{n=0}^{\infty} b_{n} z^{n}=F(z, A(z))$
$4 C(z)=\sum_{n=0}^{\infty} c_{n} z^{n}=\left[\frac{\partial F}{\partial y}(z, y)\right]_{y=A(z)}$

5 the sequence $\left(a_{n}\right)$ is gargantuan

Then $\quad b_{n} \approx \sum_{k \geqslant 0} c_{k} a_{n-k}$.

Tournament as a sequence

Folklore: Every labeled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labeled tournaments.

Tournament as a sequence

Folklore: Every labeled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labeled tournaments.

Tournament as a sequence

Folklore: Every labeled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labeled tournaments.

SET and SEQ decompositions

Combinatorial constructions

$\boldsymbol{1} \mathcal{U}=\operatorname{SET}(\mathcal{V})$,

$$
U(z)=\exp (V(z))
$$

$2 \mathcal{U}=\operatorname{SEQ}(\mathcal{W})$,

$$
U(z)=\frac{1}{1-W(z)}
$$

SET asymptotics

Theorem

If \mathcal{U}, \mathcal{V} and \mathcal{W} are such combinatorial classes that
$1 \mathcal{U}$ is gargantuan with positive counting sequence,
$2 \mathcal{U}=\operatorname{SET}(\mathcal{V})$ and $\mathcal{U}=\operatorname{SEQ}(\mathcal{W})$,
then

$$
p_{n}:=\frac{\mathfrak{v}_{n}}{\mathfrak{u}_{n}} \approx 1-\sum_{k \geqslant 1} \mathfrak{w}_{k} \cdot\binom{n}{k} \cdot \frac{\mathfrak{u}_{n-k}}{\mathfrak{u}_{n}} .
$$

Combinatorial meaning: p_{n} is the probability that a random object of size n from \mathcal{U} is irreducible in terms of SET-decomposition.

Asymptotics for connected graphs

Theorem

The probability p_{n} that a random labeled graph of size n is connected, satisfies

$$
p_{n} \approx 1-\sum_{k=1} \mathrm{it}_{k} \cdot\binom{n}{k} \cdot \frac{2^{k(k+1) / 2}}{2^{n k}},
$$

where $i t_{k}$ is the number of irreducible labeled tournaments of size k.

$$
\left(\mathfrak{i t}_{k}\right)=1,0,2,24,544,22320,1677488, \ldots
$$

More applications

1 Square-tiled surfaces and indecomposable permutations.

2 Combinatorial maps and indecomposable perfect matchings.

3 Connected multigraphs and irreducible multitournaments.

4 Constellations and indecomposable multipermutations.

5 Colored tensor models and indecomposable multipermutations.

SEQ asymptotics

Theorem

If \mathcal{U}, \mathcal{W} and $\mathcal{W}^{(2)}$ are such combinatorial classes that
$\square \mathcal{U}$ is gargantuan with positive counting sequence,
$■ \mathcal{U}=\operatorname{SEQ}(\mathcal{W})$ and $\mathcal{W}^{(2)}=\mathcal{W} \star \mathcal{W}=\operatorname{SEQ}_{2}(\mathcal{W})$,
then

$$
q_{n}:=\frac{\mathfrak{w}_{n}}{\mathfrak{u}_{n}} \approx 1-\sum_{k \geqslant 1}\left(2 \mathfrak{w}_{k}-\mathfrak{w}_{k}^{(2)}\right) \cdot\binom{n}{k} \cdot \frac{\mathfrak{u}_{n-k}}{\mathfrak{u}_{n}} .
$$

$\underline{\text { Reasoning: }} \frac{1}{y} \xrightarrow{\partial}-\frac{1}{y^{2}},(1-W(z))^{2}=1-2 W(z)+(W(z))^{2}$.

Example: asymptotics for irreducible tournaments

Theorem

The probability q_{n} that a random labeled tournament of size n is irreducible, satisfies

$$
q_{n} \approx 1-\sum_{k \geqslant 1}\left(2 i t_{k}-i t_{k}^{(2)}\right) \cdot\binom{n}{k} \cdot \frac{2^{k(k+1) / 2}}{2^{n k}},
$$

where it ${ }_{k}^{(2)}$ is the number of labeled tournaments of size k with two irreducible components.

$$
\begin{aligned}
\left(\mathfrak{i t}_{k}\right) & =1,
\end{aligned} \quad 0, \quad 2, \quad 24, \quad 544, \quad 22320, \quad \ldots
$$

Combinatorial classes: limits of applicability

1 Coefficients can be negative.
2 In certain cases, there is a decomposition

$$
\mathcal{U}=\operatorname{SET}(\mathcal{V})
$$

but we have no class \mathcal{W} such that

$$
\mathcal{U}=\operatorname{SEQ}(\mathcal{W})
$$

and our theorem is not applicable (need of an "anti-SEQ" operator to create this class).

Correspondance between combinatorial classes and species

combinatorial classes

$$
\begin{aligned}
\mathcal{A} & =\operatorname{SET}(\mathcal{B}) \\
\mathcal{A} & =\operatorname{SEQ}(\mathcal{B}) \\
\mathcal{A} & =\operatorname{CYC}(\mathcal{B}) \\
\mathcal{A} & =\operatorname{SET}_{m}(\mathcal{B}) \\
\mathcal{A} & =\operatorname{SEQ}_{m}(\mathcal{B}) \\
\mathcal{A} & =\operatorname{CYC}_{m}(\mathcal{B})
\end{aligned}
$$

species of structures

$$
\begin{aligned}
\mathcal{A} & =\mathcal{E} \circ \mathcal{B} \\
\mathcal{A} & =\mathcal{L} \circ \mathcal{B} \\
\mathcal{A} & =\mathcal{C P} \circ \mathcal{B} \\
\mathcal{A} & =\mathcal{E}_{m} \circ \mathcal{B} \\
\mathcal{A} & =\mathcal{L}_{m} \circ \mathcal{B} \\
\mathcal{A} & =\mathcal{C} \mathcal{P}_{m} \circ \mathcal{B}
\end{aligned}
$$

Asymptotics in terms of species

Theorem

If \mathcal{A}, \mathcal{B} and $\mathcal{B}(m), m \in \mathbb{N}$, are such (weighted) species that
$1 \mathcal{A}$ is gargantuan with positive total weights on $[n], n \in \mathbb{N}$,
2 one of the following conditions holds:

(a)	$\mathcal{A}=\mathcal{E} \circ \mathcal{B}$	$\mathcal{B}(m)=\mathcal{E}_{m} \circ \mathcal{B}$	$\mathcal{C}=\mathcal{B}(m-1)\left(\mathcal{E}^{-1} \circ \mathcal{B}\right)$
(b)	$\mathcal{A}=\mathcal{L} \circ \mathcal{B}$	$\mathcal{B}(m)=\mathcal{L}_{m} \circ \mathcal{B}$	$\mathcal{C}=m \mathcal{B}^{m-1}(1-\mathcal{B})^{2}$
(c)	$\mathcal{A}=\mathcal{C P} \circ \mathcal{B}$	$\mathcal{B}(m)=\mathcal{C} \mathcal{P}_{m} \circ \mathcal{B}$	$\mathcal{C}=\mathcal{B}^{m-1}(1-\mathcal{B})$

then

$$
p_{n}(m):=\frac{\mathfrak{b}_{n}(m)}{\mathfrak{a}_{n}} \approx \sum_{k \geqslant m-1} \mathfrak{c}_{k} \cdot\binom{n}{k} \cdot \frac{\mathfrak{a}_{n-k}}{\mathfrak{a}_{n}} .
$$

In the case $(a), \quad \mathcal{C} \equiv \mathcal{B}^{\{m-1\}}\left(\left(1-\mathcal{L}_{+}^{(-1)}\right) \circ \mathcal{A}_{+}\right)$.

Erdős-Rényi model $G(n, p)$

Consider a random labeled graph G :
$1 p \in(0,1)$ is the probability of edge presence;
$2 q=1-p$ is the probability of edge absence.

Weight of a graph:

$$
w(G)=\rho^{|E(G)|},
$$

where $\rho=\frac{p}{q}=q^{-1}-1$.
Reason: if G_{1} and G_{2} are disjoint, then

$$
w\left(G_{1} \sqcup G_{2}\right)=w\left(G_{1}\right) \cdot w\left(G_{2}\right) .
$$

Asymptotics of the Erdős-Rényi model

Theorem

The probability $p_{n}(m)$ that a random graph with n vertices has exactly m connected components satisfies

$$
p_{n}(m) \approx \sum_{k \geqslant 0} P_{k}^{\{m\}}(\rho) \cdot\binom{n}{k} \cdot \frac{q^{n k}}{q^{k(k+1) / 2}},
$$

where

$$
P_{k}^{\{m\}}(\rho)=\sum_{|V(G)|=k}(-1)^{\pi_{0}(G)-m}\binom{\pi_{0}(G)}{m-1} w(G) .
$$

Asymptotics of the Erdős-Rényi model, continued

Theorem

The probability p_{n} that a random graph with n vertices is connected satisfies

$$
p_{n} \approx 1-\sum_{k \geqslant 1} P_{k}(\rho) \cdot\binom{n}{k} \cdot \frac{q^{n k}}{q^{k(k+1) / 2}},
$$

where

$$
P_{k}(\rho)=\sum_{|V(G)|=k}(-1)^{\pi_{0}(G)-1} w(G) .
$$

Meaning of the coefficients

$$
\begin{gathered}
w=1 \\
P_{1}(\rho)=1
\end{gathered}
$$

$\stackrel{\bullet}{ }=\rho$
$w=1$

$$
P_{2}(\rho)=\rho-1
$$

$w=\rho^{2}$
$P_{3}(\rho)=\rho^{3}+3 \rho^{2}-3 \rho+1$

Meaning of the coefficients

$$
\begin{gathered}
w=1 \\
P_{1}(\rho)=1 \\
P_{1}(1)=1=\mathfrak{i t}_{1}
\end{gathered}
$$

$$
\stackrel{\bullet}{w}=\rho
$$

$$
w=1
$$

$$
P_{2}(\rho)=\rho-1
$$

$$
P_{2}(1)=0=\mathfrak{i t}_{2}
$$

$w=\rho^{3}$

$w=\rho^{2}$
$w=\rho^{1}$
$w=1$

$$
\begin{gathered}
P_{3}(\rho)=\rho^{3}+3 \rho^{2}-3 \rho+1 \\
P_{3}(1)=2=\mathfrak{i t}_{3}
\end{gathered}
$$

Probability of a directed graph to be strongly connected

Question. What is the probability r_{n} that a random directed graph with n vertices is strongly connected, as $n \rightarrow \infty$?

Probability of a directed graph to be strongly connected

Question. What is the probability r_{n} that a random directed graph with n vertices is strongly connected, as $n \rightarrow \infty$?

Wright, 1970:

$$
r_{n}=\sum_{k=0}^{r-1} \frac{\omega_{k}(n)}{2^{k n}} \cdot \frac{n!}{(n+[k / 2]-k)!}+O\left(\frac{n^{r}}{2^{r n}}\right)
$$

where

$$
\begin{gathered}
\omega_{k}(n)=\sum_{\nu=0}^{[k / 2]} \gamma_{\nu} \xi_{k-2 \nu} \frac{2^{k(k+1) / 2}}{2^{\nu(k-\nu)}}(n+[k / 2]-k) \ldots(n+\nu+1-k), \\
\gamma_{0}=1, \gamma_{\nu}=\sum_{s=0}^{\nu-1} \frac{\gamma_{s} \eta_{n-s}}{(\nu-s)!}, \sum_{\nu=0}^{\infty} \xi_{\nu} z^{\nu}=\left(1-\sum_{n=0}^{\infty} \frac{\eta_{n}}{2^{n(n-1) / 2}} \frac{z^{n}}{n!}\right)^{2}, \\
\eta_{1}=1, \quad \eta_{n}=2^{n(n-1)}-\sum_{t=1}^{n-1}\binom{n}{t} 2^{(n-1)(n-t)} \eta_{t} .
\end{gathered}
$$

Towards the asymptotics

1 Dovgal and de Panafieu, 2019:

$$
S D(z)=-\log \left(G(z) \odot \frac{1}{G(z)}\right)
$$

2 In terms of tournaments:

$$
S D(z)=-\log (1-T(z) \odot I T(z))
$$

3 Semi-strong directed graphs:

$$
\operatorname{SSD}(z)=\frac{1}{1-T(z) \odot I T(z)}
$$

Asymptotics for strongly connected graphs

Theorem (with Sergey Dovgal)

The probability r_{n} that a random directed graph with n vertices is strongly connected satisfies

$$
r_{n} \approx \sum_{k \geqslant 0} \mathfrak{S 5 0}_{k}\binom{n}{k} \frac{2^{k(k+1)}}{2^{2 n k}} \frac{\mathfrak{i t}}{n-k} \mathfrak{t}_{n-k},
$$

where $550_{k}, \mathfrak{t}_{k}$ and $\mathfrak{i t}_{k}$ are the numbers of semi-strong digraphs, tournaments and irreducible tournaments of size k, respectively.
$\xrightarrow{\text { Reasoning: }} \log (1-y) \xrightarrow{\partial}-\frac{1}{1-y}$.

Asymptotics for strongly connected graphs, continued

Theorem (with Sergey Dovgal)

The probability r_{n} that a random directed graph with n vertices is strongly connected satisfies
where $\quad R_{k}(n)=2^{k(k+1) / 2} \sum_{\nu=0}^{[k / 2]}\binom{n}{\nu, k-2 \nu} \frac{550_{\nu} \beta_{k-2 \nu}}{2^{\nu(k-\nu)}}$.

- $\beta_{k}=\mathbb{I}_{k=0}-2 \mathfrak{i t}_{k}+\mathfrak{i t}_{k}^{(2)}$,
- $\mathfrak{5 s o}_{k}$ is the number of semi-strong digraphs of size k,
- $\mathfrak{i} \mathfrak{t}_{k}$ is the number of irreducible tournaments of size k,
- $\mathfrak{i t}_{k}^{(2)}$ is the number of tournaments of size k with two irreducible parts.

Possible directions for generalization

1 Different types of irreducibility. For instance, "noncrossing compositions":

$$
A(z)=1+I(z A(z))
$$

2 Classes of different rate of convergence (forests, polynomials).
3 Unlabeled structures.

Question. Can we obtain any combinatorial interpretation for the above cases?

Algorithmic aspects

For the asymptotic expansion for connected graphs,

$$
p_{n}=1-\binom{n}{1} \frac{2 \mathfrak{i t}_{1}}{2^{n}}-\binom{n}{2} \frac{2^{3} \mathfrak{i t}_{2}}{2^{2 n}}-\binom{n}{3} \frac{2^{6} \mathfrak{i t}_{3}}{2^{3 n}}-\ldots,
$$

the inclusion-exclusion principle shows the origin of terms:

Algorithmic aspects

For the asymptotic expansion for connected graphs,

$$
p_{n}=1-\binom{n}{1} \frac{2 \mathfrak{i t}_{1}}{2^{n}}-\binom{n}{2} \frac{2^{3} \mathfrak{i t}_{2}}{2^{2 n}}-\binom{n}{3} \frac{2^{6} \mathfrak{i t}_{3}}{2^{3 n}}-\ldots,
$$

the inclusion-exclusion principle shows the origin of terms:

Algorithmic aspects

For the asymptotic expansion for connected graphs,

$$
p_{n}=1-\binom{n}{1} \frac{2 \mathfrak{i t}_{1}}{2^{n}}-\binom{n}{2} \frac{2^{3} \mathfrak{i t}_{2}}{2^{2 n}}-\binom{n}{3} \frac{2^{6} \mathfrak{i t}_{3}}{2^{3 n}}-\ldots,
$$

the inclusion-exclusion principle shows the origin of terms:

Algorithmic aspects

For the asymptotic expansion for connected graphs,

$$
p_{n}=1-\binom{n}{1} \frac{2 \mathfrak{i t}_{1}}{2^{n}}-\binom{n}{2} \frac{2^{3} \mathfrak{i t}_{2}}{2^{2 n}}-\binom{n}{3} \frac{2^{6} \mathfrak{i t}_{3}}{2^{3 n}}-\ldots,
$$

the inclusion-exclusion principle shows the origin of terms:

Question. Can we create a rejection algorithm for producing connected graphs randomly, so that we reject with a probability of a smaller order?

Erdős-Rényi model, continued

The form of the asymptotic expansion is

$$
p_{n}=1-\binom{n}{1} \frac{q^{n} P_{1}(\rho)}{q}-\binom{n}{2} \frac{q^{2 n} P_{2}(\rho)}{q^{2}}-\binom{n}{3} \frac{q^{3 n} P_{3}(\rho)}{q^{3}}-\ldots
$$

When the parameter p approaches the threshold for connectedness,

$$
p=\frac{(1+\varepsilon) \ln n}{n}
$$

all terms become equivalent:

$$
P_{k}(\rho)\binom{n}{k} \frac{q^{n k}}{q^{k(k+1) / 2}} \sim n^{-\varepsilon k} .
$$

Question. Can we build a fruitful theory of phase transition for asymptotic expansions?

Many thanks to all listeners

Thank you for your attention!

Literature I

Bender E.A.
An asymptotic expansion for some coefficients of some formal power series
J. Lond. Math. Soc., Ser. 9 (1975), pp. 451-458.

围 Gilbert E.N.
Random graphs
Ann. Math. Stat., Vol. 30, N. 4 (1959), pp. 1141-1144.
圊 Monteil T., Nurligareev K.
Asymptotics for connected graphs and irreducible tournaments Extended Abstracts EuroComb 2021, pp. 823-828. Springer, 2021.

Literature II

圊 Nurligareev K.
Irreducibility of combinatorial objects: asymptotic probability and interpretation
Theses, Université Sorbonne Paris Nord, Oct. 2022.
目 Wright E.M.
Asymptotic relations between enumerative functions in graph theory
Proc. Lond. Math. Soc., Vol. s3-20, Issue 3 (1970),
pp. 558-572.

Wright E.M.
The Number of Strong Digraphs
Bull. Lond. Math. Soc., Ser. 3 (1971), pp. 348-350.

Square-tiled surfaces

To obtain a square-tiled surface (determined by $(h, v) \in S_{n}^{2}$):
1 take n labeled squares,

Square-tiled surfaces

To obtain a square-tiled surface (determined by $(h, v) \in S_{n}^{2}$):
1 take n labeled squares,
$\sqrt{2}$ identify horizontal sides (corresponds to $h \in S_{n}$),

$$
h=(13)(2)
$$

Square-tiled surfaces

To obtain a square-tiled surface (determined by $(h, v) \in S_{n}^{2}$):
1 take n labeled squares,
$\sqrt{2}$ identify horizontal sides (corresponds to $h \in S_{n}$),
3 identify vertical sides (corresponds to $v \in S_{n}$),
$h=(13)(2)$
$v=(1)(23)$

Square-tiled surfaces

To obtain a square-tiled surface (determined by $(h, v) \in S_{n}^{2}$):
1 take n labeled squares,
$\sqrt{2}$ identify horizontal sides (corresponds to $h \in S_{n}$),
3 identify vertical sides (corresponds to $v \in S_{n}$),
4 glue together identified sides.

$$
\begin{aligned}
& h=(13)(2) \\
& v=(1)(23)
\end{aligned}
$$

Square-tiled surfaces

To obtain a square-tiled surface (determined by $(h, v) \in S_{n}^{2}$):
1 take n labeled squares,
$\sqrt{2}$ identify horizontal sides (corresponds to $h \in S_{n}$),
3 identify vertical sides (corresponds to $v \in S_{n}$),
4 glue together identified sides.
Transitive action \leftrightarrow connectedness of the square-tiled surface.

$$
\begin{aligned}
& h=(13)(2) \\
& v=(1)(23)
\end{aligned}
$$

Indecomposable permutations

A permutation $\sigma \in S_{n}$ is
1 decomposable, if there is an index $p<n$ such that $\sigma(\{1, \ldots, p\})=\{1, \ldots, p\}$.
2 indecomposable otherwise.

$$
\begin{array}{lll}
\left(\begin{array}{lll|ll}
1 & 2 & 3 & 4 & 5 \\
3 & 1 & 2 & 5 & 4
\end{array}\right) & \left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
3 & 5 & 4 & 1 & 2
\end{array}\right) \\
\text { decomposable }(p=3) & \text { indecomposable }
\end{array}
$$

Observation. Every permutation can be uniquely decomposed into a sequence of indecomposable permutations.

Asymptotics for connected square-tiled surfaces

Theorem (reformulation of the results of Dixon and Cori)
The probability p_{n} that a random square-tiled surface of size n is connected satisfies

$$
p_{n} \approx 1-\sum_{k=1} \frac{i p_{k}}{(n)_{k}},
$$

where $(n)_{k}=n(n-1) \ldots(n-k+1)$ are the falling factorials and \mathfrak{p}_{k} is the number of indecomposable permutations of size k.

$$
\left(\mathfrak{i p}_{k}\right)=1,1,3,13,71,461,3447,29093, \ldots
$$

Pairs of linear orders

A pair of linear orders $\left(\prec_{1}, \prec_{2}\right)$ of size n is
1 reducible, if there is a partition $\{1, \ldots, n\}=A \sqcup B$ such that $\forall a \in A, b \in B: \quad a \prec_{1} b$ and $a \prec_{2} b$.
2 irreducible otherwise.
$\left(\begin{array}{lllllll}3 & \prec_{1} & 1 & \prec_{1} & 4 & f_{1} & 2 \\ 4 & \prec_{2} & 3 & \prec_{2} & 1 & f_{2} & 2\end{array}\right) \quad\left(\begin{array}{ccccccc}3 & \prec_{1} & 1 & \prec_{1} & 4 & \prec_{1} & 2 \\ 4 & \prec_{2} & 1 & \prec_{2} & 2 & \prec_{2} & 3\end{array}\right)$
reducible $(A=\{1,3,4\}, B=\{2\}) \quad$ irreducible

Observation.
$\#\{$ irreducible pairs of linear orders of size $n\}=n!\cdot \mathfrak{i p}_{n}$.

Correspondence of classes

$1 \begin{aligned} \mathcal{U} & =\{\text { square-tiled surfaces }\} \\ & =\text { \{pairs of linear orders of the same size }\}\end{aligned}$
$2 \mathcal{V}=\{$ connected square-tiled surfaces $\}$
$3 \mathcal{W}=\{$ irreducible pairs of linear orders of the same size $\}$

$$
p_{n}=\mathfrak{w}_{k} \cdot\binom{n}{k} \cdot \frac{\mathfrak{u}_{n-k}}{\mathfrak{u}_{n}}=k!\cdot \mathfrak{i p}_{k} \cdot\binom{n}{k} \cdot \frac{((n-k)!)^{2}}{(n!)^{2}}=\frac{\mathfrak{i}_{k}}{(n)_{k}}
$$

Probability of a permutation to be indecomposable

Theorem

The probability q_{n} that a random permutation of size n is indecomposable, satisfies

$$
q_{n} \approx 1-\sum_{k \geqslant 1} \frac{2 i p_{k}-i p_{k}^{(2)}}{(n)_{k}}
$$

where $i p_{k}^{(2)}$ is the number of permutations of size k with two indecomposable parts.

$$
\begin{array}{rlllllllll}
\left(\mathfrak{i p}_{k}\right) & = & 1, & 1, & 3, & 13, & 71, & 461, & 3447, & \ldots \\
\left(\mathfrak{i p}_{k}^{(2)}\right) & = & 0, & 1, & 2, & 7, & 32, & 177, & 1142, & \ldots \\
\left(2 \mathfrak{p}_{k}-\mathfrak{i p}_{k}^{(2)}\right) & = & 2, & 1, & 4, & 19, & 110, & 745, & 5752, & \ldots
\end{array}
$$

Combinatorial map model

- Take several labeled polygons of total perimeter $N=2 n$ (1-gons and 2-gons are allowed).
■ Identify their sides randomly to obtain a surface.
- Each surface is determined by a pair $(\phi, \alpha) \in S_{N}^{2}$, where α is a perfect matching.

Combinatorial map model asymptotics

Theorem

The probability p_{n} that a random surface within the combinatorial map model is connected satisfies

$$
p_{n} \approx 1-\sum_{k \geqslant 1} \operatorname{im}_{2 k} \cdot \frac{(2(n-k)-1)!!}{(2 n-1)!!},
$$

where ($\mathrm{im}_{2 k}$) counts indecomposable perfect matchings.

$$
\left(\mathfrak{i m}_{2 k}\right)=1,2,10,74,706,8162,110410,1708394, \ldots
$$

