Irreducibility of combinatorial objects: asymptotic probability and interpretation

Khaydar Nurligareev (joint with Thierry Monteil)

LIPN, University Paris 13

Séminaire LIB

February 23, 2023

Khaydar Nurligareev (joint with Thierry Monteil)

2em] LIPN, University Paris 13

Simple labeled graphs

- **\mathfrak{g}_n**: the number of labeled graphs with *n* vertices,
- \mathfrak{cg}_n : the number of connected labeled graphs with *n* vertices.

Khaydar Nurligareev (joint with Thierry Monteil)

em] LIPN, University Paris 13

<u>Question</u>. What is the probability $p_n = \frac{\mathfrak{cg}_n}{\mathfrak{g}_n}$ that a random graph with *n* vertices is connected, as $n \to \infty$?

Khaydar Nurligareev (joint with Thierry Monteil)

2em] LIPN, University Paris 13

<u>Question</u>. What is the probability $p_n = \frac{\mathfrak{cg}_n}{\mathfrak{g}_n}$ that a random graph with *n* vertices is connected, as $n \to \infty$?

1 folklore: $p_n = 1 + o(1)$

Khaydar Nurligareev (joint with Thierry Monteil)

em LIPN, University Paris 13

<u>Question</u>. What is the probability $p_n = \frac{\mathfrak{cg}_n}{\mathfrak{g}_n}$ that a random graph with *n* vertices is connected, as $n \to \infty$?

1 folklore: $p_n = 1 + o(1)$ 2 Gilbert, 1959: $p_n = 1 - \frac{2n}{2^n} + O\left(\frac{n^2}{2^{3n/2}}\right)$

Khaydar Nurligareev (joint with Thierry Monteil)

<u>Question</u>. What is the probability $p_n = \frac{\mathfrak{cg}_n}{\mathfrak{g}_n}$ that a random graph with *n* vertices is connected, as $n \to \infty$?

1 folklore: $p_n = 1 + o(1)$ 2 Gilbert, 1959: $p_n = 1 - \frac{2n}{2^n} + O\left(\frac{n^2}{2^{3n/2}}\right)$

3 Wright, 1970:

$$p_n = 1 - \binom{n}{1} \frac{2}{2^n} - 2\binom{n}{3} \frac{2^6}{2^{3n}} - 24\binom{n}{4} \frac{2^{10}}{2^{4n}} + O\left(\frac{n^5}{2^{5n}}\right)$$

Khaydar Nurligareev (joint with Thierry Monteil)

<u>Question</u>. What is the probability $p_n = \frac{\mathfrak{cg}_n}{\mathfrak{g}_n}$ that a random graph with *n* vertices is connected, as $n \to \infty$?

1 folklore: $p_n = 1 + o(1)$ 2 Gilbert, 1959: $p_n = 1 - \frac{2n}{2^n} + O\left(\frac{n^2}{2^{3n/2}}\right)$

3 Wright, 1970:

$$p_n = 1 - \binom{n}{1} \frac{2}{2^n} - 2\binom{n}{3} \frac{2^6}{2^{3n}} - 24\binom{n}{4} \frac{2^{10}}{2^{4n}} + O\left(\frac{n^5}{2^{5n}}\right)$$

4 Can we see the structure? What is the interpretation?

Khaydar Nurligareev (joint with Thierry Monteil)

Asymptotics for p_n

Theorem

For every $r \ge 1$, the probability p_n that a random labeled graph of size n is connected satisfies

$$p_n = 1 - \sum_{k=1}^{r-1} \mathfrak{it}_k \cdot \binom{n}{k} \cdot \frac{2^{k(k+1)/2}}{2^{nk}} + O\left(\frac{n^r}{2^{nr}}\right),$$

where \mathfrak{it}_k is the number of irreducible labeled tournaments of size k.

 $(\mathfrak{it}_k) = 1, 0, 2, 24, 544, 22320, 1677488, \ldots$

Khaydar Nurligareev (joint with Thierry Monteil)

Tournaments

A **tournament** is a complete directed graph.

The number of labeled tournaments with n vertices is

$$\mathfrak{t}_n=2\binom{n}{2}$$

Khaydar Nurligareev (joint with Thierry Monteil)

Irreducible tournaments

A tournament is **irreducible**, if for every partition of vertices $V = A \sqcup B$

- **1** there exist an edge from A to B,
- **2** there exist an edge from B to A.

$$V = \{1, 2, 3, 4, 5, 6\}$$

Khaydar Nurligareev (joint with Thierry Monteil)

Irreducible tournaments

A tournament is irreducible, if
for every partition of vertices V = A ⊔ B
1 there exist an edge from A to B,
2 there exist an edge from B to A.

Equivalently, a tournament is **strongly connected**: for each two vertices *u* and *v*

- 1 there is a path from *u* to *v*,
- 2 there is a path from v to u.

 $V = \{1, 2, 3, 4, 5, 6\}$

EGF:
$$G(z) = \sum_{n=0}^{\infty} \mathfrak{g}_n \frac{z^n}{n!}$$

Khaydar Nurligareev (joint with Thierry Monteil)

em] LIPN, University Paris 13

EGF:
$$G(z) = \sum_{n=0}^{\infty} g_n \frac{z^n}{n!}$$

 $CG(z) = \log G(z)$

Khaydar Nurligareev (joint with Thierry Monteil)

em] LIPN, University Paris 13

EGF:
$$G(z) = \sum_{n=0}^{\infty} g_n \frac{z^n}{n!}$$

 $CG(z) = \log G(z)$

Bender, 1975:

1
$$A(z) = \sum_{n=1}^{\infty} a_n z^n$$
, $a_n \neq 0$
2 $F(x, y)$ is analytic in $U(0; 0)$
3 $B(z) = \sum_{n=0}^{\infty} b_n z^n = F(z, A(z))$
4 $C(z) = \sum_{n=0}^{\infty} c_n z^n = \left[\frac{\partial F}{\partial y}(z, y)\right]_{y=A(z)}$
5 $\frac{a_{n-1}}{a_n} \to 0$, as $n \to \infty$
6 $\exists r \ge 1$: $\sum_{k=r}^{n-r} |a_k a_{n-k}| = O(a_{n-r})$
Then $b_n = \sum_{k=0}^{r-1} c_k a_{n-k} + O(a_{n-r})$.

Khaydar Nurligareev (joint with Thierry Monteil)

2em] LIPN, University Paris 13

EGF:
$$G(z) = \sum_{n=0}^{\infty} g_n \frac{z^n}{n!}$$

 $CG(z) = \log G(z)$

Bender, 1975:

1
$$A(z) = \sum_{n=1}^{\infty} a_n z^n$$
, $a_n \neq 0$
2 $F(x, y)$ is analytic in $U(0; 0)$
3 $B(z) = \sum_{n=0}^{\infty} b_n z^n = F(z, A(z))$
4 $C(z) = \sum_{n=0}^{\infty} c_n z^n = \left[\frac{\partial F}{\partial y}(z, y)\right]_{y=A(z)}$

5 the sequence (a_n) is gargantuan

Then
$$b_n = \sum_{k=0}^{r-1} c_k a_{n-k} + O(a_{n-r}).$$

Khaydar Nurligareev (joint with Thierry Monteil)

EGF:
$$G(z) = \sum_{n=0}^{\infty} g_n \frac{z^n}{n!}$$

 $CG(z) = \log G(z)$

Bender, 1975:

1
$$A(z) = \sum_{n=1}^{\infty} a_n z^n$$
, $a_n \neq 0$
2 $F(x, y)$ is analytic in $U(0; 0)$
3 $B(z) = \sum_{n=0}^{\infty} b_n z^n = F(z, A(z))$
4 $C(z) = \sum_{n=0}^{\infty} c_n z^n = \left[\frac{\partial F}{\partial y}(z, y)\right]_{y=A(z)}$

5 the sequence (a_n) is gargantuan

Then
$$b_n \approx \sum_{k \ge 0} c_k a_{n-k}$$
.

Khaydar Nurligareev (joint with Thierry Monteil)

2em] LIPN, University Paris 13

EGF:
$$G(z) = \sum_{n=0}^{\infty} g_n \frac{z^n}{n!}$$

 $CG(z) = \log G(z)$
 $F(y) = \log(y)$
 $\frac{\partial F}{\partial y} = \frac{1}{y}$

Bender, 1975:

1
$$A(z) = \sum_{n=1}^{\infty} a_n z^n$$
, $a_n \neq 0$
2 $F(x, y)$ is analytic in $U(0; 0)$
3 $B(z) = \sum_{n=0}^{\infty} b_n z^n = F(z, A(z))$
4 $C(z) = \sum_{n=0}^{\infty} c_n z^n = \left[\frac{\partial F}{\partial y}(z, y)\right]_{y=A(z)}$

5 the sequence (a_n) is gargantuan

Then
$$b_n \approx \sum_{k \ge 0} c_k a_{n-k}$$
.

Khaydar Nurligareev (joint with Thierry Monteil)

2em] LIPN, University Paris 13

EGF:
$$G(z) = \sum_{n=0}^{\infty} g_n \frac{z^n}{n!}$$

 $CG(z) = \log G(z)$
 $F(y) = \log(y)$
 $\frac{\partial F}{\partial y} = \frac{1}{y}$
 $\frac{1}{1-y} = 1 + y + y^2 + \dots$
 $\frac{cg_n}{g_n} \approx 1 - \sum_{k>0} \operatorname{it}_k {n \choose k} \frac{g_{n-k}}{g_n}$

Bender, 1975:

1
$$A(z) = \sum_{n=1}^{\infty} a_n z^n$$
, $a_n \neq 0$
2 $F(x, y)$ is analytic in $U(0; 0)$
3 $B(z) = \sum_{n=0}^{\infty} b_n z^n = F(z, A(z))$
4 $C(z) = \sum_{n=0}^{\infty} c_n z^n = \left[\frac{\partial F}{\partial y}(z, y)\right]_{y=A(z)}$

5 the sequence (a_n) is gargantuan

k≥0 \''/

Then
$$b_n \approx \sum_{k \ge 0} c_k a_{n-k}$$
.

Khaydar Nurligareev (joint with Thierry Monteil)

EGF:
$$G(z) = \sum_{n=0}^{\infty} g_n \frac{z^n}{n!}$$

 $CG(z) = \log G(z)$
 $F(y) = \log(y)$
 $\frac{\partial F}{\partial y} = \frac{1}{y}$
 $\frac{1}{1-y} = 1 + y + y^2 + \dots$
 $G(z) = T(z) = \frac{1}{1-IT(z)}$
 $\frac{cg_n}{g_n} \approx 1 - \sum_{k \ge 0} it_k {n \choose k} \frac{g_{n-k}}{g_n}$

Bender, 1975:

1
$$A(z) = \sum_{n=1}^{\infty} a_n z^n$$
, $a_n \neq 0$
2 $F(x, y)$ is analytic in $U(0; 0)$
3 $B(z) = \sum_{n=0}^{\infty} b_n z^n = F(z, A(z))$
4 $C(z) = \sum_{n=0}^{\infty} c_n z^n = \left[\frac{\partial F}{\partial y}(z, y)\right]_{y=A(z)}$

5 the sequence (a_n) is gargantuan

Then $b_n \approx \sum_{k \ge 0} c_k a_{n-k}$.

Khaydar Nurligareev (joint with Thierry Monteil)

2em] LIPN. University Paris 13

- $CG(z) = \log G(z)$
- **2** A(z) = G(z) 1
- 3 $F(x, y) = \log(1 + y)$
- $\frac{\partial F}{\partial y} = \frac{1}{1+y}$
- **5** $C(z) = \frac{1}{G(z)} = \frac{1}{T(z)}$
- 6 $\frac{1}{T(z)} = 1 IT(z)$ 7 $\frac{cg_n}{g_n} \approx 1 - \sum_{k \ge 0} it_k \binom{n}{k} \frac{g_{n-k}}{g_n}$

Bender, 1975:

- 1 $A(z) = \sum_{n=1}^{\infty} a_n z^n$, $a_n \neq 0$ 2 F(x, y) is analytic in U(0; 0)3 $B(z) = \sum_{n=0}^{\infty} b_n z^n = F(z, A(z))$ 4 $C(z) = \sum_{n=0}^{\infty} c_n z^n = \left[\frac{\partial F}{\partial y}(z, y)\right]_{y=A(z)}$
- **5** the sequence (a_n) is gargantuan

Then $b_n \approx \sum_{k \ge 0} c_k a_{n-k}$.

Khaydar Nurligareev (joint with Thierry Monteil)

2em] LIPN, University Paris 13

Tournament as a sequence

Folklore: Every labeled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labeled tournaments.

Khaydar Nurligareev (joint with Thierry Monteil)

2em] LIPN, University Paris 13

Tournament as a sequence

Folklore: Every labeled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labeled tournaments.

Khaydar Nurligareev (joint with Thierry Monteil)

2em] LIPN, University Paris 13

Tournament as a sequence

Folklore: Every labeled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labeled tournaments.

Khaydar Nurligareev (joint with Thierry Monteil)

2em] LIPN, University Paris 13

SET and SEQ decompositions

Species

Combinatorial constructions

1
$$\mathcal{U} = \operatorname{SET}(\mathcal{V}),$$
 $U(z) = \exp(V(z)).$

2
$$\mathcal{U} = SEQ(\mathcal{W}),$$
 $U(z) = \frac{1}{1 - W(z)}.$

Khaydar Nurligareev (joint with Thierry Monteil)

2em] LIPN, University Paris 13

SET asymptotics

Theorem

If \mathcal{U} , \mathcal{V} and \mathcal{W} are such combinatorial classes that **1** \mathcal{U} is gargantuan with positive counting sequence, **2** $\mathcal{U} = \operatorname{SET}(\mathcal{V})$ and $\mathcal{U} = \operatorname{SEQ}(\mathcal{W})$, then $p_n := \frac{\mathfrak{v}_n}{\mathfrak{u}_n} \approx 1 - \sum_{k>1} \mathfrak{w}_k \cdot \binom{n}{k} \cdot \frac{\mathfrak{u}_{n-k}}{\mathfrak{u}_n}$.

Combinatorial meaning: p_n is the probability that a random object of size n from \mathcal{U} is irreducible in terms of SET-decomposition.

Khaydar Nurligareev (joint with Thierry Monteil)

Asymptotics for connected graphs

Theorem

The probability p_n that a random labeled graph of size n is connected, satisfies

$$p_n \approx 1 - \sum_{k=1} \operatorname{it}_k \cdot \binom{n}{k} \cdot \frac{2^{k(k+1)/2}}{2^{nk}},$$

where \mathfrak{it}_k is the number of irreducible labeled tournaments of size k.

 $(\mathfrak{it}_k) = 1, 0, 2, 24, 544, 22320, 1677488, \ldots$

Khaydar Nurligareev (joint with Thierry Monteil)

2em] LIPN, University Paris 13

More applications

- **1** Square-tiled surfaces and indecomposable permutations.
- 2 Combinatorial maps and indecomposable perfect matchings.
- **3** Connected multigraphs and irreducible multitournaments.
- 4 Constellations and indecomposable multipermutations.

5 Colored tensor models and indecomposable multipermutations.

Khaydar Nurligareev (joint with Thierry Monteil)

2em] LIPN, University Paris 13

SEQ asymptotics

Theorem

If \mathcal{U} , \mathcal{W} and $\mathcal{W}^{(2)}$ are such combinatorial classes that • \mathcal{U} is gargantuan with positive counting sequence, • $\mathcal{U} = SEQ(\mathcal{W})$ and $\mathcal{W}^{(2)} = \mathcal{W} \star \mathcal{W} = SEQ_2(\mathcal{W})$, then

$$q_n := \frac{\mathfrak{w}_n}{\mathfrak{u}_n} \approx 1 - \sum_{k \ge 1} \left(2\mathfrak{w}_k - \mathfrak{w}_k^{(2)} \right) \cdot \binom{n}{k} \cdot \frac{\mathfrak{u}_{n-k}}{\mathfrak{u}_n}$$

<u>Reasoning</u>: $\frac{1}{y} \xrightarrow{\partial} -\frac{1}{y^2}$, $(1 - W(z))^2 = 1 - 2W(z) + (W(z))^2$.

Khaydar Nurligareev (joint with Thierry Monteil)

2em] LIPN. University Paris 13

Example: asymptotics for irreducible tournaments

Theorem

The probability q_n that a random labeled tournament of size n is irreducible, satisfies

$$q_n \approx 1 - \sum_{k \ge 1} \left(2\mathfrak{i}\mathfrak{t}_k - \mathfrak{i}\mathfrak{t}_k^{(2)} \right) \cdot \binom{n}{k} \cdot \frac{2^{k(k+1)/2}}{2^{nk}},$$

where $it_k^{(2)}$ is the number of labeled tournaments of size k with two irreducible components.

$$(\mathfrak{it}_k) = 1, \quad 0, \ 2, \ 24, \ 544, \ 22320, \ \dots$$

 $(\mathfrak{it}_k^{(2)}) = 0, \ 2, \ 0, \ 16, \ 240, \ 6608, \ \dots$
 $(2\mathfrak{it}_k - \mathfrak{it}_k^{(2)}) = 2, \ -2, \ 4, \ 32, \ 848, \ 38032, \ \dots$

Khaydar Nurligareev (joint with Thierry Monteil)

Combinatorial classes: limits of applicability

1 Coefficients can be negative.

2 In certain cases, there is a decomposition

 $\mathcal{U} = \operatorname{SET}(\mathcal{V}),$

but we have no class $\ensuremath{\mathcal{W}}$ such that

 $\mathcal{U} = \mathrm{SEQ}(\mathcal{W}),$

and our theorem is not applicable (need of an "anti-SEQ" operator to create this class).

Khaydar Nurligareev (joint with Thierry Monteil)

2em] LIPN, University Paris 13

Correspondance between combinatorial classes and species

combinatorial classes		species of structures		
\mathcal{A} =	$\operatorname{SET}(\mathcal{B})$		\mathcal{A} =	$\mathcal{E}\circ\mathcal{B}$
\mathcal{A} =	$\mathrm{SEQ}(\mathcal{B})$		\mathcal{A} =	$\mathcal{L}\circ\mathcal{B}$
\mathcal{A} =	$\operatorname{CYC}(\mathcal{B})$	\Leftrightarrow	\mathcal{A} =	$\mathcal{CP}\circ\mathcal{B}$
\mathcal{A} =	$\operatorname{SET}_m(\mathcal{B})$		\mathcal{A} =	$\mathcal{E}_m \circ \mathcal{B}$
\mathcal{A} =	$\mathrm{SEQ}_m(\mathcal{B})$		\mathcal{A} =	$\mathcal{L}_m \circ \mathcal{B}$
\mathcal{A} =	$\mathrm{CYC}_m(\mathcal{B})$		\mathcal{A} =	$\mathcal{CP}_m \circ \mathcal{B}$

Khaydar Nurligareev (joint with Thierry Monteil)

Asymptotics in terms of species

Theorem

If \mathcal{A} , \mathcal{B} and $\mathcal{B}(m)$, $m \in \mathbb{N}$, are such (weighted) species that

A is gargantuan with positive total weights on [n], n ∈ N,
 one of the following conditions holds:

then

$$p_n(m) := \frac{\mathfrak{b}_n(m)}{\mathfrak{a}_n} \approx \sum_{k \ge m-1} \mathfrak{c}_k \cdot \binom{n}{k} \cdot \frac{\mathfrak{a}_{n-k}}{\mathfrak{a}_n}$$

In the case (a),
$$\mathcal{C} \equiv \mathcal{B}^{\{m-1\}} \Big((1 - \mathcal{L}^{(-1)}_+) \circ \mathcal{A}_+ \Big).$$

Khaydar Nurligareev (joint with Thierry Monteil)

Irreducibility of combinatorial objects: asymptotic probability and interpretation

2em] LIPN, University Paris 13

Erdős-Rényi model G(n, p)

Consider a random labeled graph G:

- **1** $p \in (0,1)$ is the probability of edge presence;
- **2** q = 1 p is the probability of edge absence.

Weight of a graph:

$$w(G) = \rho^{|E(G)|},$$

where $\rho = \frac{p}{q} = q^{-1} - 1$.

<u>Reason</u>: if G_1 and G_2 are disjoint, then

$$w(G_1 \sqcup G_2) = w(G_1) \cdot w(G_2).$$

Khaydar Nurligareev (joint with Thierry Monteil)

Asymptotics of the Erdős-Rényi model

Theorem

The probability $p_n(m)$ that a random graph with n vertices has exactly m connected components satisfies

$$p_n(m) \approx \sum_{k \ge 0} P_k^{\{m\}}(\rho) \cdot {n \choose k} \cdot \frac{q^{nk}}{q^{k(k+1)/2}},$$

where

$$P_k^{\{m\}}(\rho) = \sum_{|V(G)|=k} (-1)^{\pi_0(G)-m} {\pi_0(G) \choose m-1} w(G).$$

Khaydar Nurligareev (joint with Thierry Monteil)

Asymptotics of the Erdős-Rényi model, continued

Theorem

The probability p_n that a random graph with n vertices is connected satisfies

$$p_n \approx 1 - \sum_{k \ge 1} P_k(\rho) \cdot {n \choose k} \cdot \frac{q^{nk}}{q^{k(k+1)/2}},$$

where

$$P_k(\rho) = \sum_{|V(G)|=k} (-1)^{\pi_0(G)-1} w(G).$$

Khaydar Nurligareev (joint with Thierry Monteil)

Species

Meaning of the coefficients

Khaydar Nurligareev (joint with Thierry Monteil)

2em] LIPN, University Paris 13

Species

Meaning of the coefficients

Khaydar Nurligareev (joint with Thierry Monteil)

2em] LIPN, University Paris 13

Probability of a directed graph to be strongly connected

<u>Question</u>. What is the probability r_n that a random directed graph with n vertices is strongly connected, as $n \to \infty$?

Khaydar Nurligareev (joint with Thierry Monteil)

2em] LIPN, University Paris 13

Probability of a directed graph to be strongly connected

<u>Question</u>. What is the probability r_n that a random directed graph with n vertices is strongly connected, as $n \to \infty$?

Wright, 1970:
$$r_n = \sum_{k=0}^{r-1} \frac{\omega_k(n)}{2^{kn}} \cdot \frac{n!}{(n+[k/2]-k)!} + O\left(\frac{n^r}{2^{rn}}\right),$$

where

$$\omega_k(n) = \sum_{\nu=0}^{\lfloor k/2 \rfloor} \gamma_{\nu} \xi_{k-2\nu} \frac{2^{k(k+1)/2}}{2^{\nu(k-\nu)}} (n + \lfloor k/2 \rfloor - k) \dots (n + \nu + 1 - k),$$

$$\gamma_0 = 1, \ \gamma_\nu = \sum_{s=0}^{\nu-1} \frac{\gamma_s \eta_{n-s}}{(\nu-s)!}, \ \sum_{\nu=0}^{\infty} \xi_\nu z^\nu = \left(1 - \sum_{n=0}^{\infty} \frac{\eta_n}{2^{n(n-1)/2}} \frac{z^n}{n!}\right)^2,$$
$$\eta_1 = 1, \quad \eta_n = 2^{n(n-1)} - \sum_{t=1}^{n-1} \binom{n}{t} 2^{(n-1)(n-t)} \eta_t.$$

Khaydar Nurligareev (joint with Thierry Monteil)

2em] LIPN, University Paris 13

~

Towards the asymptotics

1 Dovgal and de Panafieu, 2019:

$$SD(z) = -\log\left(G(z)\odot\frac{1}{G(z)}\right)$$

2 In terms of tournaments:

$$SD(z) = -\log\left(1 - T(z) \odot IT(z)\right)$$

3 Semi-strong directed graphs:

$$SSD(z) = \frac{1}{1 - T(z) \odot IT(z)}$$

Khaydar Nurligareev (joint with Thierry Monteil)

Asymptotics for strongly connected graphs

Theorem (with Sergey Dovgal)

The probability r_n that a random directed graph with n vertices is strongly connected satisfies

$$r_n \approx \sum_{k \ge 0} \mathfrak{sso}_k \binom{n}{k} \frac{2^{k(k+1)}}{2^{2nk}} \frac{\mathfrak{i}\mathfrak{t}_{n-k}}{\mathfrak{t}_{n-k}},$$

where \mathfrak{sso}_k , \mathfrak{t}_k and \mathfrak{it}_k are the numbers of semi-strong digraphs, tournaments and irreducible tournaments of size k, respectively.

Reasoning:
$$\log(1-y) \xrightarrow{\partial} -\frac{1}{1-y}$$
.

Khaydar Nurligareev (joint with Thierry Monteil)

2em] LIPN, University Paris 13

Asymptotics for strongly connected graphs, continued

Theorem (with Sergey Dovgal)

The probability r_n that a random directed graph with n vertices is strongly connected satisfies

$$r_n \approx 1 - \sum_{k \ge 1} \frac{R_k(n)}{2^{nk}},$$

where

$$R_k(n) = 2^{k(k+1)/2} \sum_{\nu=0}^{\lfloor k/2 \rfloor} {n \choose \nu, k-2\nu} \frac{\mathfrak{ssd}_{\nu}\beta_{k-2\nu}}{2^{\nu(k-\nu)}}.$$

r / / 01

- **550**_k is the number of semi-strong digraphs of size k,
- it_k is the number of irreducible tournaments of size k,
- $it_k^{(2)}$ is the number of tournaments of size k with two irreducible parts.

Khaydar Nurligareev (joint with Thierry Monteil)

Possible directions for generalization

Different types of irreducibility. For instance, "noncrossing compositions":

$$A(z)=1+I(zA(z)).$$

- **2** Classes of different rate of convergence (forests, polynomials).
- **3** Unlabeled structures.

 $\underline{Question.}$ Can we obtain any combinatorial interpretation for the above cases?

Khaydar Nurligareev (joint with Thierry Monteil)

2em] LIPN, University Paris 13

For the asymptotic expansion for connected graphs,

$$p_n = 1 - \binom{n}{1} \frac{2it_1}{2^n} - \binom{n}{2} \frac{2^3it_2}{2^{2n}} - \binom{n}{3} \frac{2^6it_3}{2^{3n}} - \dots,$$

the inclusion-exclusion principle shows the origin of terms:

Khaydar Nurligareev (joint with Thierry Monteil)

2em] LIPN, University Paris 13

For the asymptotic expansion for connected graphs,

$$p_n = 1 - \binom{n}{1} \frac{2it_1}{2^n} - \binom{n}{2} \frac{2^3it_2}{2^{2n}} - \binom{n}{3} \frac{2^6it_3}{2^{3n}} - \dots,$$

the inclusion-exclusion principle shows the origin of terms:

Khaydar Nurligareev (joint with Thierry Monteil)

em] LIPN, University Paris 13

For the asymptotic expansion for connected graphs,

$$p_n = 1 - \binom{n}{1} \frac{2it_1}{2^n} - \binom{n}{2} \frac{2^3it_2}{2^{2n}} - \binom{n}{3} \frac{2^6it_3}{2^{3n}} - \dots,$$

the inclusion-exclusion principle shows the origin of terms:

Khaydar Nurligareev (joint with Thierry Monteil)

For the asymptotic expansion for connected graphs,

$$p_n = 1 - \binom{n}{1} \frac{2\mathfrak{i}\mathfrak{t}_1}{2^n} - \binom{n}{2} \frac{2^3\mathfrak{i}\mathfrak{t}_2}{2^{2n}} - \binom{n}{3} \frac{2^6\mathfrak{i}\mathfrak{t}_3}{2^{3n}} - \dots,$$

the inclusion-exclusion principle shows the origin of terms:

Question. Can we create a rejection algorithm for producing connected graphs randomly, so that we reject with a probability of a smaller order?

Khaydar Nurligareev (joint with Thierry Monteil)

2em] LIPN, University Paris 13

Erdős-Rényi model, continued

The form of the asymptotic expansion is

$$p_n = 1 - \binom{n}{1} \frac{q^n P_1(\rho)}{q} - \binom{n}{2} \frac{q^{2n} P_2(\rho)}{q^2} - \binom{n}{3} \frac{q^{3n} P_3(\rho)}{q^3} - \dots$$

When the parameter p approaches the threshold for connectedness,

$$p=\frac{(1+\varepsilon)\ln n}{n},$$

all terms become equivalent:

$$P_k(\rho) \binom{n}{k} \frac{q^{nk}}{q^{k(k+1)/2}} \sim n^{-\varepsilon k}.$$

 $\underline{Question.}$ Can we build a fruitful theory of phase transition for asymptotic expansions?

Khaydar Nurligareev (joint with Thierry Monteil)

Irreducibility of combinatorial objects: asymptotic probability and interpretation

2em] LIPN, University Paris 13

Species

Many thanks to all listeners

Thank you for your attention!

Khaydar Nurligareev (joint with Thierry Monteil)

2em] LIPN. University Paris 13

Bender E.A.

An asymptotic expansion for some coefficients of some formal power series

J. Lond. Math. Soc., Ser. 9 (1975), pp. 451-458.

Gilbert E.N.

Random graphs

Ann. Math. Stat., Vol. 30, N. 4 (1959), pp. 1141-1144.

Monteil T., Nurligareev K.

Asymptotics for connected graphs and irreducible tournaments *Extended Abstracts EuroComb 2021*, pp. 823-828. Springer, 2021.

Literature II

Nurligareev K.

Irreducibility of combinatorial objects: asymptotic probability and interpretation

Theses, Université Sorbonne Paris Nord, Oct. 2022.

Wright E.M.

Asymptotic relations between enumerative functions in graph theory

Proc. Lond. Math. Soc., Vol. s3-20, Issue 3 (1970), pp. 558-572.

Wright E.M.

The Number of Strong Digraphs Bull. Lond. Math. Soc., Ser. 3 (1971), pp. 348-350.

Khaydar Nurligareev (joint with Thierry Monteil)

To obtain a square-tiled surface (determined by $(h, v) \in S_n^2$):

1 take *n* labeled squares,

Khaydar Nurligareev (joint with Thierry Monteil)

To obtain a square-tiled surface (determined by $(h, v) \in S_n^2$):

- 1 take *n* labeled squares,
- **2** identify horizontal sides (corresponds to $h \in S_n$),

Khaydar Nurligareev (joint with Thierry Monteil)

To obtain a square-tiled surface (determined by $(h, v) \in S_n^2$):

- 1 take *n* labeled squares,
- **2** identify horizontal sides (corresponds to $h \in S_n$),
- **3** identify vertical sides (corresponds to $v \in S_n$),

Khaydar Nurligareev (joint with Thierry Monteil)

To obtain a square-tiled surface (determined by $(h, v) \in S_n^2$):

- 1 take *n* labeled squares,
- **2** identify horizontal sides (corresponds to $h \in S_n$),
- **3** identify vertical sides (corresponds to $v \in S_n$),
- 4 glue together identified sides.

h = (13)(2) v = (1)(23) $d \begin{bmatrix} a \\ 1 \\ b \\ e \end{bmatrix} = \begin{pmatrix} a \\ 3 \\ 2 \\ a \\ b \end{pmatrix} e$

Khaydar Nurligareev (joint with Thierry Monteil)

To obtain a square-tiled surface (determined by $(h, v) \in S_n^2$):

- 1 take *n* labeled squares,
- **2** identify horizontal sides (corresponds to $h \in S_n$),
- **3** identify vertical sides (corresponds to $v \in S_n$),
- glue together identified sides.

Transitive action \leftrightarrow connectedness of the square-tiled surface.

Khaydar Nurligareev (joint with Thierry Monteil)

Indecomposable permutations

A permutation $\sigma \in S_n$ is

1 decomposable, if there is an index p < n such that $\sigma(\{1, \ldots, p\}) = \{1, \ldots, p\}$.

2 indecomposable otherwise.

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 5 & 4 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 1 & 2 \end{pmatrix}$$

decomposable (p = 3) indecomposable

<u>Observation</u>. Every permutation can be uniquely decomposed into a sequence of indecomposable permutations.

Khaydar Nurligareev (joint with Thierry Monteil)

Asymptotics for connected square-tiled surfaces

Theorem (reformulation of the results of Dixon and Cori)

The probability p_n that a random square-tiled surface of size n is connected satisfies

$$p_n \approx 1 - \sum_{k=1} \frac{\mathfrak{i} \mathfrak{p}_k}{(n)_k},$$

where $(n)_k = n(n-1)...(n-k+1)$ are the falling factorials and ip_k is the number of indecomposable permutations of size k.

$$(\mathfrak{ip}_k) = 1, 1, 3, 13, 71, 461, 3447, 29093, \ldots$$

Khaydar Nurligareev (joint with Thierry Monteil)

Pairs of linear orders

A pair of linear orders (\prec_1, \prec_2) of size *n* is

- **1** reducible, if there is a partition $\{1, \ldots, n\} = A \sqcup B$ such that $\forall a \in A, b \in B$: $a \prec_1 b$ and $a \prec_2 b$.
- 2 irreducible otherwise.

 $\begin{pmatrix} 3 & \prec_1 & 1 & \prec_1 & 4 & \prec_1 & 2 \\ 4 & \prec_2 & 3 & \prec_2 & 1 & \checkmark_2 & 2 \end{pmatrix} \qquad \begin{pmatrix} 3 & \prec_1 & 1 & \prec_1 & 4 & \prec_1 & 2 \\ 4 & \prec_2 & 1 & \prec_2 & 2 & \prec_2 & 3 \end{pmatrix}$ reducible $(A = \{1, 3, 4\}, B = \{2\})$ irreducible

Observation.

#{irreducible pairs of linear orders of size n} = $n! \cdot ip_n$.

Correspondence of classes

$$\mathcal{U} = \{$$
square-tiled surfaces $\}$

= {pairs of linear orders of the same size}

2
$$\mathcal{V} = \{\text{connected square-tiled surfaces}\}$$

3 $W = \{$ irreducible pairs of linear orders of the same size $\}$

$$p_n = \mathfrak{w}_k \cdot \binom{n}{k} \cdot \frac{\mathfrak{u}_{n-k}}{\mathfrak{u}_n} = k! \cdot \mathfrak{i}\mathfrak{p}_k \cdot \binom{n}{k} \cdot \frac{((n-k)!)^2}{(n!)^2} = \frac{\mathfrak{i}\mathfrak{p}_k}{(n)_k}$$

Khaydar Nurligareev (joint with Thierry Monteil)

0

Probability of a permutation to be indecomposable

Theorem

The probability q_n that a random permutation of size n is indecomposable, satisfies

$$q_n \approx 1 - \sum_{k \ge 1} \frac{2\mathfrak{i}\mathfrak{p}_k - \mathfrak{i}\mathfrak{p}_k^{(2)}}{(n)_k},$$

where $\mathfrak{i}\mathfrak{p}_k^{(2)}$ is the number of permutations of size k with two indecomposable parts.

$$(\mathfrak{ip}_k) = 1, 1, 3, 13, 71, 461, 3447, \dots$$

 $(\mathfrak{ip}_k^{(2)}) = 0, 1, 2, 7, 32, 177, 1142, \dots$
 $(2\mathfrak{ip}_k - \mathfrak{ip}_k^{(2)}) = 2, 1, 4, 19, 110, 745, 5752, \dots$

Khaydar Nurligareev (joint with Thierry Monteil)

Combinatorial map model

- Take several labeled polygons of total perimeter N = 2n (1-gons and 2-gons are allowed).
- Identify their sides randomly to obtain a surface.
- Each surface is determined by a pair $(\phi, \alpha) \in S_N^2$, where α is a perfect matching.

Khaydar Nurligareev (joint with Thierry Monteil)

Combinatorial map model asymptotics

Theorem

The probability p_n that a random surface within the combinatorial map model is connected satisfies

$$p_n \approx 1 - \sum_{k \ge 1} \operatorname{im}_{2k} \cdot \frac{(2(n-k)-1)!!}{(2n-1)!!},$$

where (im_{2k}) counts indecomposable perfect matchings.

 $(\mathfrak{im}_{2k}) = 1, 2, 10, 74, 706, 8162, 110410, 1708394, \ldots$

Khaydar Nurligareev (joint with Thierry Monteil)