Asymptotics for graphically divergent series

Khaydar Nurligareev (joint with Sergey Dovgal)

LIPN, Sorbonne Paris Nord

March 14, 2023

Khaydar Nurligareev (joint with Sergey Dovgal) Asymptotics for graphically divergent series

<u>Question</u>. What is the probability r_n that a random directed graph with n vertices is strongly connected, as $n \to \infty$?

<u>Question</u>. What is the probability r_n that a random directed graph with n vertices is strongly connected, as $n \to \infty$?

Wright, 1971:
$$r_n = \sum_{k=0}^{r-1} \frac{\omega_k(n)}{2^{kn}} \cdot \frac{n!}{(n+\lfloor k/2 \rfloor - k)!} + O\left(\frac{n^r}{2^{rn}}\right),$$

where

$$\omega_k(n) = \sum_{\nu=0}^{\lfloor k/2 \rfloor} \gamma_{\nu} \xi_{k-2\nu} \frac{2^{k(k+1)/2}}{2^{\nu(k-\nu)}} (n+\lfloor k/2 \rfloor - k) \dots (n+\nu+1-k),$$

$$\gamma_{0} = 1, \ \gamma_{\nu} = \sum_{s=0}^{\nu-1} \frac{\gamma_{s} \eta_{\nu-s}}{(\nu-s)!}, \ \sum_{\nu=0}^{\infty} \xi_{\nu} z^{\nu} = \left(1 - \sum_{s=0}^{\infty} \frac{\eta_{s}}{2^{s(s-1)/2}} \frac{z^{s}}{s!}\right)^{2},$$
$$\eta_{1} = 1, \ \eta_{s} = 2^{s(s-1)} - \sum_{t=1}^{s-1} \binom{s}{t} 2^{(s-1)(s-t)} \eta_{t}.$$

Khaydar Nurligareev (joint with Sergey Dovgal)

.

Asymptotics for graphically divergent series

2

<u>Question</u>. What is the probability r_n that a random directed graph with n vertices is strongly connected, as $n \to \infty$?

Wright, 1971:
$$r_n = \sum_{k=0}^{r-1} \frac{\omega_k(n)}{2^{kn}} \cdot \frac{n!}{(n+\lfloor k/2 \rfloor - k)!} + O\left(\frac{n^r}{2^{rn}}\right),$$

where

$$\omega_k(n) = \sum_{\nu=0}^{\lfloor k/2 \rfloor} \gamma_{\nu} \xi_{k-2\nu} \frac{2^{k(k+1)/2}}{2^{\nu(k-\nu)}} (n + \lfloor k/2 \rfloor - k) \dots (n + \nu + 1 - k),$$

$$\gamma_{0} = 1, \ \gamma_{\nu} = \sum_{s=0}^{\nu-1} \frac{\gamma_{s} \eta_{\nu-s}}{(\nu-s)!}, \ \sum_{\nu=0}^{\infty} \xi_{\nu} z^{\nu} = \left(1 - \sum_{s=0}^{\infty} \frac{\eta_{s}}{2^{s(s-1)/2}} \frac{z^{s}}{s!}\right)^{2},$$
$$\eta_{1} = 1, \ \eta_{s} = 2^{s(s-1)} - \sum_{t=1}^{s-1} \binom{s}{t} 2^{(s-1)(s-t)} \eta_{t}.$$

Khaydar Nurligareev (joint with Sergey Dovgal)

.

Asymptotics for graphically divergent series

2

Summary. The probability r_n has an expansion

$$r_n = \sum_{m=0}^{r-1} \frac{1}{2^{mn}} \sum_{\ell=0}^{\ell_m} n^{\ell} \mathbf{a}_{m,\ell}^{\circ} + O\left(\frac{n^r}{2^{rn}}\right),$$

where $n^{\underline{\ell}} = n(n-1) \dots (n-\ell+1)$ are falling factorials.

<u>Observation</u>. The array of coefficients $(a_{m,\ell}^{\circ})_{m,\ell=0}^{\infty}$ can be assembled into a bivariate generation function.

<u>Question</u>. Can we express this bivariate generating function explicitly in terms of other known generating functions?

Graphically divergent series

• $\alpha \in \mathbb{R}_{>1}$ and $\beta \in \mathbb{Z}_{>0}$, • $\mathfrak{G}^{\beta}_{\alpha}$ is the set of graphically divergent series, i.e.

$$A(z)=\sum_{n=0}^{\infty}a_n\frac{z^n}{n!}$$

such that

$$a_n \approx \alpha^{\beta\binom{n}{2}} \left[\sum_{m \ge M} \frac{1}{\alpha^{mn}} \sum_{\ell=0}^{\infty} n^{\ell} a_{m,\ell}^{\circ} \right],$$

where

Khaydar Nurligareev (joint with Sergey Dovgal) Asymptotics for graphically divergent series

Coefficient generating function

If $A \in \mathfrak{G}^{\beta}_{\alpha}$ with

$$\mathbf{a}_{n} pprox lpha^{eta \binom{n}{2}} \left[\sum_{m \geqslant M} \frac{1}{lpha^{mn}} \sum_{\ell=0}^{\infty} \mathbf{n}^{\ell} \mathbf{a}_{m,\ell}^{\circ}
ight],$$

then the associated **coefficient generating function** of type (α, β) is

$$\mathcal{A}^{\circ}(z,w) = \sum_{m=M}^{\infty} \sum_{\ell=0}^{\infty} a_{m,\ell}^{\circ} \frac{z^m}{\alpha^{\frac{1}{\beta}\binom{m}{2}}} w^{\ell}.$$

• $\mathfrak{C}^{\beta}_{\alpha}$ is the set of corresponding coefficient generating functions. • $\mathcal{Q}^{\beta}_{\alpha} \colon \mathfrak{G}^{\beta}_{\alpha} \to \mathfrak{C}^{\beta}_{\alpha}$ is the mapping of the form

$$\mathcal{Q}^{\beta}_{\alpha}A = A^{\circ}.$$

Khaydar Nurligareev (joint with Sergey Dovgal)

Asymptotics for graphically divergent series

First examples

Labeled graphs:

$$G(z) = \sum_{n=0}^{\infty} 2^{\binom{n}{2}} \frac{z^n}{n!}, \qquad \mathfrak{g}_n = 2^{\binom{n}{2}}.$$

Its coefficient generating function of type (2,1) is

$$G^{\circ}(z,w)=(\mathcal{Q}_2^1G)(z,w)=1$$
.

First examples

Labeled graphs:

$$G(z) = \sum_{n=0}^{\infty} 2^{\binom{n}{2}} \frac{z^n}{n!}, \qquad \mathfrak{g}_n = 2^{\binom{n}{2}}.$$

Its coefficient generating function of type (2,1) is

$$G^{\circ}(z,w)=(\mathcal{Q}_2^1G)(z,w)=1.$$

Labeled directed graphs:

$$D(z) = \sum_{n=0}^{\infty} 2^{2\binom{n}{2}} \frac{z^n}{n!}, \qquad \mathfrak{d}_n = 2^{2\binom{n}{2}}.$$

Its coefficient generating function of type (2,2) is

$$D^\circ(z,w)=(\mathcal{Q}_2^2D)(z,w)=1$$
.

Khaydar Nurligareev (joint with Sergey Dovgal)

Asymptotics for graphically divergent series

Properties, part I

1 The set $\mathfrak{G}^{\beta}_{\alpha}$ forms a ring with

$$(\mathcal{Q}^{\beta}_{\alpha}(A+B))(z,w) = (\mathcal{Q}^{\beta}_{\alpha}A)(z,w) + (\mathcal{Q}^{\beta}_{\alpha}B)(z,w)$$

and

$$\begin{aligned} \big(\mathcal{Q}^{\beta}_{\alpha}(A \cdot B)\big)(z,w) =& A\big(\alpha^{\frac{\beta+1}{2}} z^{\beta}w\big) \cdot \big(\mathcal{Q}^{\beta}_{\alpha}B\big)(z,w) + \\ & B\big(\alpha^{\frac{\beta+1}{2}} z^{\beta}w\big) \cdot \big(\mathcal{Q}^{\beta}_{\alpha}A\big)(z,w) \,. \end{aligned}$$

2 Derivation:

$$\left(\mathcal{Q}_{\alpha}^{\beta}A'\right)(z,w) = \alpha^{-\frac{\beta+1}{2}}z^{-\beta}\left(\left(\mathcal{Q}_{\alpha}^{\beta}A\right)(z,w) + \frac{\partial}{\partial w}\left(\mathcal{Q}_{\alpha}^{\beta}A\right)(z,w)\right).$$

Khaydar Nurligareev (joint with Sergey Dovgal) Asymptotics for graphically divergent series orbonne Paris Nord

Properties, part II

3 Composition (interpretation of Bender's theorem): if

• F is analytic in a neighbourhood of the origin,

•
$$a_0 = 0$$
,
• $H(z) = \frac{\partial}{\partial x} F(x) \Big|_{x = A(z)}$,

then $F \circ A \in \mathfrak{G}^{\beta}_{\alpha}$ and

$$(\mathcal{Q}^{\beta}_{\alpha}(F \circ A))(z, w) = H(\alpha^{\frac{\beta+1}{2}}z^{\beta}w) \cdot (\mathcal{Q}^{\beta}_{\alpha}A)(z, w).$$

4 Powers: if
$$m \in \mathbb{Z}_{\geq 0}$$
 (or $m \in \mathbb{Z}$ and $a_0 = 1$), then
 $\left(\mathcal{Q}^{\beta}_{\alpha}A^{m}\right)(z,w) = m \cdot A^{m-1}\left(\alpha^{\frac{\beta+1}{2}}z^{\beta}w\right) \cdot \left(\mathcal{Q}^{\beta}_{\alpha}A\right)(z,w).$

Khaydar Nurligareev (joint with Sergey Dovgal) Asymptotics for graphically divergent series IPN, Sorbonne Paris Nord

Connected graphs

Theorem (Monteil, N., 2021)

For every $r \ge 1$, the probability p_n that a random labeled graph of size n is connected satisfies

$$p_n = 1 - \sum_{k=1}^{r-1} \mathfrak{i}\mathfrak{t}_k \cdot \binom{n}{k} \cdot \frac{2^{k(k+1)/2}}{2^{nk}} + O\left(\frac{n^r}{2^{nr}}\right),$$

where \mathfrak{it}_k is the number of irreducible labeled tournaments of size k.

- A **tournament** is an orientation of a complete graph.
- A tournament is **irreducible** iff it is strongly connected.

Connected graphs

Theorem (Monteil, N., 2021)

For every $r \ge 1$, the probability p_n that a random labeled graph of size n is connected satisfies

$$p_n = 1 - \sum_{k=1}^{r-1} \mathfrak{i}\mathfrak{t}_k \cdot \binom{n}{k} \cdot \frac{2^{k(k+1)/2}}{2^{nk}} + O\left(\frac{n^r}{2^{nr}}\right),$$

where \mathfrak{it}_k is the number of irreducible labeled tournaments of size k.

Theorem

The coefficient generating function of type (2,1) of connected graphs satisfy

$$\mathsf{CG}^{\circ}(z,w) = 1 - \mathsf{IT}(2zw).$$

Khaydar Nurligareev (joint with Sergey Dovgal)

Asymptotics for graphically divergent series

Irreducible tournaments

Theorem (Monteil, N., 2021)

For every $r \ge 1$, the probability q_n that a random irreducible tournament of size n is connected satisfies

$$q_n = 1 - \sum_{k=1}^{r-1} \left(2\mathfrak{i}\mathfrak{t}_k - \mathfrak{i}\mathfrak{t}_k^{(2)} \right) \cdot \binom{n}{k} \cdot \frac{2^{k(k+1)/2}}{2^{nk}} + O\left(\frac{n^r}{2^{nr}}\right),$$

where $\mathfrak{it}_{k}^{(2)}$ is the number of labeled tournaments of size k with exactly two irreducible components.

Theorem

The coefficient generating function of type (2,1) of irreducible tournaments satisfy

$$\mathsf{IT}^{\circ}(z,w) = (1 - \mathsf{IT}(2zw))^2.$$

Khaydar Nurligareev (joint with Sergey Dovgal)

Asymptotics for graphically divergent series

Fixed number of components

Let $m \in \mathbb{Z}_{\geq 1}$.

Theorem

The coefficient generating function of type (2,1) of graphs with m connected components satisfy

$$(\mathsf{CG}^{\{m\}})^{\circ}(z,w) = \mathsf{CG}^{\{m-1\}}(2zw) \cdot (1 - \mathsf{IT}(2zw)).$$

Fixed number of components

Let $m \in \mathbb{Z}_{\geq 1}$.

Theorem

The coefficient generating function of type (2, 1) of graphs with *m* connected components satisfy

$$\left(\mathsf{CG}^{\{m\}}\right)^{\circ}(z,w) = \mathsf{CG}^{\{m-1\}}(2zw) \cdot \left(1 - \mathsf{IT}(2zw)\right).$$

Theorem

The coefficient generating function of type (2, 1) of tournaments with m irreducible parts satisfy

$$\left(\mathsf{IT}^{(m)}\right)^{\circ}(z,w) = m \cdot \mathsf{IT}^{(m-1)}(2zw) \cdot \left(1 - \mathsf{IT}(2zw)\right)^2.$$

Transitions, part I

Theorem (Dovgal, de Panafieu, 2019)

The exponential generating function of strongly connected digraphs satisfies

$$\mathsf{SCD}(z) = -\log\left({\mathit{G}(z) \odot rac{1}{{\mathit{G}(z)}}}
ight) \,.$$

Hadamard product:

$$\left(\sum_{n=0}^{\infty} a_n \frac{z^n}{n!}\right) \odot \left(\sum_{n=0}^{\infty} b_n \frac{z^n}{n!}\right) = \left(\sum_{n=0}^{\infty} a_n b_n \frac{z^n}{n!}\right)$$

Hadamard product (with G(z)) changes the rate of convergence (and hence, the type of coefficient generating function is changed too).

Transitions, part I

Theorem (Dovgal, de Panafieu, 2019)

The exponential generating function of strongly connected digraphs satisfies

$$\mathsf{SCD}(z) = -\log\left({\mathit{G}(z) \odot rac{1}{{\mathit{G}(z)}}}
ight)$$
 .

 $\blacksquare \ {\rm If} \ \beta>1, \ {\rm then}$

$$\Delta_{\alpha} \colon \mathfrak{G}_{\alpha}^{\beta} \to \mathfrak{G}_{\alpha}^{\beta-1}$$

is defined by

$$\Delta_{\alpha}\left(\sum_{n=0}^{\infty}f_{n}\frac{z^{n}}{n!}\right)=\sum_{n=0}^{\infty}\frac{f_{n}}{\alpha\binom{n}{2}}\frac{z^{n}}{n!}$$

•
$$F(z) \odot G(z) = \Delta_2^{-1} F(z)$$
.

Khaydar Nurligareev (joint with Sergey Dovgal) Asymptotics for graphically divergent series PN, Sorbonne Paris Nord

Transitions, part II

• If $\alpha \in \mathbb{R}_{>1}$ and $\beta_1, \beta_2 \in \mathbb{Z}_{>0}$, then

$$\Phi_{\alpha}^{\beta_1,\beta_2} \colon \mathfrak{C}_{\alpha}^{\beta_1} \to \mathfrak{C}_{\alpha}^{\beta_2}$$

is defined as

$$\Phi_{\alpha}^{\beta_1,\beta_2}\left(\sum_{m=M}^{\infty}\sum_{\ell=0}^{\infty}a_{m,\ell}^{\circ}\frac{z^m}{\alpha^{\frac{1}{\beta_1}\binom{m}{2}}}w^{\ell}\right)=\sum_{m=M}^{\infty}\sum_{\ell=0}^{\infty}a_{m,\ell}^{\circ}\frac{z^m}{\alpha^{\frac{1}{\beta_2}\binom{m}{2}}}w^{\ell}.$$

The following diagram is commutative:

$$\begin{array}{ccc} \mathfrak{G}_{\alpha}^{\beta_{1}} & \xrightarrow{\mathcal{Q}_{\alpha}^{\beta_{1}}} & \mathfrak{C}_{\alpha}^{\beta_{1}} \\ & & & \downarrow \Phi_{\alpha}^{\beta_{1},\beta_{2}} \\ & & & \downarrow \Phi_{\alpha}^{\beta_{1},\beta_{2}} \\ & \mathfrak{G}_{\alpha}^{\beta_{2}} & \xrightarrow{\mathcal{Q}_{\alpha}^{\beta_{2}}} & \mathfrak{C}_{\alpha}^{\beta_{2}} \end{array}$$

Khaydar Nurligareev (joint with Sergey Dovgal)

Asymptotics for graphically divergent series

Strongly connected directed graphs, part I

Theorem

The coefficient generating function of type (2,2) of strongly connected digraphs satisfies

$$SCD^{\circ}(z, w) = SSD(2^{3/2}z^2w) \cdot \Phi_2^{1,2}(1 - IT(2zw))^2$$
.

where SSD(z) is the exponential generating function of semi-strong digraphs (a semi-strong digraph is a disjoint union of strongly connected digraphs).

Key ideas (Dovgal, de Panafieu, 2019; Monteil, N., 2021):
SCD(z) =
$$-\log\left(G(z) \odot \frac{1}{G(z)}\right) = \log\frac{1}{1 - \Delta_2^{-1}IT(z)}$$
,
SSD(z) = $\left(G(z) \odot \frac{1}{G(z)}\right)^{-1} = \frac{1}{1 - IT(z) \odot G(z)}$.

14/1

Khaydar Nurligareev (joint with Sergey Dovgal)

Asymptotics for graphically divergent series

Strongly connected directed graphs, part II

Corollary

For every $r \ge 1$, the probability r_n that a random labeled digraph of size n is strongly connected satisfies

$$r_n = \sum_{m=0}^{r-1} \frac{1}{2^{nm}} \sum_{\ell \in \lceil m/2 \rceil}^m n^{\ell} \mathfrak{scd}_{m,\ell}^\circ + O\left(\frac{n^r}{2^{rn}}\right),$$

where

•
$$\mathfrak{scd}^{\circ}_{m,\ell} = 2^{m(m+1)/2+\ell(\ell-m)} \frac{\mathfrak{ssd}_{m-\ell}}{(m-\ell)!} \frac{\mathbb{I}_{m=2\ell} - 2\mathfrak{i}\mathfrak{t}_{2\ell-m} + \mathfrak{i}\mathfrak{t}_{2\ell-m}^{(2)}}{(2\ell-m)!},$$

- \mathfrak{ssd}_k is the number of semi-strong digraphs of size k,
- it_k is the number of irreducible tournaments of size k,
 it⁽²⁾_k is the number of tournaments of size k with two irreducible components.

Asymptotics of 2-SAT formulae

Let

$$S\ddot{A}T(z) = \sum_{n=0}^{\infty} \mathfrak{sat}_n \frac{z^n}{2^{n^2} n!}$$

be implication generating function of 2-SAT formulae.

Theorem

The coefficient generating function of type (2,1) of 2-SAT formulae satisfies

$$(\mathcal{Q}_2^1 S \ddot{\mathsf{A}} \mathsf{T})(z, w) = \frac{S \ddot{\mathsf{A}} \mathsf{T}(2zw)}{\mathsf{G}(2zw)} = S \ddot{\mathsf{A}} \mathsf{T}(2zw) (1 - \mathsf{I} \mathsf{T}(2zw)).$$

Khaydar Nurligareev (joint with Sergey Dovgal)

Asymptotics for graphically divergent series

16/1

IPN, Sorbonne Paris Nord

Asymptotics of contradictory components

Theorem

The coefficient generating function of type (2,4) of contradictory strongly connected implication digraphs satisfy

$$CSC^{\circ}(z,w) = \exp\left(\frac{1}{2}SCD(2^{7/2}z^4w) - CSC(2^{5/2}z^4w)\right) + \Phi_2^{2,4}(1 - IT(2^{5/2}z^2zw)).$$

Key ideas (Dovgal, de Panafieu, Ravelomanana, 2021):

•
$$S\ddot{A}T(z) = G(z) \cdot \Delta_2^2 \left(G(z) \odot \frac{1}{G(z)}\right)^{1/2}$$
,
• $CSC(z) = \frac{1}{2}SCD(2z) + \log\left(D(z) \odot \frac{D(z)}{G(2z)}\right)$.

Conclusion

- We have constructed a tool for manipulating coefficients of asymptotic expansions.
- **2** Transfers extend to graphic families with marked patterns: any family with a fixed number of components:
 - strongly connected components in digraphs, contradictory components in 2-sat,
 - source-like, sink-like, isolated components, …
 - any graphically divergent series with marking variables.
- **3** Bonus: combinatorial explanations of the expansion coefficients.

Thank you for your attention!

Literature I

De Panafieu É., Dovgal S. Symbolic method and directed graph enumeration Acta Math. Univ. Comenian. (N.S.), 88.3 (2019), pp. 989–996. issn: 0862-9544.

 De Panafieu É., Dovgal S., Ravelomanana V.
 Exact enumeration of satisfiable 2-SAT formulae 2021, arXiv: 2108.08067.
 Accepted in Combinatorial Theory, 2023.

Literature II

Monteil T., Nurligareev K.

Asymptotics for Connected Graphs and Irreducible Tournaments

Extended Abstracts EuroComb 2021, Springer, 2021, pp. 823–828.

Wright E.

The number of strong digraphs Bull. London Math. Soc., 3.3 (1971), pp. 348–350.