Irreducibility of combinatorial objects: asymptotic probability and interpretation

Khaydar Nurligareev

LIPN, University Paris 13

PhD defense

October 20, 2022

Graphs

Graphs

there are $\binom{n}{2}$ possible edges

(here, $n=6$ and $\binom{n}{2}=15$)

Graphs

there are $\binom{n}{2}$ possible edges
(here, $n=6$ and $\binom{n}{2}=15$)

Graphs

there are $\binom{n}{2}$ possible edges

(here, $n=6$ and $\binom{n}{2}=15$)

Graphs

there are $\binom{n}{2}$ possible edges

(here, $n=6$ and $\binom{n}{2}=15$)

Graphs

probability to pick this graph is $\frac{1}{2\binom{n}{2}}$

(uniform probability)

Graphs

every graph is a disjoint union (SET)

of connected graphs

Graphs

every graph is a disjoint union (SET)
of connected graphs

- $\mathfrak{g}_{n}=2\binom{n}{2}$: the number of labeled graphs with n vertices
- $\mathfrak{c g}_{n}$: the number of connected labeled graphs with n vertices

$$
\left(\mathfrak{c g}_{n}\right)_{n \geqslant 0}=1,1,4,38,728,26704,1866256, \ldots
$$

Probability of a graph to be connected

Question. What is the probability $p_{n}=\frac{\mathfrak{c g}_{n}}{\mathfrak{g}_{n}}$ that a random graph with n vertices is connected, as $n \rightarrow \infty$?

Probability of a graph to be connected

Question. What is the probability $p_{n}=\frac{\mathfrak{g g}_{n}}{\mathfrak{g}_{n}}$ that a random graph with n vertices is connected, as $n \rightarrow \infty$?
1 folklore:

$$
p_{n}=1+o(1)
$$

Probability of a graph to be connected

Question. What is the probability $p_{n}=\frac{\mathfrak{c g}_{n}}{\mathfrak{g}_{n}}$ that a random graph with n vertices is connected, as $n \rightarrow \infty$?
1 folklore:

$$
p_{n}=1+o(1)
$$

\int Gilbert, 1959:

$$
p_{n}=1-\frac{2 n}{2^{n}}+O\left(\frac{n^{2}}{2^{3 n / 2}}\right)
$$

Probability of a graph to be connected

Question. What is the probability $p_{n}=\frac{\mathfrak{c g}_{n}}{\mathfrak{g}_{n}}$ that a random graph with n vertices is connected, as $n \rightarrow \infty$?
1 folklore:

$$
p_{n}=1+o(1)
$$

[Gilbert, 1959:

$$
p_{n}=1-\frac{2 n}{2^{n}}+O\left(\frac{n^{2}}{2^{3 n / 2}}\right)
$$

3 Wright, 1970:

$$
p_{n}=1-\binom{n}{1} \frac{2}{2^{n}}-2\binom{n}{3} \frac{2}{}_{2^{3 n}}^{2^{3 n}}-24\binom{n}{4} \frac{2^{10}}{2^{4 n}}+O\left(\frac{n^{5}}{2^{5 n}}\right)
$$

Probability of a graph to be connected

Question. What is the probability $p_{n}=\frac{\mathfrak{c g}_{n}}{\mathfrak{g}_{n}}$ that a random graph with n vertices is connected, as $n \rightarrow \infty$?
1 folklore:

$$
p_{n}=1+o(1)
$$

2 Gilbert, 1959: $\quad p_{n}=1-\frac{2 n}{2^{n}}+O\left(\frac{n^{2}}{2^{3 n / 2}}\right)$
3 Wright, 1970:

$$
p_{n}=1-\binom{n}{1} \frac{2}{2^{n}}-2\binom{n}{3} \frac{2}{}_{2^{3 n}}^{2^{3 n}}-24\binom{n}{4} \frac{2^{10}}{2^{4 n}}+O\left(\frac{n^{5}}{2^{5 n}}\right)
$$

4 Can we see the structure? What is the interpretation?

Asymptotics for p_{n}

Theorem

For every $r \geqslant 1$, the probability p_{n} that a random labeled graph of size n is connected satisfies

$$
p_{n}=1-\sum_{k=1}^{r-1} i t_{k} \cdot\binom{n}{k} \cdot \frac{2^{k(k+1) / 2}}{2^{n k}}+O\left(\frac{n^{r}}{2^{n r}}\right),
$$

Asymptotics for p_{n}

Theorem

For every $r \geqslant 1$, the probability p_{n} that a random labeled graph of size n is connected satisfies

$$
p_{n}=1-\sum_{k=1}^{r-1} i t_{k} \cdot\binom{n}{k} \cdot \frac{2^{k(k+1) / 2}}{2^{n k}}+O\left(\frac{n^{r}}{2^{n r}}\right),
$$

where it $_{k}$ is the number of irreducible labeled tournaments of size k.

$$
\left(\mathfrak{i t}_{k}\right)=1,0,2,24,544,22320,1677488, \ldots
$$

Tournaments

A tournament is a complete directed graph.

The number of labeled tournaments with n vertices is

$$
\mathfrak{t}_{n}=2\binom{n}{2}
$$

Irreducible tournaments

A tournament is irreducible, if
$V=\{1,2,3,4,5,6\}$ for every partition of vertices $V=A \sqcup B$

11 there exist an edge from A to B,
2 there exist an edge from B to A.

Irreducible tournaments

A tournament is irreducible, if
$V=\{1,2,3,4,5,6\}$
for every partition of vertices $V=A \sqcup B$
11 there exist an edge from A to B,
2 there exist an edge from B to A.

Equivalently, a tournament is strongly connected: for each two vertices u and v

1 there is a path from u to v,
2 there is a path from v to u.

$$
\begin{aligned}
u & =4 \\
v & =6
\end{aligned}
$$

Exponential generating functions and Bender's theorem

EGF: $\quad G(z)=\sum_{n=0}^{\infty} \mathfrak{g}_{n} \frac{z^{n}}{n!}$

Exponential generating functions and Bender's theorem

$$
\begin{aligned}
& \text { EGF: } G(z)=\sum_{n=0}^{\infty} \mathfrak{g}_{n} \frac{z^{n}}{n!} \\
& C G(z)=\log G(z)
\end{aligned}
$$

Exponential generating functions and Bender's theorem

EGF: $\quad G(z)=\sum_{n=0}^{\infty} \mathfrak{g}_{n} \frac{z^{n}}{n!}$
$C G(z)=\log G(z)$

Bender, 1975:
1 . $A(z)=\sum_{n=1}^{\infty} a_{n} z^{n}, \quad a_{n} \neq 0$
$2 F(x, y)$ is analytic in $U(0 ; 0)$
$3 B(z)=\sum_{n=0}^{\infty} b_{n} z^{n}=F(z, A(z))$
$4 C(z)=\sum_{n=0}^{\infty} c_{n} z^{n}=\left[\frac{\partial F}{\partial y}(z, y)\right]_{y=A(z)}$
$5 \frac{a_{n-1}}{a_{n}} \rightarrow 0$, as $n \rightarrow \infty$
$6 \exists r \geqslant 1: \sum_{k=r}^{n-r}\left|a_{k} a_{n-k}\right|=O\left(a_{n-r}\right)$
Then $\quad b_{n}=\sum_{k=0}^{r-1} c_{k} \boldsymbol{a}_{n-k}+O\left(a_{n-r}\right)$.

Exponential generating functions and Bender's theorem

$$
\begin{aligned}
& \text { EGF: } G(z)=\sum_{n=0}^{\infty} \mathfrak{g}_{n} \frac{z^{n}}{n!} \\
& C G(z)=\log G(z)
\end{aligned}
$$

Bender, 1975:
$1 \quad A(z)=\sum_{n=1}^{\infty} a_{n} z^{n}, \quad a_{n} \neq 0$
$2 F(x, y)$ is analytic in $U(0 ; 0)$
$3 B(z)=\sum_{n=0}^{\infty} b_{n} z^{n}=F(z, A(z))$
$4 C(z)=\sum_{n=0}^{\infty} c_{n} z^{n}=\left[\frac{\partial F}{\partial y}(z, y)\right]_{y=A(z)}$

5 the sequence $\left(a_{n}\right)$ is gargantuan

Then $\quad b_{n}=\sum_{k=0}^{r-1} c_{k} \boldsymbol{a}_{n-k}+O\left(a_{n-r}\right)$.

Exponential generating functions and Bender's theorem

$$
\begin{aligned}
& \text { EGF: } G(z)=\sum_{n=0}^{\infty} \mathfrak{g}_{n} \frac{z^{n}}{n!} \\
& C G(z)=\log G(z)
\end{aligned}
$$

Bender, 1975:
1 . $A(z)=\sum_{n=1}^{\infty} a_{n} z^{n}, \quad a_{n} \neq 0$
$2 F(x, y)$ is analytic in $U(0 ; 0)$
$3 B(z)=\sum_{n=0}^{\infty} b_{n} z^{n}=F(z, A(z))$
$4 C(z)=\sum_{n=0}^{\infty} c_{n} z^{n}=\left[\frac{\partial F}{\partial y}(z, y)\right]_{y=A(z)}$

5 the sequence $\left(a_{n}\right)$ is gargantuan

Then $\quad b_{n} \approx \sum_{k \geqslant 0} c_{k} \boldsymbol{a}_{n-k}$.

Exponential generating functions and Bender's theorem

$$
\begin{aligned}
& \text { EGF: } G(z)=\sum_{n=0}^{\infty} \mathfrak{g}_{n} \frac{z^{n}}{n!} \\
& C G(z)=\log G(z) \\
& F(y)=\log (y) \\
& \frac{\partial F}{\partial y}=\frac{1}{y}
\end{aligned}
$$

Bender, 1975:
1 . $A(z)=\sum_{n=1}^{\infty} a_{n} z^{n}, \quad a_{n} \neq 0$
$2 F(x, y)$ is analytic in $U(0 ; 0)$
$3 B(z)=\sum_{n=0}^{\infty} b_{n} z^{n}=F(z, A(z))$
$4 C(z)=\sum_{n=0}^{\infty} c_{n} z^{n}=\left[\frac{\partial F}{\partial y}(z, y)\right]_{y=A(z)}$

5 the sequence $\left(a_{n}\right)$ is gargantuan

Then $\quad b_{n} \approx \sum_{k \geqslant 0} c_{k} \boldsymbol{a}_{n-k}$.

Exponential generating functions and Bender's theorem

$$
\begin{aligned}
& \text { EGF: } G(z)=\sum_{n=0}^{\infty} \mathfrak{g}_{n} \frac{z^{n}}{n!} \\
& C G(z)=\log G(z) \\
& F(y)=\log (y) \\
& \frac{\partial F}{\partial y}=\frac{1}{y} \\
& \frac{1}{1-y}=1+y+y^{2}+\ldots
\end{aligned}
$$

Bender, 1975:
1 . $A(z)=\sum_{n=1}^{\infty} a_{n} z^{n}, \quad a_{n} \neq 0$
$2 F(x, y)$ is analytic in $U(0 ; 0)$
$3 B(z)=\sum_{n=0}^{\infty} b_{n} z^{n}=F(z, A(z))$
$4 C(z)=\sum_{n=0}^{\infty} c_{n} z^{n}=\left[\frac{\partial F}{\partial y}(z, y)\right]_{y=A(z)}$

5 the sequence $\left(a_{n}\right)$ is gargantuan

$$
\frac{\mathfrak{c g}_{n}}{\mathfrak{g}_{n}} \approx 1-\sum_{k \geqslant 0} \mathfrak{i t}_{k}\binom{n}{k} \frac{\mathfrak{g}_{n-k}}{\mathfrak{g}_{n}}
$$

Then $\quad b_{n} \approx \sum_{k \geqslant 0} c_{k} \boldsymbol{a}_{n-k}$.

Exponential generating functions and Bender's theorem

$$
\begin{aligned}
& \text { EGF: } G(z)=\sum_{n=0}^{\infty} \mathfrak{g}_{n} \frac{z^{n}}{n!} \\
& C G(z)=\log G(z) \\
& F(y)=\log (y) \\
& \frac{\partial F}{\partial y}=\frac{1}{y} \\
& \frac{1}{1-y}=1+y+y^{2}+\ldots \\
& G(z)=T(z)=\frac{1}{1-I T(z)} \\
& \frac{\mathfrak{c g}_{n}}{\mathfrak{g}_{n}} \approx 1-\sum_{k \geqslant 0} \mathfrak{i t}_{k}\binom{n}{k} \frac{\mathfrak{g}_{n-k}}{\mathfrak{g}_{n}}
\end{aligned}
$$

Bender, 1975:
1 . $A(z)=\sum_{n=1}^{\infty} a_{n} z^{n}, \quad a_{n} \neq 0$
$2 F(x, y)$ is analytic in $U(0 ; 0)$
$3 B(z)=\sum_{n=0}^{\infty} b_{n} z^{n}=F(z, A(z))$
$4 C(z)=\sum_{n=0}^{\infty} c_{n} z^{n}=\left[\frac{\partial F}{\partial y}(z, y)\right]_{y=A(z)}$

5 the sequence $\left(a_{n}\right)$ is gargantuan

Then $\quad b_{n} \approx \sum_{k \geqslant 0} c_{k} \boldsymbol{a}_{n-k}$.

Exponential generating functions and Bender's theorem

$1 C G(z)=\log G(z)$
$2 A(z)=G(z)-1$
$3 F(x, y)=\log (1+y)$
$4 \frac{\partial F}{\partial y}=\frac{1}{1+y}$
5 $C(z)=\frac{1}{G(z)}=\frac{1}{T(z)}$
6 $\frac{1}{T(z)}=1-I T(z)$
$7 \frac{\mathfrak{c g}_{n}}{\mathfrak{g}_{n}} \approx 1-\sum_{k \geqslant 0} \mathfrak{i t}_{k}\binom{n}{k} \frac{\mathfrak{g}_{n-k}}{\mathfrak{g}_{n}}$

Bender, 1975:
$1 A(z)=\sum_{n=1}^{\infty} a_{n} z^{n}, \quad a_{n} \neq 0$
$2 F(x, y)$ is analytic in $U(0 ; 0)$
$3 B(z)=\sum_{n=0}^{\infty} b_{n} z^{n}=F(z, A(z))$
$4 C(z)=\sum_{n=0}^{\infty} c_{n} z^{n}=\left[\frac{\partial F}{\partial y}(z, y)\right]_{y=A(z)}$

5 the sequence $\left(a_{n}\right)$ is gargantuan

Then $\quad b_{n} \approx \sum_{k \geqslant 0} c_{k} a_{n-k}$.

Tournament as a sequence

Folklore: Every labeled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labeled tournaments.

Tournament as a sequence

Folklore: Every labeled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labeled tournaments.

Tournament as a sequence

Folklore: Every labeled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labeled tournaments.

SET and SEQ decompositions

Asymptotics for connected graphs

Theorem

The probability p_{n} that a random labeled graph of size n is connected, satisfies

$$
p_{n} \approx 1-\sum_{k=1} i t_{k} \cdot\binom{n}{k} \cdot \frac{2^{k(k+1) / 2}}{2^{n k}}
$$

where $i t_{k}$ is the number of irreducible labeled tournaments of size k.

$$
\left(\mathfrak{i t}_{k}\right)=1,0,2,24,544,22320,1677488, \ldots
$$

Combinatorial constructions

■ $\mathcal{U}=\operatorname{SET}(\mathcal{V})$,

$$
U(z)=\exp (V(z)) .
$$

- $\mathcal{U}=\operatorname{SEQ}(\mathcal{W})$,

$$
U(z)=\frac{1}{1-W(z)} .
$$

SET asymptotics

Theorem

If \mathcal{U}, \mathcal{V} and \mathcal{W} are such combinatorial classes that
$1 \mathcal{U}$ is gargantuan with positive counting sequence,
$2 \mathcal{U}=\operatorname{SET}(\mathcal{V})$ and $\mathcal{U}=\operatorname{SEQ}(\mathcal{W})$,
then

$$
p_{n}:=\frac{\mathfrak{v}_{n}}{\mathfrak{u}_{n}} \approx 1-\sum_{k \geqslant 1} \mathfrak{w}_{k} \cdot\binom{n}{k} \cdot \frac{\mathfrak{u}_{n-k}}{\mathfrak{u}_{n}}
$$

Combinatorial meaning: p_{n} is the probability that a random object of size n from \mathcal{U} is irreducible in terms of SET-decomposition.

Random pair of permutations

Question. What is the probability p_{n} that a random pair of permutations $(\sigma, \tau) \in S_{n}^{2}$ generates a transitive group, as $n \rightarrow \infty$?

1 Dixon, 2005: $\quad p_{n} \approx 1-\sum_{k \geqslant 1} \frac{i p_{k}}{(n)_{k}}$,
where $\quad(n)_{k}=n(n-1) \ldots(n-k+1)$ are the falling factorials.

2 Cori, 2009: the sequence

$$
\left(\mathfrak{i p}_{k}\right)=1,1,3,13,71,461,3447,29093, \ldots
$$

counts indecomposable permutations.

Square-tiled surfaces

A pair $(h, v) \in S_{n}^{2}$ determines a square-tiled surface:
1 take n labeled squares,

Square-tiled surfaces

A pair $(h, v) \in S_{n}^{2}$ determines a square-tiled surface:
1 take n labeled squares,
2 identify horizontal sides by the permutation h,
$h=(13)(2)$

$$
v=(1)(23)
$$

Square-tiled surfaces

A pair $(h, v) \in S_{n}^{2}$ determines a square-tiled surface:
1 take n labeled squares,
$\sqrt{2}$ identify horizontal sides by the permutation h,
3 identify vertical sides by the permutation v,

$$
\begin{aligned}
& h=(13)(2) \\
& v=(1)(23)
\end{aligned}
$$

Square-tiled surfaces

A pair $(h, v) \in S_{n}^{2}$ determines a square-tiled surface:
1 take n labeled squares,
$\sqrt{2}$ identify horizontal sides by the permutation h,
3 identify vertical sides by the permutation v,
4 glue together identified sides.

$$
\begin{aligned}
& h=(13)(2) \\
& v=(1)(23)
\end{aligned}
$$

Square-tiled surfaces

A pair $(h, v) \in S_{n}^{2}$ determines a square-tiled surface:
1 take n labeled squares,
2 identify horizontal sides by the permutation h,
3 identify vertical sides by the permutation v,
4 glue together identified sides.
Transitive action \leftrightarrow connectedness of the square-tiled surface.

$$
\begin{aligned}
& h=(13)(2) \\
& v=(1)(23)
\end{aligned}
$$

Indecomposable permutations

A permutation $\sigma \in S_{n}$ is
1 decomposable, if there is an index $p<n$ such that $\sigma(\{1, \ldots, p\})=\{1, \ldots, p\}$.
2 indecomposable otherwise.

$$
\begin{array}{lll}
\left(\begin{array}{lll|ll}
1 & 2 & 3 & 4 & 5 \\
3 & 1 & 2 & 5 & 4
\end{array}\right) & \left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
3 & 5 & 4 & 1 & 2
\end{array}\right) \\
\text { decomposable }(p=3) & \text { indecomposable }
\end{array}
$$

Obstacles. Not stable under relabeling, number of permutations is not $(n!)^{2}$, combinatorial class is not gargantuan.

Pairs of linear orders

A pair of linear orders $\left(\prec_{1}, \prec_{2}\right)$ of size n is
1 reducible, if there is a partition $\{1, \ldots, n\}=A \sqcup B$ such that $\forall a \in A, b \in B: \quad a \prec_{1} b$ and $a \prec_{2} b$.
2 irreducible otherwise.
$\left(\begin{array}{ccccccc}3 & \prec_{1} & 1 & \prec_{1} & 4 & f_{1} & 2 \\ 4 & \prec_{2} & 3 & \prec_{2} & 1 & f_{2} & 2\end{array}\right) \quad\left(\begin{array}{ccccccc}3 & \prec_{1} & 1 & \prec_{1} & 4 & \prec_{1} & 2 \\ 4 & \prec_{2} & 1 & \prec_{2} & 2 & \prec_{2} & 3\end{array}\right)$
reducible $(A=\{1,3,4\}, B=\{2\}) \quad$ irreducible

Observation.
$\#\{$ irreducible pairs of linear orders of size $n\}=n!\cdot \mathfrak{i p}_{n}$.

Correspondence of classes

$1 \begin{aligned} \mathcal{U} & =\{\text { square-tiled surfaces }\} \\ & =\text { \{pairs of linear orders of the same size }\}\end{aligned}$
$2 \mathcal{V}=\{$ connected square-tiled surfaces $\}$
$3 \mathcal{W}=\{$ irreducible pairs of linear orders of the same size $\}$

$$
p_{n}=\mathfrak{w}_{k} \cdot\binom{n}{k} \cdot \frac{\mathfrak{u}_{n-k}}{\mathfrak{u}_{n}}=k!\cdot \mathfrak{i}_{k} \cdot\binom{n}{k} \cdot \frac{((n-k)!)^{2}}{(n!)^{2}}=\frac{\mathfrak{i}_{k}}{(n)_{k}}
$$

Asymptotics for connected square-tiled surfaces

Theorem (reformulation of the results of Dixon and Cori)

The probability p_{n} that a random square-tiled surface of size n is connected, satisfies

$$
p_{n} \approx 1-\sum_{k=1} \frac{\mathfrak{i}_{k}}{(n)_{k}}
$$

where $(n)_{k}=n(n-1) \ldots(n-k+1)$ are the falling factorials and $\mathfrak{i p}_{k}$ is the number of indecomposable permutations of size k.

$$
\left(\mathfrak{i p}_{k}\right)=1,1,3,13,71,461,3447,29093, \ldots
$$

More applications

1 Combinatorial maps and indecomposable perfect matchings.

2 Connected multigraphs and irreducible multitournaments.

3 Constellations and indecomposable multipermutations.

4 Colored tensor models and indecomposable multipermutations.

SEQ asymptotics

Theorem

If \mathcal{U}, \mathcal{W} and $\mathcal{W}^{(2)}$ are such combinatorial classes that
$\square \mathcal{U}$ is gargantuan with positive counting sequence,
$\square \mathcal{U}=\operatorname{SEQ}(\mathcal{W})$ and $\mathcal{W}^{(2)}=\mathcal{W} \star \mathcal{W}=\operatorname{SER}_{2}(\mathcal{W})$,
then

$$
q_{n}:=\frac{\mathfrak{w}_{n}}{\mathfrak{u}_{n}} \approx 1-\sum_{k \geqslant 1}\left(2 \mathfrak{w}_{k}-\mathfrak{w}_{k}^{(2)}\right) \cdot\binom{n}{k} \cdot \frac{\mathfrak{u}_{n-k}}{\mathfrak{u}_{n}} .
$$

$\xrightarrow[\text { Reasoning: }]{\frac{1}{y} \xrightarrow{\partial}-\frac{1}{y^{2}},(1-W(z))^{2}=1-2 W(z)+(W(z))^{2} .}$

Example: asymptotics for irreducible tournaments

Theorem

The probability q_{n} that a random labeled tournament of size n is irreducible, satisfies

$$
q_{n} \approx 1-\sum_{k \geqslant 1}\left(2 i t_{k}-i t_{k}^{(2)}\right) \cdot\binom{n}{k} \cdot \frac{2^{k(k+1) / 2}}{2^{n k}},
$$

where it ${ }_{k}^{(2)}$ is the number of labeled tournaments of size k with two irreducible components.

$$
\begin{array}{rlrllllll}
\left(\mathfrak{i t}_{k}\right) & = & 1, & 0, & 2, & 24, & 544, & 22320, & \ldots \\
\left(\mathfrak{i t _ { k } ^ { (2) })}\right. & =0, & 2, & 0, & 16, & 240, & 6608, & \ldots \\
\left(2 i t_{k}-i t_{k}^{(2)}\right) & = & 2, & -2, & 4, & 32, & 848, & 38032, & \ldots
\end{array}
$$

Combinatorial classes: limits of applicability

1 Coefficients can be negative (see tournaments).
2 In certain cases, there is a decomposition

$$
\mathcal{U}=\operatorname{SET}(\mathcal{V})
$$

but we have no class \mathcal{W} such that

$$
\mathcal{U}=\operatorname{SEQ}(\mathcal{W})
$$

and our theorem is not applicable. We would like to have an "anti-SEQ" operator to create this class.

Correspondance between combinatorial classes and species

combinatorial classes

$$
\begin{aligned}
\mathcal{A} & =\operatorname{SET}(\mathcal{B}) \\
\mathcal{A} & =\operatorname{SEQ}(\mathcal{B}) \\
\mathcal{A} & =\operatorname{CYC}(\mathcal{B}) \\
\mathcal{A} & =\operatorname{SET}_{m}(\mathcal{B}) \\
\mathcal{A} & =\operatorname{SEQ}_{m}(\mathcal{B}) \\
\mathcal{A} & =\operatorname{CYC}_{m}(\mathcal{B})
\end{aligned}
$$

species of structures

$$
\begin{aligned}
\mathcal{A} & =\mathcal{E} \circ \mathcal{B} \\
\mathcal{A} & =\mathcal{L} \circ \mathcal{B} \\
\mathcal{A} & =\mathcal{C P} \circ \mathcal{B} \\
\mathcal{A} & =\mathcal{E}_{m} \circ \mathcal{B} \\
\mathcal{A} & =\mathcal{L}_{m} \circ \mathcal{B} \\
\mathcal{A} & =\mathcal{C} \mathcal{P}_{m} \circ \mathcal{B}
\end{aligned}
$$

"Anti-SEQ" operator

1 If a virtual species Φ satisfies $\Phi_{0}=1$, then there exists a unique inverse of Φ under multiplication:

$$
\Phi^{-1}=1-\Phi_{+}+\Phi_{+}^{2}-\Phi_{+}^{3}+\ldots,
$$

where $\Phi_{+}=\Phi-1$.
2 If a virtual species ψ satisfies $\Psi_{0}=0$ and $\Psi_{1}=\mathcal{Z}$, then there exists a unique inverse of Ψ under substitution $\Psi^{(-1)}$.

3 "Anti-SEQ" operator:

$$
\mathcal{L}_{+}^{(-1)} \equiv 1-\mathcal{E}^{-1} \circ \mathcal{E}_{+}^{(-1)}
$$

SET_{m} asymptotics in terms of species

Theorem

If \mathcal{A}, \mathcal{B} and $\mathcal{B}^{\{m\}}, m \in \mathbb{N}$, are such (weighted) species that
$1 \mathcal{A}$ is gargantuan with positive total weights on $[n], n \in \mathbb{N}$, $2 \mathcal{A}=\mathcal{E} \circ \mathcal{B}$ and $\mathcal{B}^{\{m\}}=\mathcal{E}_{m} \circ \mathcal{B}$,
then

$$
p_{n}^{\{m\}}:=\frac{\mathfrak{b}_{n}^{\{m\}}}{\mathfrak{a}_{n}} \approx \sum_{k \geqslant 0} \mathfrak{c}_{k} \cdot\binom{n}{k} \cdot \frac{\mathfrak{a}_{n-k}}{\mathfrak{a}_{n}} .
$$

where

$$
\mathcal{C}=\mathcal{B}^{\{m-1\}}\left(\mathcal{E}^{-1} \circ \mathcal{B}\right) \equiv \mathcal{B}^{\{m-1\}}\left(\left(1-\mathcal{L}_{+}^{(-1)}\right) \circ \mathcal{A}_{+}\right) .
$$

SEQ_{m} asymptotics in terms of species

Theorem

If \mathcal{A}, \mathcal{B} and $\mathcal{B}^{(m)}, m \in \mathbb{N}$, are such (weighted) species that $1 \mathcal{A}$ is gargantuan with positive total weights on $[n], n \in \mathbb{N}$, $2 \mathcal{A}=\mathcal{L} \circ \mathcal{B}$ and $\mathcal{B}^{(m)}=\mathcal{L}_{m} \circ \mathcal{B}$,
then

$$
q_{n}^{(m)}:=\frac{\mathfrak{b}_{n}^{(m)}}{\mathfrak{a}_{n}} \approx \sum_{k \geqslant 0} \mathfrak{c}_{k} \cdot\binom{n}{k} \cdot \frac{\mathfrak{a}_{n-k}}{\mathfrak{a}_{n}} .
$$

where $\quad \mathcal{C}=m \mathcal{B}^{m-1}(1-\mathcal{B})^{2}$.

CYC_{m} asymptotics in terms of species

Theorem

If \mathcal{A}, \mathcal{B} and $\mathcal{B}^{[m]}, m \in \mathbb{N}$, are such (weighted) species that $1 \mathcal{A}$ is gargantuan with positive total weights on $[n], n \in \mathbb{N}$, $2 \mathcal{A}=\mathcal{C P} \circ \mathcal{B} \quad$ and $\quad \mathcal{B}^{[m]}=\mathcal{C} \mathcal{P}_{m} \circ \mathcal{B}$,
then

$$
r_{n}^{[m]}:=\frac{\mathfrak{b}_{n}^{[m]}}{\mathfrak{a}_{n}} \approx \sum_{k \geqslant 0} \mathfrak{c}_{k} \cdot\binom{n}{k} \cdot \frac{\mathfrak{a}_{n-k}}{\mathfrak{a}_{n}} .
$$

where

$$
\mathcal{C}=\mathcal{B}^{m-1}(1-\mathcal{B}) .
$$

Erdős-Rényi model $G(n, p)$

Consider a random labeled graph G :
I $p \in(0,1)$ is the probability of edge presence;
$2 q=1-p$ is the probability of edge absence;
3 the probability to pick this graph is

$$
\begin{aligned}
& \qquad \quad \mathbb{P}(G)=p^{|E(G)|} q^{\binom{n}{2}-|E(G)|}=\frac{\rho^{|E(G)|}}{(\rho+1)^{\binom{n}{2}}} \\
& \text { where } \rho=\frac{p}{q}=q^{-1}-1 .
\end{aligned}
$$

Graph weight

1 Weight of a graph: $w(G)=\rho^{|E(G)|}$.
2 Reason: if G_{1} and G_{2} are disjoint, then

$$
w\left(G_{1} \sqcup G_{2}\right)=w\left(G_{1}\right) \cdot w\left(G_{2}\right)
$$

3 The total weight of graphs of size n :

$$
\sum_{|V(G)|=n} w(G)=q^{-\binom{n}{2}} .
$$

4 The weight of connected graphs of size n :

Asymptotics of the Erdős-Rényi model

Theorem

The probability p_{n} that a random graph with n vertices is connected satisfies

$$
p_{n} \approx 1-\sum_{k \geqslant 1} P_{k}(\rho) \cdot\binom{n}{k} \cdot \frac{q^{n k}}{q^{k(k+1) / 2}},
$$

where

$$
P_{k}(\rho)=\sum_{|V(G)|=k}(-1)^{\pi_{0}(G)-1} w(G) .
$$

Meaning of the coefficients

$$
\begin{gathered}
w=1 \\
P_{1}(\rho)=1
\end{gathered}
$$

$\stackrel{\bullet}{w}=\rho$
$w=1$

$$
P_{2}(\rho)=\rho-1
$$

$w=\rho^{2}$
$w=\rho^{1}$
$w=1$

$$
P_{3}(\rho)=\rho^{3}+3 \rho^{2}-3 \rho+1
$$

Meaning of the coefficients

$$
\begin{aligned}
& w=1 \\
& P_{1}(\rho)=1 \\
& P_{1}(1)=1=\mathfrak{i t}_{1} \\
& P_{2}(\rho)=\rho-1 \\
& P_{2}(1)=0=\mathfrak{i t}_{2} \\
& w=\rho^{3} \\
& \stackrel{\bullet}{ }=\rho \\
& w=1 \\
& w=\rho^{2} \\
& w=\rho^{1} \\
& w=1 \\
& P_{3}(\rho)=\rho^{3}+3 \rho^{2}-3 \rho+1 \\
& P_{3}(1)=2=\mathfrak{i t}_{3}
\end{aligned}
$$

Asymptotics of the Erdős-Rényi model, continued

Theorem

The probability $p_{n}^{\{m\}}$ that a random graph with n vertices has exactly m connected components satisfies

$$
p_{n}^{\{m\}} \approx \sum_{k \geqslant 0} P_{k}^{\{m\}}(\rho) \cdot\binom{n}{k} \cdot \frac{q^{n k}}{q^{k(k+1) / 2}},
$$

where

$$
P_{k}^{\{m\}}(\rho)=\sum_{|V(G)|=k}(-1)^{\pi_{0}(G)-m}\binom{\pi_{0}(G)}{m-1} w(G) .
$$

Probability of a directed graph to be strongly connected

Question. What is the probability r_{n} that a random directed graph with n vertices is strongly connected, as $n \rightarrow \infty$?

Probability of a directed graph to be strongly connected

Question. What is the probability r_{n} that a random directed graph with n vertices is strongly connected, as $n \rightarrow \infty$?

Wright, 1970:

$$
r_{n}=\sum_{k=0}^{r-1} \frac{\omega_{k}(n)}{2^{k n}} \cdot \frac{n!}{(n+[k / 2]-k)!}+O\left(\frac{n^{r}}{2^{r n}}\right)
$$

where

$$
\begin{gathered}
\omega_{k}(n)=\sum_{\nu=0}^{[k / 2]} \gamma_{\nu} \xi_{k-2 \nu} \frac{2^{k(k+1) / 2}}{2^{\nu(k-\nu)}}(n+[k / 2]-k) \ldots(n+\nu+1-k), \\
\gamma_{0}=1, \quad \gamma_{\nu}=\sum_{s=0}^{\nu-1} \frac{\gamma_{s} \eta_{n-s}}{(\nu-s)!}, \sum_{\nu=0}^{\infty} \xi_{\nu} z^{\nu}=\left(1-\sum_{n=0}^{\infty} \frac{\eta_{n}}{2^{n(n-1) / 2}} \frac{z^{n}}{n!}\right)^{2}, \\
\eta_{1}=1, \quad \eta_{n}=2^{n(n-1)}-\sum_{t=1}^{n-1}\binom{n}{t} 2^{(n-1)(n-t)} \eta_{t} .
\end{gathered}
$$

Towards the asymptotics

1 Dovgal and de Panafieu, 2019:

$$
S D(z)=-\log \left(G(z) \odot \frac{1}{G(z)}\right)
$$

2 In terms of tournaments:

$$
S D(z)=-\log (1-T(z) \odot I T(z))
$$

3 Semi-strong directed graphs:

$$
\operatorname{SSD}(z)=\frac{1}{1-T(z) \odot I T(z)}
$$

Open problem: are there direct bijections?

Asymptotics for strongly connected graphs

Theorem

The probability r_{n} that a random directed graph with n vertices is strongly connected satisfies

$$
r_{n} \approx \sum_{k \geqslant 0} \mathfrak{S 5 0}_{k}\binom{n}{k} \frac{2^{k(k+1)}}{2^{2 n k}} \frac{\mathfrak{t _ { n - k }}}{\mathfrak{t}_{n-k}}
$$

where $\mathfrak{5 5 0}_{k}, \mathfrak{t}_{k}$ and $\mathfrak{i t}_{k}$ are the numbers of semi-strong digraphs, tournaments and irreducible tournaments of size k, respectively.
$\underline{\text { Reasoning: }} \log (1-y) \xrightarrow{\partial}-\frac{1}{1-y}$.

Asymptotics for strongly connected graphs, continued

Theorem

The probability r_{n} that a random directed graph with n vertices is strongly connected satisfies

$$
r_{n} \approx 1-\sum_{k \geqslant 1} \frac{R_{k}(n)}{2^{n k}}
$$

where a $R_{k}(n)$ is a polynomial of degree k.
Explanation of terms involved in Wright's asymptotics:

$$
\eta_{n}=\mathfrak{t}_{n} \mathfrak{i t}_{n}, \quad \gamma_{n}=\frac{\mathfrak{s s d}_{n}}{n!}, \quad \xi_{0}=1, \quad \xi_{n}=-\frac{2 \mathfrak{i t}_{n}+\mathfrak{i t}_{n}^{(2)}}{n!} .
$$

Explicit form of $R_{k}(n)$

For any positive integer k,

$$
R_{k}(n)=2^{k(k+1) / 2} \sum_{\nu=0}^{[k / 2]}\binom{n}{\nu, k-2 \nu} \frac{\mathfrak{s s o}_{\nu} \beta_{k-2 \nu}}{2^{\nu(k-\nu)}}
$$

and

$$
\beta_{k}=\left\{\begin{aligned}
1, & \text { if } k=0 \\
-2 \mathfrak{i t}_{k}+\mathfrak{i t}_{k}^{(2)}, & \text { if } k \neq 0 .
\end{aligned}\right.
$$

■ $5 \mathrm{sD}_{k}$ is the number of semi-strong digraphs of size k,

- it $_{k}$ is the number of irreducible tournaments of size k,
- $i t_{k}^{(2)}$ is the number of tournaments of size k with two irreducible parts.

Another type of convergence rate or irreducibles

1 Some classes are not gargantuan (forests, polynomials).
2 The notion of irreducibility can be understood broader. For instance, ordinary generating functions of "noncrossing compositions" satisfy

$$
A(z)=1+I(z A(z)) .
$$

Question. Can we have any combinatorial interpretation for the coefficients arising in the asymptotic expansions of the probabilities in the above cases?

Algorithmic aspects

For the asymptotic expansion for connected graphs,

$$
p_{n}=1-\binom{n}{1} \frac{2 \mathfrak{i t}_{1}}{2^{n}}-\binom{n}{2} \frac{2^{3} \mathfrak{i t}_{2}}{2^{2 n}}-\binom{n}{3} \frac{2^{6} \mathfrak{i t}_{3}}{2^{3 n}}-\ldots,
$$

the inclusion-exclusion principle shows the origin of terms:

Algorithmic aspects

For the asymptotic expansion for connected graphs,

$$
p_{n}=1-\binom{n}{1} \frac{2 \mathfrak{i t}_{1}}{2^{n}}-\binom{n}{2} \frac{2^{3} \mathfrak{i t}_{2}}{2^{2 n}}-\binom{n}{3} \frac{2^{6} \mathfrak{i t}_{3}}{2^{3 n}}-\ldots,
$$

the inclusion-exclusion principle shows the origin of terms:

Algorithmic aspects

For the asymptotic expansion for connected graphs,

$$
p_{n}=1-\binom{n}{1} \frac{2 \mathfrak{i t}_{1}}{2^{n}}-\binom{n}{2} \frac{2^{3} \mathfrak{i t}_{2}}{2^{2 n}}-\binom{n}{3} \frac{2^{6} \mathfrak{i t}_{3}}{2^{3 n}}-\ldots,
$$

the inclusion-exclusion principle shows the origin of terms:

Algorithmic aspects

For the asymptotic expansion for connected graphs,

$$
p_{n}=1-\binom{n}{1} \frac{2 \mathfrak{i t}_{1}}{2^{n}}-\binom{n}{2} \frac{2^{3} \mathfrak{i t}_{2}}{2^{2 n}}-\binom{n}{3} \frac{2^{6} \mathfrak{i t}_{3}}{2^{3 n}}-\ldots,
$$

the inclusion-exclusion principle shows the origin of terms:

Question. Can we create a rejection algorithm for producing connected graphs randomly, so that we reject with a probability of a smaller order?

Erdős-Rényi model

The form of the asymptotic expansion is

$$
p_{n}=1-\binom{n}{1} \frac{q^{n} P_{1}(\rho)}{q}-\binom{n}{2} \frac{q^{2 n} P_{2}(\rho)}{q^{2}}-\binom{n}{3} \frac{q^{3 n} P_{3}(\rho)}{q^{3}}-\ldots
$$

Question Can we interpret the coefficients $P_{k}(\rho)$ as a generalization of irreducible tournaments?

The straightforward generalization fails. Archer, Gessel, Graves and Liang showed that enumeration of tournaments counted by descents uses Eulerian generating functions (instead of exponential ones).

Erdős-Rényi model, continued

The form of the asymptotic expansion is

$$
p_{n}=1-\binom{n}{1} \frac{q^{n} P_{1}(\rho)}{q}-\binom{n}{2} \frac{q^{2 n} P_{2}(\rho)}{q^{2}}-\binom{n}{3} \frac{q^{3 n} P_{3}(\rho)}{q^{3}}-\ldots
$$

When the parameter p approaches the threshold for connectedness,

$$
p=\frac{(1+\varepsilon) \ln n}{n}
$$

all terms become equivalent:

$$
P_{k}(\rho)\binom{n}{k} \frac{q^{n k}}{q^{k(k+1) / 2}} \sim n^{-\varepsilon k} .
$$

Question. Can we build a fruitful theory of phase transition for asymptotic expansions?

Summary

We obtained asymptotic expansions and combinatorial interpretation of the involved constants for probabilities
1 related to constructions SET, SEQ and CYC;
2 of particular combinatorial classes:
1 connected graphs and irreducible tournaments,
2 connected square-tiled surfaces and indecomposable permutations,
3 combinatorial maps and indecomposable perfect matchings,
4 ...
3 related to virtual species;
4 within the Erdős-Rényi model;
5 of strongly connected directed graphs.
Also, we stated several open problems.

Literature I

R Archer K., Gessel I.M., Graves C., Liang X. Counting acyclic and strong digraphs by descents Discrete Math., 343(11):14, 2020. Id/No 112041.

囯 Beissinger J.S.
The enumeration of irreducible combinatorial objects
J. Comb. Theory, Ser. A, 38:143-169, 1985.

目 Bender E.A.
An asymptotic expansion for some coefficients of some formal power series
J. Lond. Math. Soc., Ser. 9 (1975), pp. 451-458.

Literature II

围 Gilbert E．N．
Random graphs
Ann．Math．Stat．，Vol．30，N． 4 （1959），pp．1141－1144．
围 Monteil T．，Nurligareev K．
Asymptotics for connected graphs and irreducible tournaments Extended Abstracts EuroComb 2021，pp．823－828．Springer， 2021.

围 Wright E．M．
Asymptotic relations between enumerative functions in graph theory
Proc．Lond．Math．Soc．，Vol．s3－20，Issue 3 （1970），
pp．558－572．

CYC asymptotics

Theorem

If \mathcal{V} and \mathcal{W} are such combinatorial classes that

- \mathcal{V} is gargantuan with positive counting sequence,
- $\mathcal{V}=\operatorname{CYC}(\mathcal{W})$,
then

$$
r_{n}:=\frac{\mathfrak{w}_{n}}{\mathfrak{v}_{n}} \approx 1-\sum_{k \geqslant 1} \mathfrak{w}_{k} \cdot\binom{n}{k} \cdot \frac{\mathfrak{v}_{n-k}}{\mathfrak{v}_{n}}
$$

Reasoning: $e^{-y} \xrightarrow{\partial}-e^{-y}$.

SET_{m} asymptotics

Theorem

If \mathcal{U}, \mathcal{V} and $\mathcal{V}\{m\}, m \in \mathbb{N}$, are such combinatorial classes that
$\square \mathcal{U}$ is gargantuan with positive counting sequence,
■ $\mathcal{U}=\operatorname{SET}(\mathcal{V})$ and $\quad \mathcal{V}^{\{m\}}=\operatorname{SET}_{m}(\mathcal{V})$,
then

$$
p_{n}^{\{m\}}:=\frac{\mathfrak{v}_{n}^{\{m\}}}{\mathfrak{u}_{n}} \approx \sum_{k \geqslant 0} \alpha_{k}^{\{m\}} \cdot\binom{n}{k} \cdot \frac{\mathfrak{u}_{n-k}}{\mathfrak{u}_{n}} .
$$

where $\alpha_{k}^{\{m\}}$ are the coefficients of

$$
\sum_{n=0}^{\infty} \alpha_{k}^{\{m\}} \frac{z^{n}}{n!}=\sum_{s=m-1}^{\infty}(-1)^{s+m-1}\binom{s}{m-1} V^{\{s\}}(z)
$$

$S E Q_{m}$ asymptotics

Theorem

If \mathcal{U}, \mathcal{W} and $\mathcal{W}^{(m)}, m \in \mathbb{N}$, are such combinatorial classes that
$\square \mathcal{U}$ is gargantuan with positive counting sequence,

- $\mathcal{U}=\operatorname{SEQ}(\mathcal{W}) \quad$ and $\quad \mathcal{W}^{(m)}=\operatorname{SEQ}_{m}(\mathcal{W})$,
then

$$
q_{n}^{(m)}:=\frac{\mathfrak{w}_{n}^{(m)}}{\mathfrak{u}_{n}} \approx \sum_{k \geqslant 0} \beta_{k}^{(m)} \cdot\binom{n}{k} \cdot \frac{\mathfrak{u}_{n-k}}{\mathfrak{u}_{n}}
$$

where

$$
\beta_{k}^{(m)}=m\left(\mathfrak{w}_{k}^{(m-1)}-2 \mathfrak{w}_{k}^{(m)}+\mathfrak{w}_{k}^{(m+1)}\right) .
$$

CYC_{m} asymptotics

Theorem

If $\mathcal{V}, \mathcal{W}, \mathcal{W}^{[m]}$ and $\mathcal{W}^{(m)}, m \in \mathbb{N}$, are such combinatorial classes that

- \mathcal{V} is gargantuan with positive counting sequence,

■ $\mathcal{V}=\operatorname{CYC}(\mathcal{W}), \quad \mathcal{W}^{[m]}=\operatorname{CYC}_{m}(\mathcal{W}), \quad \mathcal{W}^{(m)}=\operatorname{SEQ}_{m}(\mathcal{W})$,
then

$$
r_{n}^{[m]}:=\frac{\mathfrak{w}_{n}^{[m]}}{\mathfrak{v}_{n}} \approx \sum_{k \geqslant 0} \gamma_{k}^{[m]} \cdot\binom{n}{k} \cdot \frac{\mathfrak{v}_{n-k}}{\mathfrak{v}_{n}}
$$

where

$$
\gamma_{k}^{[m]}=\mathfrak{w}_{k}^{(m-1)}-\mathfrak{w}_{k}^{(m)}
$$

