Irreducibility of combinatorial objects: asymptotic probability and interpretation

Khaydar Nurligareev LIPN, University Paris 13

PhD defense

October 20, 2022

Khaydar Nurligareev

em] LIPN, University Paris 13

Motivating example	Combinatorial classes	Species	Directed graphs	Perspectives
Graphs				

Khaydar Nurligareev

Motivating example	Combinatorial classes	Species	Directed graphs	Perspectives
(₁ raphs				

(here,
$$n = 6$$
 and $\binom{n}{2} = 15$)

Motivating example	Combinatorial classes	Species	Directed graphs	Perspectives
(₁ raphs				

(here,
$$n = 6$$
 and $\binom{n}{2} = 15$)

Khaydar Nurligareev

Motivating example	Combinatorial classes	Species	Directed graphs	Perspectives
Graphs				

(here,
$$n = 6$$
 and $\binom{n}{2} = 15$)

Khaydar Nurligareev

Motivating example	Combinatorial classes	Species	Directed graphs	Perspectives
Graphs				

(here,
$$n = 6$$
 and $\binom{n}{2} = 15$)

Khaydar Nurligareev

Motivating example	Combinatorial classes	Species	Directed graphs	Perspectives
Graphs				

probability to pick this graph is $\frac{1}{2\binom{n}{2}}$ (uniform probability)

Khaydar Nurligareev

Motivating example	Combinatorial classes	Species	Directed graphs	Perspectives
Graphs				

every graph is a disjoint union (SET)

of connected graphs

Khaydar Nurligareev

lem] LIPN. University Paris 13

g_n = 2⁽ⁿ⁾/₂: the number of labeled graphs with n vertices
 cg_n: the number of connected labeled graphs with n vertices

 $(\mathfrak{cg}_n)_{n\geq 0} = 1, 1, 4, 38, 728, 26704, 1866256, \ldots$

<u>Question</u>. What is the probability $p_n = \frac{\mathfrak{cg}_n}{\mathfrak{g}_n}$ that a random graph with *n* vertices is connected, as $n \to \infty$?

Khaydar Nurligareev

lem] LIPN, University Paris 13

<u>Question</u>. What is the probability $p_n = \frac{\mathfrak{cg}_n}{\mathfrak{g}_n}$ that a random graph with *n* vertices is connected, as $n \to \infty$?

1 folklore: $p_n = 1 + o(1)$

<u>Question</u>. What is the probability $p_n = \frac{\mathfrak{cg}_n}{\mathfrak{g}_n}$ that a random graph with *n* vertices is connected, as $n \to \infty$?

1 folklore: $p_n = 1 + o(1)$ 2 Gilbert, 1959: $p_n = 1 - \frac{2n}{2^n} + O\left(\frac{n^2}{2^{3n/2}}\right)$

<u>Question</u>. What is the probability $p_n = \frac{\mathfrak{cg}_n}{\mathfrak{g}_n}$ that a random graph with *n* vertices is connected, as $n \to \infty$?

1 folklore: $p_n = 1 + o(1)$ 2 Gilbert, 1959: $p_n = 1 - \frac{2n}{2^n} + O\left(\frac{n^2}{2^{3n/2}}\right)$

3 Wright, 1970:

$$p_n = 1 - \binom{n}{1} \frac{2}{2^n} - 2\binom{n}{3} \frac{2^6}{2^{3n}} - 24\binom{n}{4} \frac{2^{10}}{2^{4n}} + O\left(\frac{n^5}{2^{5n}}\right)$$

Khaydar Nurligareev

<u>Question</u>. What is the probability $p_n = \frac{\mathfrak{cg}_n}{\mathfrak{g}_n}$ that a random graph with *n* vertices is connected, as $n \to \infty$?

1 folklore: $p_n = 1 + o(1)$ 2 Gilbert, 1959: $p_n = 1 - \frac{2n}{2^n} + O\left(\frac{n^2}{2^{3n/2}}\right)$

3 Wright, 1970:

$$p_n = 1 - \binom{n}{1} \frac{2}{2^n} - 2\binom{n}{3} \frac{2^6}{2^{3n}} - 24\binom{n}{4} \frac{2^{10}}{2^{4n}} + O\left(\frac{n^5}{2^{5n}}\right)$$

4 Can we see the structure? What is the interpretation?

Asymptotics for p_n

Theorem

For every $r \ge 1$, the probability p_n that a random labeled graph of size n is connected satisfies

$$p_n = 1 - \sum_{k=1}^{r-1} \mathfrak{i}\mathfrak{t}_k \cdot \binom{n}{k} \cdot \frac{2^{k(k+1)/2}}{2^{nk}} + O\left(\frac{n^r}{2^{nr}}\right),$$

Asymptotics for p_n

Theorem

For every $r \ge 1$, the probability p_n that a random labeled graph of size n is connected satisfies

$$p_n = 1 - \sum_{k=1}^{r-1} \mathfrak{it}_k \cdot \binom{n}{k} \cdot \frac{2^{k(k+1)/2}}{2^{nk}} + O\left(\frac{n^r}{2^{nr}}\right),$$

where \mathfrak{it}_k is the number of irreducible labeled tournaments of size k.

 $(\mathfrak{it}_k) = 1, 0, 2, 24, 544, 22320, 1677488, \ldots$

Khaydar Nurligareev

2em] LIPN, University Paris 13

Tournaments

A **tournament** is a complete directed graph.

The number of labeled tournaments with n vertices is

$$\mathfrak{t}_n = 2^{\binom{n}{2}}$$

Khaydar Nurligareev

Irreducible tournaments

A tournament is **irreducible**, if for every partition of vertices $V = A \sqcup B$

- **1** there exist an edge from A to B,
- **2** there exist an edge from B to A.

$$V = \{1, 2, 3, 4, 5, 6\}$$

Irreducible tournaments

A tournament is irreducible, if
for every partition of vertices V = A ⊔ B
1 there exist an edge from A to B,
2 there exist an edge from B to A.

Equivalently, a tournament is **strongly connected**: for each two vertices u and v

- 1 there is a path from *u* to *v*,
- 2 there is a path from v to u.

 $V = \{1, 2, 3, 4, 5, 6\}$

EGF:
$$G(z) = \sum_{n=0}^{\infty} \mathfrak{g}_n \frac{z^n}{n!}$$

Khaydar Nurligareev

lem] LIPN, University Paris 13

EGF:
$$G(z) = \sum_{n=0}^{\infty} g_n \frac{z^n}{n!}$$

 $CG(z) = \log G(z)$

Khaydar Nurligareev

em] LIPN, University Paris 13

EGF:
$$G(z) = \sum_{n=0}^{\infty} g_n \frac{z^n}{n!}$$

 $CG(z) = \log G(z)$

Bender, 1975:

1
$$A(z) = \sum_{n=1}^{\infty} a_n z^n$$
, $a_n \neq 0$
2 $F(x, y)$ is analytic in $U(0; 0)$
3 $B(z) = \sum_{n=0}^{\infty} b_n z^n = F(z, A(z))$
4 $C(z) = \sum_{n=0}^{\infty} c_n z^n = \left[\frac{\partial F}{\partial y}(z, y)\right]_{y=A(z)}$
5 $\frac{a_{n-1}}{a_n} \to 0$, as $n \to \infty$
6 $\exists r \ge 1$: $\sum_{k=r}^{n-r} |a_k a_{n-k}| = O(a_{n-r})$
Then $b_n = \sum_{k=0}^{r-1} c_k a_{n-k} + O(a_{n-r})$.

Khaydar Nurligareev

2em] LIPN, University Paris 13

EGF:
$$G(z) = \sum_{n=0}^{\infty} g_n \frac{z^n}{n!}$$

 $CG(z) = \log G(z)$

Bender, 1975:

1
$$A(z) = \sum_{n=1}^{\infty} a_n z^n$$
, $a_n \neq 0$
2 $F(x, y)$ is analytic in $U(0; 0)$
3 $B(z) = \sum_{n=0}^{\infty} b_n z^n = F(z, A(z))$
4 $C(z) = \sum_{n=0}^{\infty} c_n z^n = \left[\frac{\partial F}{\partial y}(z, y)\right]_{y=A(z)}$

5 the sequence (a_n) is gargantuan

Then
$$b_n = \sum_{n=1}^{n}$$

 $\sum_{k=0}^{r-1} c_k a_{n-k} + O(a_{n-r}).$

Khaydar Nurligareev

EGF:
$$G(z) = \sum_{n=0}^{\infty} g_n \frac{z^n}{n!}$$

 $CG(z) = \log G(z)$

Bender, 1975:

1
$$A(z) = \sum_{n=1}^{\infty} a_n z^n$$
, $a_n \neq 0$
2 $F(x, y)$ is analytic in $U(0; 0)$
3 $B(z) = \sum_{n=0}^{\infty} b_n z^n = F(z, A(z))$
4 $C(z) = \sum_{n=0}^{\infty} c_n z^n = \left[\frac{\partial F}{\partial y}(z, y)\right]_{y=A(z)}$

5 the sequence (a_n) is gargantuan

Then
$$b_n \approx \sum_{k \ge 0} c_k a_{n-k}$$

EGF:
$$G(z) = \sum_{n=0}^{\infty} g_n \frac{z^n}{n!}$$

 $CG(z) = \log G(z)$
 $F(y) = \log(y)$
 $\frac{\partial F}{\partial y} = \frac{1}{y}$

Bender, 1975:

1
$$A(z) = \sum_{n=1}^{\infty} a_n z^n$$
, $a_n \neq 0$
2 $F(x, y)$ is analytic in $U(0; 0)$
3 $B(z) = \sum_{n=0}^{\infty} b_n z^n = F(z, A(z))$
4 $C(z) = \sum_{n=0}^{\infty} c_n z^n = \left[\frac{\partial F}{\partial y}(z, y)\right]_{y=A(z)}$

5 the sequence (a_n) is gargantuan

Then
$$b_n \approx \sum_{k \ge 0} c_k a_{n-k}$$
.

EGF:
$$G(z) = \sum_{n=0}^{\infty} g_n \frac{z^n}{n!}$$

 $CG(z) = \log G(z)$
 $F(y) = \log(y)$
 $\frac{\partial F}{\partial y} = \frac{1}{y}$
 $\frac{1}{1-y} = 1 + y + y^2 + \dots$
 $\frac{\mathfrak{cg}_n}{\mathfrak{q}_n} \approx 1 - \sum_{i=1} \mathfrak{it}_k \binom{n}{k} \frac{\mathfrak{g}_{n-k}}{\mathfrak{q}_n}$

Bender, 1975:

1
$$A(z) = \sum_{n=1}^{\infty} a_n z^n, \quad a_n \neq 0$$

2 $F(x, y)$ is analytic in $U(0; 0)$
3 $B(z) = \sum_{n=0}^{\infty} b_n z^n = F(z, A(z))$
4 $C(z) = \sum_{n=0}^{\infty} c_n z^n = \left[\frac{\partial F}{\partial y}(z, y)\right]_{y=A(z)}$

5 the sequence (a_n) is gargantuan

$$\frac{\mathfrak{cg}_n}{\mathfrak{g}_n}\approx 1-\sum_{k\geq 0}\mathfrak{it}_k\binom{n}{k}\frac{\mathfrak{g}_{n-k}}{\mathfrak{g}_n}$$

Then
$$b_n \approx \sum_{k \ge 0} c_k a_{n-k}$$
.

Khaydar Nurligareev

EGF:
$$G(z) = \sum_{n=0}^{\infty} g_n \frac{z^n}{n!}$$

 $CG(z) = \log G(z)$
 $F(y) = \log(y)$
 $\frac{\partial F}{\partial y} = \frac{1}{y}$
 $\frac{1}{1-y} = 1 + y + y^2 + \dots$
 $G(z) = T(z) = \frac{1}{1-IT(z)}$
 $\frac{cg_n}{g_n} \approx 1 - \sum_{k \ge 0} it_k {n \choose k} \frac{g_{n-k}}{g_n}$

Bender, 1975:

1
$$A(z) = \sum_{n=1}^{\infty} a_n z^n$$
, $a_n \neq 0$
2 $F(x, y)$ is analytic in $U(0; 0)$
3 $B(z) = \sum_{n=0}^{\infty} b_n z^n = F(z, A(z))$
4 $C(z) = \sum_{n=0}^{\infty} c_n z^n = \left[\frac{\partial F}{\partial y}(z, y)\right]_{y=A(z)}$

5 the sequence (a_n) is gargantuan

Then $b_n \approx \sum_{k \ge 0} c_k a_{n-k}$.

Khaydar Nurligareev

2em] LIPN, University Paris 13

- $CG(z) = \log G(z)$
- **2** A(z) = G(z) 1
- 3 $F(x, y) = \log(1 + y)$
- $\frac{\partial F}{\partial y} = \frac{1}{1+y}$
- **5** $C(z) = \frac{1}{G(z)} = \frac{1}{T(z)}$
- 6 $\frac{1}{T(z)} = 1 IT(z)$ 7 $\frac{cg_n}{g_n} \approx 1 - \sum_{k \ge 0} it_k \binom{n}{k} \frac{g_{n-k}}{g_n}$

Bender, 1975:

- 1 $A(z) = \sum_{n=1}^{\infty} a_n z^n$, $a_n \neq 0$ 2 F(x, y) is analytic in U(0; 0)3 $B(z) = \sum_{n=0}^{\infty} b_n z^n = F(z, A(z))$ 4 $C(z) = \sum_{n=0}^{\infty} c_n z^n = \left[\frac{\partial F}{\partial y}(z, y)\right]_{y=A(z)}$
- **5** the sequence (a_n) is gargantuan

Then $b_n \approx \sum_{k \ge 0} c_k a_{n-k}$.

Khaydar Nurligareev

2em] LIPN, University Paris 13

Tournament as a sequence

Folklore: Every labeled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labeled tournaments.

Khaydar Nurligareev

tem] LIPN, University Paris 13

Tournament as a sequence

Folklore: Every labeled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labeled tournaments.

Khaydar Nurligareev

lem] LIPN, University Paris 13

Tournament as a sequence

Folklore: Every labeled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labeled tournaments.

Khaydar Nurligareev

LIPN, University Paris 13

SET and SEQ decompositions

Asymptotics for connected graphs

Theorem

The probability p_n that a random labeled graph of size n is connected, satisfies

$$p_n \approx 1 - \sum_{k=1} \operatorname{it}_k \cdot \binom{n}{k} \cdot \frac{2^{k(k+1)/2}}{2^{nk}}$$

where \mathfrak{it}_k is the number of irreducible labeled tournaments of size k.

 $(\mathfrak{it}_k) = 1, 0, 2, 24, 544, 22320, 1677488, \ldots$

Khaydar Nurligareev

2em] LIPN, University Paris 13

Species

Combinatorial constructions

1
$$\mathcal{U} = \operatorname{SET}(\mathcal{V}),$$
 $U(z) = \exp(V(z)).$

2
$$\mathcal{U} = SEQ(\mathcal{W}),$$
 $U(z) = \frac{1}{1 - W(z)}.$

Khaydar Nurligareev

SET asymptotics

Theorem

If \mathcal{U} , \mathcal{V} and \mathcal{W} are such combinatorial classes that **1** \mathcal{U} is gargantuan with positive counting sequence, **2** $\mathcal{U} = \operatorname{SET}(\mathcal{V})$ and $\mathcal{U} = \operatorname{SEQ}(\mathcal{W})$, then $p_n := \frac{\mathfrak{v}_n}{\mathfrak{u}_n} \approx 1 - \sum_{k \ge 1} \mathfrak{w}_k \cdot \binom{n}{k} \cdot \frac{\mathfrak{u}_{n-k}}{\mathfrak{u}_n}$.

Combinatorial meaning: p_n is the probability that a random object of size n from \mathcal{U} is irreducible in terms of SET-decomposition.

Random pair of permutations

<u>Question</u>. What is the probability p_n that a random pair of permutations $(\sigma, \tau) \in S_n^2$ generates a transitive group, as $n \to \infty$?

1 Dixon, 2005:
$$p_n \approx 1 - \sum_{k \ge 1} \frac{\mathrm{i} \mathfrak{p}_k}{(n)_k}$$

where $(n)_k = n(n-1) \dots (n-k+1)$ are the falling factorials.

2 Cori, 2009: the sequence

 $(\mathfrak{ip}_k) = 1, 1, 3, 13, 71, 461, 3447, 29093, \ldots$

counts indecomposable permutations.
A pair $(h, v) \in S_n^2$ determines a square-tiled surface:

1 take *n* labeled squares,

Khaydar Nurligareev

A pair $(h, v) \in S_n^2$ determines a square-tiled surface:

- 1 take *n* labeled squares,
- 2 identify horizontal sides by the permutation h,

A pair $(h, v) \in S_n^2$ determines a square-tiled surface:

- 1 take *n* labeled squares,
- 2 identify horizontal sides by the permutation h,
- 3 identify vertical sides by the permutation v,

A pair $(h, v) \in S_n^2$ determines a square-tiled surface:

- 1 take *n* labeled squares,
- **2** identify horizontal sides by the permutation h,
- 3 identify vertical sides by the permutation v,
- 4 glue together identified sides.

h = (13)(2) v = (1)(23) $d \begin{bmatrix} a \\ 1 \\ b \\ e \end{bmatrix} e$ $a \\ b$

A pair $(h, v) \in S_n^2$ determines a square-tiled surface:

- **1** take *n* labeled squares,
- **2** identify horizontal sides by the permutation h,
- 3 identify vertical sides by the permutation v,
- **4** glue together identified sides.

Transitive action \leftrightarrow connectedness of the square-tiled surface.

Khaydar Nurligareev

Indecomposable permutations

A permutation $\sigma \in S_n$ is

1 decomposable, if there is an index p < n such that $\sigma(\{1, \ldots, p\}) = \{1, \ldots, p\}$.

2 indecomposable otherwise.

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 5 & 4 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 1 & 2 \end{pmatrix}$$

decomposable (p = 3) indecomposable

<u>Obstacles</u>. Not stable under relabeling, number of permutations is not $(n!)^2$, combinatorial class is not gargantuan.

Pairs of linear orders

A pair of linear orders (\prec_1, \prec_2) of size *n* is

- **1** reducible, if there is a partition $\{1, \ldots, n\} = A \sqcup B$ such that $\forall a \in A, b \in B$: $a \prec_1 b$ and $a \prec_2 b$.
- 2 irreducible otherwise.

 $\begin{pmatrix} 3 & \prec_1 & 1 & \prec_1 & 4 & \prec_1 & 2 \\ 4 & \prec_2 & 3 & \prec_2 & 1 & \checkmark_2 & 2 \end{pmatrix} \qquad \begin{pmatrix} 3 & \prec_1 & 1 & \prec_1 & 4 & \prec_1 & 2 \\ 4 & \prec_2 & 1 & \prec_2 & 2 & \prec_2 & 3 \end{pmatrix}$ reducible $(A = \{1, 3, 4\}, B = \{2\})$ irreducible

Observation.

#{irreducible pairs of linear orders of size n} = $n! \cdot ip_n$.

0

Correspondence of classes

$$\mathcal{U} = \{ \text{square-tiled surfaces} \}$$

= {pairs of linear orders of the same size}

2
$$\mathcal{V} = \{\text{connected square-tiled surfaces}\}$$

3 $W = \{$ irreducible pairs of linear orders of the same size $\}$

$$p_n = \mathfrak{w}_k \cdot \binom{n}{k} \cdot \frac{\mathfrak{u}_{n-k}}{\mathfrak{u}_n} = k! \cdot \mathfrak{i}\mathfrak{p}_k \cdot \binom{n}{k} \cdot \frac{((n-k)!)^2}{(n!)^2} = \frac{\mathfrak{i}\mathfrak{p}_k}{(n)_k}$$

Khaydar Nurligareev

Asymptotics for connected square-tiled surfaces

Theorem (reformulation of the results of Dixon and Cori)

The probability p_n that a random square-tiled surface of size n is connected, satisfies

$$p_n \approx 1 - \sum_{k=1} \frac{\mathfrak{w}_k}{(n)_k}$$

where $(n)_k = n(n-1)...(n-k+1)$ are the falling factorials and ip_k is the number of indecomposable permutations of size k.

$$(\mathfrak{ip}_k) = 1, 1, 3, 13, 71, 461, 3447, 29093, \ldots$$

Khaydar Nurligareev

tem] LIPN, University Paris 13

More applications

- **1** Combinatorial maps and indecomposable perfect matchings.
- 2 Connected multigraphs and irreducible multitournaments.
- **3** Constellations and indecomposable multipermutations.
- 4 Colored tensor models and indecomposable multipermutations.

SEQ asymptotics

Theorem

If \mathcal{U} , \mathcal{W} and $\mathcal{W}^{(2)}$ are such combinatorial classes that • \mathcal{U} is gargantuan with positive counting sequence, • $\mathcal{U} = SEQ(\mathcal{W})$ and $\mathcal{W}^{(2)} = \mathcal{W} \star \mathcal{W} = SEQ_2(\mathcal{W})$, then

$$q_n := \frac{\mathfrak{w}_n}{\mathfrak{u}_n} \approx 1 - \sum_{k \ge 1} \left(2\mathfrak{w}_k - \mathfrak{w}_k^{(2)} \right) \cdot \binom{n}{k} \cdot \frac{\mathfrak{u}_{n-k}}{\mathfrak{u}_n}$$

<u>Reasoning</u>: $\frac{1}{y} \xrightarrow{\partial} -\frac{1}{y^2}$, $(1 - W(z))^2 = 1 - 2W(z) + (W(z))^2$.

Khaydar Nurligareev

tem] LIPN, University Paris 13

Example: asymptotics for irreducible tournaments

Theorem

The probability q_n that a random labeled tournament of size n is irreducible, satisfies

$$q_n \approx 1 - \sum_{k \ge 1} \left(2\mathfrak{i}\mathfrak{t}_k - \mathfrak{i}\mathfrak{t}_k^{(2)} \right) \cdot \binom{n}{k} \cdot \frac{2^{k(k+1)/2}}{2^{nk}},$$

where $it_k^{(2)}$ is the number of labeled tournaments of size k with two irreducible components.

$$(\mathfrak{it}_k) = 1, \quad 0, \ 2, \ 24, \ 544, \ 22320, \ \dots$$

 $(\mathfrak{it}_k^{(2)}) = 0, \ 2, \ 0, \ 16, \ 240, \ 6608, \ \dots$
 $(2\mathfrak{it}_k - \mathfrak{it}_k^{(2)}) = 2, \ -2, \ 4, \ 32, \ 848, \ 38032, \ \dots$

Combinatorial classes: limits of applicability

- **1** Coefficients can be negative (see tournaments).
- 2 In certain cases, there is a decomposition

 $\mathcal{U} = \operatorname{SET}(\mathcal{V}),$

but we have no class $\ensuremath{\mathcal{W}}$ such that

 $\mathcal{U} = \mathrm{SEQ}(\mathcal{W}),$

and our theorem is not applicable. We would like to have an "anti-SEQ" operator to create this class.

combinatorial classesspecies of structures \mathcal{A} = $\mathcal{SET}(\mathcal{B})$ \mathcal{A} = $\mathcal{E} \circ \mathcal{B}$ \mathcal{A} = $\mathcal{E} \circ \mathcal{B}$ \mathcal{A} = $\mathcal{E} \circ \mathcal{B}$

- $\mathcal{A} = \operatorname{SEQ}(\mathcal{B}) \qquad \qquad \mathcal{A} = \mathcal{L} \circ \mathcal{B}$
- $\mathcal{A} = \operatorname{CYC}(\mathcal{B}) \Leftrightarrow$
- $\mathcal{A} = \operatorname{SET}_m(\mathcal{B})$
- $\mathcal{A} = \operatorname{SEQ}_m(\mathcal{B})$
- $\mathcal{A} = \operatorname{CYC}_m(\mathcal{B})$

 $\mathcal{A} = \mathcal{CP} \circ \mathcal{B}$

 $\mathcal{A} = \mathcal{E}_m \circ \mathcal{B}$

 $\mathcal{A} = \mathcal{L}_m \circ \mathcal{B}$

 $\mathcal{A} = \mathcal{CP}_m \circ \mathcal{B}$

Irreducibility of combinatorial objects: asymptotic probability and interpretation

"Anti-SEQ" operator

I If a virtual species Φ satisfies $\Phi_0 = 1$, then there exists a unique inverse of Φ under multiplication:

$$\Phi^{-1} = 1 - \Phi_+ + \Phi_+^2 - \Phi_+^3 + \dots,$$

where $\Phi_+ = \Phi - 1$.

- 2 If a virtual species Ψ satisfies $\Psi_0 = 0$ and $\Psi_1 = Z$, then there exists a unique inverse of Ψ under substitution $\Psi^{(-1)}$.
- **3** "Anti-SEQ" operator:

$$\mathcal{L}_{+}^{(-1)} \equiv 1 - \mathcal{E}^{-1} \circ \mathcal{E}_{+}^{(-1)}.$$

SET_m asymptotics in terms of species

Theorem

If \mathcal{A} , \mathcal{B} and $\mathcal{B}^{\{m\}}$, $m \in \mathbb{N}$, are such (weighted) species that **1** \mathcal{A} is gargantuan with positive total weights on [n], $n \in \mathbb{N}$, **2** $\mathcal{A} = \mathcal{E} \circ \mathcal{B}$ and $\mathcal{B}^{\{m\}} = \mathcal{E}_m \circ \mathcal{B}$, then $p_n^{\{m\}} := \frac{\mathfrak{b}_n^{\{m\}}}{\mathfrak{a}_n} \approx \sum_{k \ge 0} \mathfrak{c}_k \cdot \binom{n}{k} \cdot \frac{\mathfrak{a}_{n-k}}{\mathfrak{a}_n}$. where $\mathcal{C} = \mathcal{B}^{\{m-1\}}(\mathcal{E}^{-1} \circ \mathcal{B}) \equiv \mathcal{B}^{\{m-1\}}((1 - \mathcal{L}_+^{(-1)}) \circ \mathcal{A}_+)$.

Khaydar Nurligareev

em] LIPN, University Paris 13

SEQ_m asymptotics in terms of species

Theorem

If \mathcal{A} , \mathcal{B} and $\mathcal{B}^{(m)}$, $m \in \mathbb{N}$, are such (weighted) species that **1** \mathcal{A} is gargantuan with positive total weights on [n], $n \in \mathbb{N}$, **2** $\mathcal{A} = \mathcal{L} \circ \mathcal{B}$ and $\mathcal{B}^{(m)} = \mathcal{L}_m \circ \mathcal{B}$, then (m)

$$q_n^{(m)} := \frac{\mathfrak{b}_n^{(m)}}{\mathfrak{a}_n} \approx \sum_{k \ge 0} \mathfrak{c}_k \cdot \binom{n}{k} \cdot \frac{\mathfrak{a}_{n-k}}{\mathfrak{a}_n}$$

where $C = m\mathcal{B}^{m-1}(1-\mathcal{B})^2$.

Khaydar Nurligareev

em] LIPN, University Paris 13

CYC_m asymptotics in terms of species

Theorem

If \mathcal{A} , \mathcal{B} and $\mathcal{B}^{[m]}$, $m \in \mathbb{N}$, are such (weighted) species that **1** \mathcal{A} is gargantuan with positive total weights on [n], $n \in \mathbb{N}$, **2** $\mathcal{A} = C\mathcal{P} \circ \mathcal{B}$ and $\mathcal{B}^{[m]} = C\mathcal{P}_m \circ \mathcal{B}$,

then

$$r_n^{[m]} := \frac{\mathfrak{b}_n^{[m]}}{\mathfrak{a}_n} \approx \sum_{k \ge 0} \mathfrak{c}_k \cdot \binom{n}{k} \cdot \frac{\mathfrak{a}_{n-k}}{\mathfrak{a}_n}$$

where $C = \mathcal{B}^{m-1}(1-\mathcal{B}).$

Consider a random labeled graph G:

- **1** $p \in (0,1)$ is the probability of edge presence;
- **2** q = 1 p is the probability of edge absence;
- **3** the probability to pick this graph is

$$\mathbb{P}(G) = p^{|E(G)|} q^{\binom{n}{2} - |E(G)|} = rac{
ho^{|E(G)|}}{(
ho + 1)^{\binom{n}{2}}},$$

where
$$\rho = \frac{\rho}{q} = q^{-1} - 1.$$

Khaydar Nurligareev

Species

Graph weight

- **1** Weight of a graph: $w(G) = \rho^{|E(G)|}$.
- **2** Reason: if G_1 and G_2 are disjoint, then

$$w(G_1 \sqcup G_2) = w(G_1) \cdot w(G_2).$$

3 The total weight of graphs of size *n*:

$$\sum_{|V(G)|=n} w(G) = q^{-\binom{n}{2}}.$$

4 The weight of connected graphs of size *n*:

$$\sum_{G \text{ is connected}} w(G).$$

Asymptotics of the Erdős-Rényi model

Theorem

The probability p_n that a random graph with n vertices is connected satisfies

$$p_n \approx 1 - \sum_{k \ge 1} P_k(\rho) \cdot {n \choose k} \cdot \frac{q^{nk}}{q^{k(k+1)/2}},$$

where

$$P_k(\rho) = \sum_{|V(G)|=k} (-1)^{\pi_0(G)-1} w(G).$$

Khaydar Nurligareev

2em] LIPN, University Paris 13

Species

Meaning of the coefficients

Khaydar Nurligareev

2em] LIPN, University Paris 13

Species

Meaning of the coefficients

Khaydar Nurligareev

tem] LIPN, University Paris 13

Asymptotics of the Erdős-Rényi model, continued

Theorem

The probability $p_n^{\{m\}}$ that a random graph with n vertices has exactly m connected components satisfies

$$p_n^{\{m\}} \approx \sum_{k \ge 0} P_k^{\{m\}}(\rho) \cdot \binom{n}{k} \cdot \frac{q^{nk}}{q^{k(k+1)/2}},$$

where

$$P_k^{\{m\}}(\rho) = \sum_{|V(G)|=k} (-1)^{\pi_0(G)-m} \binom{\pi_0(G)}{m-1} w(G).$$

Khaydar Nurligareev

Probability of a directed graph to be strongly connected

<u>Question</u>. What is the probability r_n that a random directed graph with n vertices is strongly connected, as $n \to \infty$?

Probability of a directed graph to be strongly connected

<u>Question</u>. What is the probability r_n that a random directed graph with n vertices is strongly connected, as $n \to \infty$?

Wright, 1970:
$$r_n = \sum_{k=0}^{r-1} \frac{\omega_k(n)}{2^{kn}} \cdot \frac{n!}{(n+[k/2]-k)!} + O\left(\frac{n^r}{2^{rn}}\right),$$

where

$$\omega_k(n) = \sum_{\nu=0}^{\lfloor k/2 \rfloor} \gamma_{\nu} \xi_{k-2\nu} \frac{2^{k(k+1)/2}}{2^{\nu(k-\nu)}} (n + \lfloor k/2 \rfloor - k) \dots (n + \nu + 1 - k),$$

$$\gamma_0 = 1, \ \gamma_\nu = \sum_{s=0}^{\nu-1} \frac{\gamma_s \eta_{n-s}}{(\nu-s)!}, \ \sum_{\nu=0}^{\infty} \xi_\nu z^\nu = \left(1 - \sum_{n=0}^{\infty} \frac{\eta_n}{2^{n(n-1)/2}} \frac{z^n}{n!}\right)^2,$$
$$\eta_1 = 1, \quad \eta_n = 2^{n(n-1)} - \sum_{t=1}^{n-1} \binom{n}{t} 2^{(n-1)(n-t)} \eta_t.$$

Khaydar Nurligareev

2em] LIPN, University Paris 13

~

Towards the asymptotics

1 Dovgal and de Panafieu, 2019:

$$SD(z) = -\log\left(G(z)\odot \frac{1}{G(z)}\right)$$

2 In terms of tournaments:

$$SD(z) = -\log\left(1 - T(z) \odot IT(z)\right)$$

3 Semi-strong directed graphs:

$$SSD(z) = \frac{1}{1 - T(z) \odot IT(z)}$$

Open problem: are there direct bijections?

Khaydar Nurligareev

Asymptotics for strongly connected graphs

Theorem

The probability r_n that a random directed graph with n vertices is strongly connected satisfies

$$r_n \approx \sum_{k \ge 0} \mathfrak{ssd}_k \binom{n}{k} \frac{2^{k(k+1)}}{2^{2nk}} \frac{\mathfrak{i}\mathfrak{t}_{n-k}}{\mathfrak{t}_{n-k}},$$

where \mathfrak{sso}_k , \mathfrak{t}_k and \mathfrak{it}_k are the numbers of semi-strong digraphs, tournaments and irreducible tournaments of size k, respectively.

Reasoning:
$$\log(1-y) \xrightarrow{\partial} -\frac{1}{1-y}$$
.

Khaydar Nurligareev

Asymptotics for strongly connected graphs, continued

Theorem

The probability r_n that a random directed graph with n vertices is strongly connected satisfies

$$r_n \approx 1 - \sum_{k \ge 1} \frac{R_k(n)}{2^{nk}},$$

where a $R_k(n)$ is a polynomial of degree k.

Explanation of terms involved in Wright's asymptotics:

$$\eta_n = \mathfrak{t}_n \mathfrak{i} \mathfrak{t}_n, \qquad \gamma_n = \frac{\mathfrak{ssd}_n}{n!}, \qquad \xi_0 = 1, \ \xi_n = -\frac{2\mathfrak{i}\mathfrak{t}_n + \mathfrak{i}\mathfrak{t}_n^{(2)}}{n!}.$$

Khaydar Nurligareev

2em] LIPN, University Paris 13

For any positive integer k,

$$R_k(n) = 2^{k(k+1)/2} \sum_{\nu=0}^{[k/2]} {n \choose \nu, k-2\nu} \frac{\mathfrak{ssd}_{\nu}\beta_{k-2\nu}}{2^{\nu(k-\nu)}},$$

and

$$\beta_k = \begin{cases} 1, & \text{if } k = 0, \\ -2\mathfrak{i}\mathfrak{t}_k + \mathfrak{i}\mathfrak{t}_k^{(2)}, & \text{if } k \neq 0. \end{cases}$$

ss0_k is the number of semi-strong digraphs of size k,
 it_k is the number of irreducible tournaments of size k,
 it⁽²⁾_k is the number of tournaments of size k with two irreducible parts.

Another type of convergence rate or irreducibles

- **1** Some classes are not gargantuan (forests, polynomials).
- 2 The notion of irreducibility can be understood broader. For instance, ordinary generating functions of "noncrossing compositions" satisfy

$$A(z) = 1 + I(zA(z)).$$

Question. Can we have any combinatorial interpretation for the coefficients arising in the asymptotic expansions of the probabilities in the above cases?

For the asymptotic expansion for connected graphs,

$$p_n = 1 - \binom{n}{1} \frac{2it_1}{2^n} - \binom{n}{2} \frac{2^3it_2}{2^{2n}} - \binom{n}{3} \frac{2^6it_3}{2^{3n}} - \dots,$$

the inclusion-exclusion principle shows the origin of terms:

Khaydar Nurligareev

tem] LIPN, University Paris 13

For the asymptotic expansion for connected graphs,

$$p_n = 1 - \binom{n}{1} \frac{2it_1}{2^n} - \binom{n}{2} \frac{2^3it_2}{2^{2n}} - \binom{n}{3} \frac{2^6it_3}{2^{3n}} - \dots,$$

the inclusion-exclusion principle shows the origin of terms:

Khaydar Nurligareev

tem] LIPN, University Paris 13

For the asymptotic expansion for connected graphs,

$$p_n = 1 - \binom{n}{1} \frac{2it_1}{2^n} - \binom{n}{2} \frac{2^3it_2}{2^{2n}} - \binom{n}{3} \frac{2^6it_3}{2^{3n}} - \dots,$$

the inclusion-exclusion principle shows the origin of terms:

Khaydar Nurligareev

For the asymptotic expansion for connected graphs,

$$p_n = 1 - \binom{n}{1} \frac{2\mathfrak{i}\mathfrak{t}_1}{2^n} - \binom{n}{2} \frac{2^3\mathfrak{i}\mathfrak{t}_2}{2^{2n}} - \binom{n}{3} \frac{2^6\mathfrak{i}\mathfrak{t}_3}{2^{3n}} - \dots,$$

the inclusion-exclusion principle shows the origin of terms:

Question. Can we create a rejection algorithm for producing connected graphs randomly, so that we reject with a probability of a smaller order?

The form of the asymptotic expansion is

$$p_n = 1 - \binom{n}{1} \frac{q^n P_1(\rho)}{q} - \binom{n}{2} \frac{q^{2n} P_2(\rho)}{q^2} - \binom{n}{3} \frac{q^{3n} P_3(\rho)}{q^3} - \dots$$

<u>Question</u> Can we interpret the coefficients $P_k(\rho)$ as a generalization of irreducible tournaments?

The straightforward generalization fails. Archer, Gessel, Graves and Liang showed that enumeration of tournaments counted by descents uses Eulerian generating functions (instead of exponential ones).
Erdős-Rényi model, continued

The form of the asymptotic expansion is

$$p_n = 1 - \binom{n}{1} \frac{q^n P_1(\rho)}{q} - \binom{n}{2} \frac{q^{2n} P_2(\rho)}{q^2} - \binom{n}{3} \frac{q^{3n} P_3(\rho)}{q^3} - \dots$$

When the parameter p approaches the threshold for connectedness,

$$p=\frac{(1+\varepsilon)\ln n}{n},$$

all terms become equivalent:

$$P_k(\rho)\binom{n}{k}rac{q^{nk}}{q^{k(k+1)/2}}\sim n^{-\varepsilon k}.$$

<u>Question</u>. Can we build a fruitful theory of phase transition for asymptotic expansions?

Khaydar Nurligareev

2em] LIPN, University Paris 13

Summary

We obtained asymptotic expansions and combinatorial interpretation of the involved constants for probabilities

- 1 related to constructions SET, SEQ and CYC;
- 2 of particular combinatorial classes:
 - 1 connected graphs and irreducible tournaments,
 - 2 connected square-tiled surfaces and indecomposable permutations,
 - 3 combinatorial maps and indecomposable perfect matchings,
 - 4 . . .
- 3 related to virtual species;
- 4 within the Erdős-Rényi model;
- **5** of strongly connected directed graphs.
- Also, we stated several open problems.

Khaydar Nurligareev

Literature I

Archer K., Gessel I.M., Graves C., Liang X. Counting acyclic and strong digraphs by descents *Discrete Math.*, 343(11):14, 2020. Id/No 112041.

Beissinger J.S.

The enumeration of irreducible combinatorial objects *J. Comb. Theory*, Ser. A, 38:143-169, 1985.

Bender E.A.

An asymptotic expansion for some coefficients of some formal power series

J. Lond. Math. Soc., Ser. 9 (1975), pp. 451-458.

Khaydar Nurligareev

Literature II

Gilbert E.N.

Random graphs

Ann. Math. Stat., Vol. 30, N. 4 (1959), pp. 1141-1144.

Monteil T., Nurligareev K.

Asymptotics for connected graphs and irreducible tournaments *Extended Abstracts EuroComb 2021*, pp. 823-828. Springer, 2021.

Wright E.M.

Asymptotic relations between enumerative functions in graph theory

Proc. Lond. Math. Soc., Vol. s3-20, Issue 3 (1970), pp. 558-572.

Khaydar Nurligareev

2em] LIPN, University Paris 13

CYC asymptotics

Theorem

If ${\mathcal V}$ and ${\mathcal W}$ are such combinatorial classes that

 $\blacksquare \ \mathcal{V}$ is gargantuan with positive counting sequence,

$$\mathbf{V} = \mathrm{CYC}(\mathcal{W}),$$

then

$$r_n := \frac{\mathfrak{w}_n}{\mathfrak{v}_n} \approx 1 - \sum_{k \ge 1} \mathfrak{w}_k \cdot \binom{n}{k} \cdot \frac{\mathfrak{v}_{n-k}}{\mathfrak{v}_n}$$

Reasoning: $e^{-y} \xrightarrow{\partial} -e^{-y}$.

Khaydar Nurligareev

em] LIPN, University Paris 13

SET_m asymptotics

Theorem

If \mathcal{U} . \mathcal{V} and $\mathcal{V}^{\{m\}}$, $m \in \mathbb{N}$, are such combinatorial classes that U is gargantuan with positive counting sequence, • $\mathcal{U} = \operatorname{SET}(\mathcal{V})$ and $\mathcal{V}^{\{m\}} = \operatorname{SET}_m(\mathcal{V})$. then $p_n^{\{m\}} := \frac{\mathfrak{v}_n^{\{m\}}}{\mathfrak{u}_n} \approx \sum_{k \ge 0} \alpha_k^{\{m\}} \cdot \binom{n}{k} \cdot \frac{\mathfrak{u}_{n-k}}{\mathfrak{u}_n}.$ where $\alpha_{\nu}^{\{m\}}$ are the coefficients of $\sum_{n=1}^{\infty} \alpha_k^{\{m\}} \frac{z^n}{n!} = \sum_{n=1}^{\infty} (-1)^{s+m-1} {s \choose m-1} V^{\{s\}}(z).$

Khaydar Nurligareev

SEQ_m asymptotics

Theorem

If \mathcal{U} , \mathcal{W} and $\mathcal{W}^{(m)}$, $m \in \mathbb{N}$, are such combinatorial classes that

U is gargantuan with positive counting sequence,

•
$$\mathcal{U} = SEQ(\mathcal{W})$$
 and $\mathcal{W}^{(m)} = SEQ_m(\mathcal{W})$,

then

 $q_n^{(m)} := \frac{\mathfrak{w}_n^{(m)}}{\mathfrak{u}_n} \approx \sum_{k \ge 0} \beta_k^{(m)} \cdot \binom{n}{k} \cdot \frac{\mathfrak{u}_{n-k}}{\mathfrak{u}_n}.$ $\beta_k^{(m)} = m \left(\mathfrak{w}_k^{(m-1)} - 2\mathfrak{w}_k^{(m)} + \mathfrak{w}_k^{(m+1)} \right).$

where

Khaydar Nurligareev

2em] LIPN, University Paris 13

CYC_m asymptotics

Theorem

If V, W, $W^{[m]}$ and $W^{(m)}$, $m \in \mathbb{N}$, are such combinatorial classes that

- \mathcal{V} is gargantuan with positive counting sequence,
- $\mathcal{V} = \operatorname{CYC}(\mathcal{W}), \quad \mathcal{W}^{[m]} = \operatorname{CYC}_{m}(\mathcal{W}), \quad \mathcal{W}^{(m)} = \operatorname{SEQ}_{m}(\mathcal{W}),$

then

$$r_{n}^{[m]} := \frac{\mathfrak{w}_{n}^{[m]}}{\mathfrak{v}_{n}} \approx \sum_{k \ge 0} \gamma_{k}^{[m]} \cdot \binom{n}{k} \cdot \frac{\mathfrak{v}_{n-k}}{\mathfrak{v}_{n}}.$$
where $\gamma_{k}^{[m]} = \mathfrak{w}_{k}^{(m-1)} - \mathfrak{w}_{k}^{(m)}.$

Khaydar Nurligareev

и

em] LIPN, University Paris 13